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Extracellular vesicles in a maze of glycomic complexity
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GLYCOME

Complex carbohydrates (glycans) attached to proteins 
and lipids are enrolled in vital biological functions that have 
been investigated for more than a hundred years (Taylor and 
Drickamer 2011). After the key principles were established 
in this regard, the emphasis was on the importance of sug-
ars for cell-cell adhesion and signaling, protein stability and 
secretion, as well as on innate and adaptive immunity (Varki 
2017). A set of all glycans of an organism, the composition of 
which reflects its current state, is termed glycome (Taylor and 
Drickamer 2011). In a process marked as glycosylation, gly-
cans are covalently attached to proteins (Mechref and Mud-
diman 2017). In contrast to the protein synthesis, this process 

is not defined at the genetic level i.e. is non-template driven 
(Spiro 2002; Varki et al. 2015). It is orchestrated by two types 
of enzymes glycosyltransferases and glycosidases (Singh et 
al. 2012; Vliegenthart 2017) and could be achieved through 
several biosynthetic pathways (Taylor and Drickamer 2011; 
Varki et al. 2015).

Glycosylation of proteins is a ubiquitous co- and post-
translational modification since more than 70% of the total 
cellular proteome is glycosylated (Apweiler et al. 1999; Hor-
tin et al. 2008; Mechref and Muddiman 2017; Gagneux et al. 
2022). Glycan part and protein can be linked through five 
types of glycopeptide bonds. In N-glycosylation and glypi-
ation, through different mechanisms, the previously formed 
glycan part is en-bloc added to the protein. In the other three 
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Their characterization uncovered an exceptional diversity in size, morphology, as well as in membrane and cargo con-
tent. Monitoring/analysis of surface glycosylation of EVs originating from the prostate, termed prostasomes, revealed 
their substantial contribution to the complexity of seminal plasma (SP) glycome. Heterogeneity of surface glycans con-
firm the existence of several prostasome subpopulations. Presentation of surface glycans on prostasomal membrane is 
strongly affected by co-localized membrane-associated glycoproteins and tetraspanins. They appear to be organized in 
established/regular distribution patterns on membrane domains. Surface glycans are a component of EVs membrane 
that affects its functionality and potentially a distinction marker of prostasome subpopulations. Further understanding 
of the complex composition of glycans on EVs might explain the relation of their structure with functional alterations 
in distinct patho/physiological conditions.

Keywords: extracellular vesicle, glycans, prostasomes, seminal plasma, tetraspanin.



Danilović Luković et al.

types, O-glycosylation, C-mannosylation, and phosphoryla-
tion, after the single monosaccharide is transferred directly 
to a specific amino acid residue, the rest of the glycan com-
ponent is made by sequential enzymatic addition of carbo-
hydrate units (Spiro 2002). 

The two most common ways of glycan attachment to 
the amino acid are through the nitrogen of asparagine (N-
glycosylation) or oxygen of serine or threonine subsets (O-
glycosylation). All N-glycans share a common core of two 
N-acetyl glucosamines (GlcNAc) and three mannoses (Man), 
GlcNAc2Man3 to which are added other monosaccharides 
like galactose (Gal), fucose (Fuc), or sialic acid (Neu5Ac). 
There are three classes of N-glycans, depending on the 
monosaccharides attached to the core. High-mannose N-
glycans exhibit only two GlcNAc with a variable number of 
Man and can contain glucose (Glc) residues; in complex type, 
GlcNAc, Gal, Fuc, sialic acid and GalNAc residues are added 
to the pentasaccharide core while hybrid type is structurally 
a combination of high-mannose and complex type N-glycans 
(Bieberich 2014; Varki et al. 2015). In O-glycosylation, after 
the addition of N-acetylgalactosamine (GalNAc) residue to 
serine or threonine (Tn antigen), the glycan chain is elon-
gated with the addition of Gal, GlcNAc, fucose, or sialic acid. 
This results in four common O-GalNAc glycan core struc-
tures (cores 1 to 4), and an additional four structures (cores 
5 to 8). All these structures are predominantly present in 
mucins (Varki et al. 2015). More than one type of glycopep-
tide bonds can be found in the same protein or on the same 
glycosylation site, depending on the protein conformation 
and available enzymes. Macroheterogeneity reflects varia-
tions in glycosylation site occupancy while microheteroge-
neity refers to variations of glycan structures at the same site 
(Čaval et al. 2021). Heterogeneity of glycans originates from 
the structural characteristics of sugar residues, their number 
and type, stereoisomerism, type of anomeric linkage, and 
their position in branching glycan component (Spiro 2002).

Glycans are abundantly present in all cell compartments 
(Roth 2002). Synthesis of the majority of glycoproteins oc-
curs in the endoplasmic reticulum (ER) and Golgi apparatus 
while certain types of O-linked glycosylation take place in 
the cytoplasm and nucleus (Roth 2002; Guzman-Aranguez 
and Argüeso 2010). Afterward, glycoproteins with a role in 
intercellular communication are expelled to the surface of 
the plasma membrane or secreted as a part of the secretory 
vesicle (Roth, 2002). Glycoproteins recycling occurs in lyso-
somes and emerging monosaccharides are expelled to the 
cytoplasm to be reused (Varki et al. 2015).

Glycans modulate the function of proteins and lipids to 
which they are attached, affecting the cell function in major 
biological processes like cell signaling, growth, adhesion, dif-
ferentiation, and survival (Fukuda 2002; Zhao et al. 2008; 

Varki 2017). They are involved in interspecies recognition 
and molecular mimicry in pathogen – host interactions 
(Gagneux et al. 2022). 

EVS IN SEMINAL PLASMA (SP) GLYCOME

Exosomes

EVs are nano-sized vesicles enclosed by a lipid bilayer 
(Théry et al. 2009; Pegtel and Gould 2019). They are released 
from the cell as a mechanism of intercellular communica-
tion (Théry 2011; Mathieu et al. 2019). According to their 
biogenesis, there are three types of EVs: apoptotic bodies, 
microvesicles, and exosomes. Apoptotic bodies are the largest 
type of EVs (up to 5µm) released from the cell under apop-
tosis while two other types are secreted by living cells (Bat-
tistelli and Falcieri 2020). Microvesicles are larger (100-1000 
nm) than exosomes (40-100 nm) and they bud directly from 
the surface of the plasma membrane (Cocucci and Meldolesi 
2015; Hartjes et al. 2019). 

Exosome biogenesis involves the formation of late 
endosome through invagination of the plasma membrane, 
followed by inward budding of endosome outer membrane 
(formation of multivesicular bodies, MVB) to encompass 
and import cytosol and membrane components inside the 
newly formed vesicle (Sahu et al. 2011; Zhang et al. 2019). 
These exosome precursors (intraluminal vesicles) inside 
MVB, containing distinct membrane microdomains and 
densely packed cargo, are further discharged from the cell 
by exocytosis (Bobrie et al. 2011). Exosomes are made by 
nearly all cell types so their internal cargos and membrane 
composition greatly differ between cell types, reflecting the 
physiological condition of the cell in which they are formed 
(Raposo and Stoorvogel 2013). The internal content (cargo) 
of exosomes includes proteins, lipids, metabolites, DNA, and 
different types of ribonucleic acids (RNA) (Wei et al. 2021). 
Exosome membrane contains different kinds of proteins. 
Tetraspanins (CD9, CD63, CD81) are mostly used as EVs 
markers (Kleijmeer et al. 1998; Hemler 2001; Yoshioka et al. 
2013). Lipid-anchored proteins (Rab proteins) are in charge 
of membrane fusion and transport, while inner peripheral 
scaffold factors (ezrin-radixin-moesin (ERM), syntenin, 
Alix) are involved in membrane organization and biogen-
esis (Pegtel and Gould, 2019). Prostasome membrane also 
contains Wnt proteins, extracellular matrix proteins (ECM), 
cytokines, and GPI-anchored molecules (CD55 and CD59) 
(Clayton et al. 2003; Izquierdo-Useros et al. 2009; Mulcahy 
et al. 2014; Shelke et al. 2019).

Distinct exosome populations are observed regarding 
the size and RNA composition (Willms et al. 2016) and phos-
phoprotein and glycoproteins content (Zheng et al. 2020). 
Besides the cargo content differences, membrane composi-
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tion can represent a distinction mark between prostasomal 
populations. Variations in exosome cargo and membrane 
composition are found between different cell types but also 
within the same cell type (Smith et al. 2015). Their number 
and composition change in pathological conditions (Soung 
et al. 2017; Elashiry et al. 2020). Exosomes can be collected 
from different body fluids in the non-invasive procedure 
known as “liquid biopsy”. This method detects and analyzes 
different biological matrices, like circulating tumor cells, 
cell free nucleic acids and EVs from body fluids, instead of 
using tissue fragments in classical biopsy (Zhou et al. 2020). 
This feature makes EVs a valuable prognostic and diagnostic 
tool in cancers (Soung et al. 2017), autoimmune (Anel et al. 
2019), metabolic (Lee et al. 2016) and degenerative diseases 
(Elashiry et al. 2020).

Prostasomes

Cells produce exosomes in both in vivo and in vitro 
conditions (Lv et al. 2012; Marton et al. 2012) and release 
them in all body fluids (blood, urine, seminal liquid, am-
niotic fluid, etc.) (Cappello et al. 2017). This includes SP as 
a liquid component of semen, which is produced by male 
accessory sex glands (Zaneveld and Chatterton 1982). It en-
ables key fertilization processes through constant interaction 
with spermatozoa based on the exchange of different organic 
compounds (proteins, glycoproteins, lipids) and inorganic 
ions (Juyena et al. 2013; Alberts et al. 2014; Machtinger et al. 
2016). Glycoproteins of SP are involved in the maintenance 
of spermatozoa functionality and structure, including matu-
ration, capacitation, acrosome reaction, and interaction be-
tween gametes (Diekman 2003). SP consists of three classes 
of N-glycans (high mannose and two complex types of bi-, 
tri-, tetraantennary N-glycans, one terminated with Lewis 
sequences and one with sialic acid) and O-glycans (core 1 
and core 2) (Pang et al. 2009). Most SP glycoproteins are 
either sialylated or fucosylated or both (Saraswat et al. 2016). 
Core and antennary fucosylated glycoproteins abundantly 
participate in SP glycoproteome mediating direct sperm 
binding to the zona pellucida (Olejnik et al. 2015). High lev-
els of Lewisx and Lewisy carbohydrate antigens/epitopes on 
some SP glycoproteins enroll them in immune homeostasis 
maintenance (Pang et al. 2011). Recent studies emphasize 
protein glycosylation as one of the main underlying causes 
of certain pathological events in the male reproductive tract 
like conditions of abnormal semen parameters (decreased 
sperm cells count (oligozoospermia), abnormal morphology 
(teratozoospermia), or lowered motility (asthenozoosper-
mia)) and leukocytospermia with accompanying inflamation 
(Janiszewska and Kratz 2020; Lan et al. 2020). Alterations 
in glycan/oligosaccharide branching, O-glycosylation, and 
sialylation (Kratz et al. 2015) and increased level of fucose 

residues on glycans affect semen quality and result in im-
pared fertility (Olejnik et al. 2015).

SP contains EVs predominately originating from pros-
tate epithelial cells, termed prostasomes (Poliakov et al. 2009; 
Alberts et al. 2014). They are released in SP through the pros-
tate fluid in high concentrations (Aalberts et al. 2014) and 
enclosed by a very rigid cholesterol-rich membrane enriched 
with lipid rafts and this composition makes prostasomes very 
stable and steady structures (Dubois et al. 2015). Prostasomal 
lipid content resembles that of other exosome types and in-
cludes high levels of sphingomyelin, cholesterol, and glyco-
sphingolipids (Brouwers et al. 2013). Human prostasomes 
contain chromosomal deoxyribonucleic acid (DNA) and 
various classes of RNA (Ronquist et al. 2009; Chevillet et al. 
2014; Vojtech et al. 2014) while protein content includes 1282 
proteins (Garcia-Rodriguez et al. 2018). Prostasomes are a 
heterogeneous group with structural and functional features. 
The main distinction parameters of prostasomal subpopula-
tions are size, protein profile, lipid composition, and surface 
protein glycosylation (Brouwers et al. 2013; Chiasserini et al. 
2015; Garcia-Rodriguez et al. 2018; Milutinović et al. 2019). 
Prostasomes fuse with the sperm plasma membrane and in-
duce capacitation and acrosomal reaction (Cross and Ma-
hasreshti 1997; Visconti et al. 1999). They are also involved 
in sperm motility and liquefaction process and exhibit anti-
oxidant, antimicrobial, and immunosuppressive properties 
(Garcia-Rodriguez et al. 2018).

SURFACE GLYCANS AS A DISTINCTION 
PARAMETER OF PROSTASOMAL 
SUBPOPULATIONS

Prostasomes cargo and membrane molecular composi-
tion reflect the status of the parent cell and/or tissue (Simp-
son et al. 2009) and can be modified under some patho-
logical (benign and malignant prostate disease) (Sahlén et 
al, 2002; Nilsson et al, 2006) and physiological conditions 
(liquefaction of semen, spermatozoa motility, antibacterial 
activity and immunological functions) (Arienti et al, 2004; 
Yáñez-Mó et al. 2015). As a component of prostasomal mem-
brane, surface glycans are a crucial component of SP plasma 
glycome (Milutinović et al. 2016), predominantly involved 
in cell-cell and cell–molecule interactions (Williams et al. 
2019). Taking these premises into account, differences in SP 
samples of normozoospermic (N) and oligozoospermic (O) 
(decreased sperm count) men were established to investi-
gate if surface glycans composition also reflects alterations 
in prostate functions as a vesicle cargo content (Sahlén et al. 
2002; García-Rodríguez et al. 2018). The starting point was 
ion-exchange chromatography IEC to obtain prostasomes 
(Fig. 1) (Milutinović et al. 2019). They were eluted in the 
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highest charge IEC fraction confirming their net negative 
surface charge. This was followed by monitoring of surface 
glycosylation using Sambucus nigra agglutinin (SNA) (binds 
sialylated structures) and Concanavalin A (ConA) (binds 
mannosylated structures) lectins (Fig. 1A) (Milutinović et 
al. 2019). This indicated the existence of one reactive pop-
ulation in N and at least two subpopulations in O. ConA 
binding pattern was more heterogeneous in both groups, re-
flecting the presence of several prostasomal subpopulations 
(Fig. 1A) (Milutinović et al. 2019). This finding was further 
supported by the distinct presentation of surface-associated 
glycans on native/unseparated prostasomes detected using 
lectin transmission electron microscopy (lectin-TEM) (Fig. 
1B) (Milutinović et al. 2019). In N, SNA bound to all vesi-
cles showing a characteristic rosette-like appearance, while 
ConA stained only some vesicles. Most of the vesicles were 
ConA reactive, while the minority of them stained with SNA 
in O (Fig. 1B).

Towards further characterization of prostasome sub-
population and their contribution to the complexity of 
seminal plasma glycome, N-glycan distribution and their 
co-localization with membrane-associated proteins was in-
vestigated. For this purpose, two approaches were applied: 
analysis of intact prostasome subpopulation and investiga-
tion of membrane domains obtained after treatment of pros-
tasomes with non-ionic detergent Triton X-100 (Janković et 
al. 2020, 2021).

Lectin affinity chromatography (LAC) was applied 
to separate different prostasomal subpopulations. Lectins 
of choice were ConA and Wheat germ agglutinin (WGA) 
(binds syalic acid/GlcNAc). Four fractions were obtained, 
WGA-bound, WGA-non bound, ConA-bound, and ConA-

non bound. These fractions were further characterized re-
garding co-distribution with surface-associated markers of 
EVs (CD63) and activity of glycoprotein enzymes gamma-
glutamyl transferase (GGT) and alkaline phosphatase (ALP) 
as well as total protein composition (Janković et al. 2020). 
The pattern of distribution of examined markers was simi-
lar in both N and O. In WGA separated populations, GGT 
distribution overlapped the distribution of CD63. They were 
marked as prostasomal subpopulations considering CD63 
immunoreactivity and the presence of specific protein bands 
at the region of 150-90 kDa. On the other hand, the popula-
tion enriched in ConA column was exhibiting ALP activity 
and lacked a specific prostasomal signature. The difference 
between N and O, was noticed in GGT activity of prosta-
somal populations and surface glycan presentation in related 
populations tracked by ALP activity (Janković et al. 2020).

Considering the role of the tetraspanin web (CD63, 
CD9 and CD81) and galectin-3 in the shaping of prosta-
some surface by the assembly at different macromolecular 
complexes, their re-distribution with selected N-glycans and 
GGT, were obtained analyzing detergent-treated prostasomes 
(Janković et al. 2021). 

Two distribution patterns were established in both 
groups consisting of overlapping WGA-reactive glycopro-
teins with CD9 and gal-3 and ConA-reactive glycoproteins 
with CD63 and GGT (Fig. 2) (Janković et al. 2021). Redistri-
bution of N-glycans and GGT was similar between groups, 
while differences were observed in the redistribution of TS 
and galectin-3. In O, gal-3 and tetraspanin CD9 were per-
turbated in means of their segregation on different microdo-
mains as a result of their engagement with high molecular 
mass complexes.

Fig. 1. Surface glycosylation of seminal prostasomes. (a) Ion-exchange chromatography elution was monitored by Sambucus nigra agglu-
tinin (SNA) and concanavalin A agglutinin (ConA) binding reactivity. Asterisk denotes fractions with prostasomes (CD63-positive frac-
tions); (b) Lectin-transmission electron microscopy show characteristic pattern of SNA-reactivity and ConA-reactivity of the vesicles in 
each sample group. (N = seminal prostasomes from normozoospermic men; O = seminal prostasomes from oligozoospermic men).
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CONCLUSION AND FUTURE PROSPECTIVES

At this point, overall comprehension of glycans is con-
siderable but some of their features remain to be elucidated. 
Our modest contribution to this subject enlightens the role 
of selected N-glycans and their spatial distribution on pros-
tasomal membrane, indicating that their profile may reflect 
alterations in EVs membrane structure and functionality in 
different pathological conditions.

Investigations on EVs function and structure are gain-
ing momentum and the EVs field is developing rapidly due 
to their promising potential as non-invasive biomarkers. This 
will be facilitated after successful standardization of methods 
for EVs purification and separation and will enable its pro-
duction to meet clinical demands. Implementation of EVs 
in clinical studies could result in significant improvement of 
early diagnosis setup and particularly of prognosis assess-
ment and disease surveillance. Moreover, current knowledge 
about glycans in the EVs ‘puzzle’ holds them a key factors in 
the tuning of EVs uptake and a possible distinction marker 
for better defining of EVs types.

Changes in glycosylation constitute a hallmark of vari-
ety of disease conditions and profound glycan characteriza-
tion of EVs could contribute to their application as an effi-
cient tool for diagnosis, prognosis and therapy development.
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