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Abstract  

The present investigation relies upon an alternative approach to estimate the penetration depth of rigid 
projectiles into quasibrittle materials that utilizes simulation-informed modeling of penetration 
resistance. Penetration at normal incidence of a long rigid rod into massive targets, made of materials 

with inferior tensile strength predisposed to microcracking, is an event characterized by a high level of 
aleatory variability and epistemic uncertainty. This inherent stochasticity of the phenomenon is 
addressed by a model developed based on the particle dynamics (PD) simulations aimed to provide a 

key modeling ingredient – the functional dependence of the radial traction at the cavity surface on the 
radial velocity of the cavity expansion. The penetration depth expressions are derived for the ogive 
nose projectiles. The use of the power law radial traction dependence upon the expansion rate yields 

the penetration resistance and depth equations defined in terms of hypergeometric functions. These 
expressions are readily evaluated and offer a reasonably conservative estimate of the penetration 

depth. This model is validated by using experimental results of the penetration depth of long projectiles 
into Salem limestone, which is a typical example of quasibrittle materials with random microstructure 
well known for their pronounced experimental data scatter. This stochasticity is explored in the present 

paper by a sensitivity analysis of the key input parameters of the model; most notably, uniaxial tensile 
strength and friction coefficient. 
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1  Introduction 

Studies of projectile penetration into geological targets are usually focused on the penetration depth or 
deceleration history. Analytical modeling of the high-velocity penetration through a quasibrittle solid 
is beset with inherent complexities coupled with a dearth of detailed experimental insight into 
underlying physical mechanisms. These complexities tend to obscure identification of the important 
physical quantities especially in the case of the quasibrittle materials well known for the pronounced 
scatter of experimental data. A typical penetration event is characterized by large deformations at 
extremely high strain rates, encompassing  inertia effects, complex patterns of stress- and failure-wave 
propagations, mass transport and phase transitions; all taking place within a few microseconds. The 
material in the target-projectile contact zone is melted within a thin contact layer, the target material 
is pulverized in the immediate vicinity of the emerging penetration tunnel, and inundated by 
microcracks forming complex damage patters dependent upon the impact energy and the distance 
from the tunnel. The shattered and fragmented material is transported away from the projectile path 
by the fragment cloud energetically ejected from the crater. The process is, for all practical purposes, 
adiabatic. A rational model of penetration must recognize these salient features of the phenomenon 
and incorporate their effects. 

Penetration mechanics is a mature research field with vast amount of literature accumulated over 
the past several decades. A concise review is conducted recently by Anderson [1] enveloping the most-
influential analytical models that include rigid-body and eroding penetration, both steady-state and 
transient. Warren and coauthors [2] offer a succinct survey of experiments and simulations with 
emphasis on rocks. The solution technique advanced in the present study belongs to the category of 
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theoretical models that approximate response of the semi-infinite target by one-dimensional motion 
using cavity-expansion methods [3-5]. Following the work of Hopkins [5], a number of authors 
employed this approach to develop analytical models for penetration problems (e.g., [6-9]). Extensive 
reviews of related studies are available in [10, 11]. The cavity expansion theories are constantly re-
examined, from various points of view, to improve agreement with experimental results. For example, 
Kong and coworkers [11] used the cavity expansion approximation to develop eroding projectile 
penetration model into mortar targets. Johnsen and coauthors [12] employed the cylindrical cavity 
expansion (CCE) using three different strain hardening models for the class of materials characterized 
by the growth of ductile holes as the primary damage-evolution mechanism. Zhang and colleagues 
[13] used the Tresca law for description of the fragmented region around the expanding cavity to 
investigate the penetration depth into concrete targets. Notably, Warren [14] examined applicability of 
the cavity expansion approximation for modeling the rigid penetration. A debate that issued with 
regards to the use of target inertia is summarized vividly in Anderson’s review article [1]. It suffices 
herein to reiterate Warren’s conclusion that penetration depth predictions for rigid decelerating 
projectiles (based on the cavity expansion approximation that includes target inertia) are in excellent 
agreement with the experimental data for aluminum targets for the wide range of striking velocities, 
various projectile materials and nose geometries [14].     

The present study is different in a sense that it utilizes the particle dynamics (PD) simulations of a 
dynamic CCE to estimate the radial traction required to facilitate the cavity growth at a prescribed 
rate. The dependence of the radial traction on the cylindrical cavity surface (σr) on the CCE velocity 
(vr) is not available from the experimental investigations. Thus, the functional dependence σr = f (vr) 
is traditionally assumed to be quadratic (by analogy with dynamic pressure) based on the curve fitting 
on numerical results or closed-form solutions obtained from the cavity expansion theories for different 
constitutive models of target materials (e.g., [1], [11], [12]). The present investigation examines the 
possibility—suggested by the results of the PD simulations of CCE in a generic highly-brittle material 
susceptible to microcracking—that the term associated with the CCE velocity vr might be in the form 
of a more general power law rather than the quadratic form. Key contributors to PD simulation-driven 
modeling are the verification, model validation, and quantification of uncertainty due to parameter 
sensitivity. This modeling approach is originated by Mastilovic and Krajcinovic [15, 16] and 
substantially extended herein in terms of both computational and analytical effort. Most notably, the 
extended range of CCE velocities, explored by the PD simulations, highlights the nonlinearity of the 
response at the high-velocity end, lacking in the original studies.  

Finally, due to versatility of various topics addressed in the present article, some remarks that 
would ordinarily belong to introduction are postponed to the following sections to facilitate discussion 
and presentation flow.      

2  Computer simulation technique 

Particle models represent one of many attempts to bridge the gap between the spatial scales. The PD, 
utilized in the present study, can be envisioned as a generalization of spring network models with 
dynamic effects included and can also be considered an engineering offshoot of molecular dynamics 
(MD) on a coarser spatial scale (“quasi-MD” [17]). The choice of the coarser spatial scale implies that 
the role of atoms/molecules is being taken over by “continuum” particles or quasi-particles mimicking 
a larger chunk of material. Other than that, the adopted computational PD model has the traditional 
MD techniques at the root. 

This model was used extensively in the past and described and explored in detail in literature (e.g., 
[15]). Krajcinovic and coworkers [15, 18-23] demonstrated that the present PD model can be used to 
determine changes of thermodynamic states during non-uniform and non-equilibrium deformation 
processes. Thus, only a succinct summary should suffice herein. The current approach is based on the 
equivalence between an ideal two-dimensional hexagonal lattice and a three-dimensional elastic 
continuum under plane-strain conditions ([15] and references therein), which makes the present PD 
technique well suited to simulate CCE. The system consists of N material points of known masses mi, 
and positions ri (i = 1,…, N), arranged randomly in accordance with a Delaunay simplicial graph 
(illustrated in Fig. 1) dual to a honeycomb system of Voronoi polyhedra. These material particles may 
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represent different micro/meso-constituents (e.g., rock clasts, ceramic grains, concrete aggregates) 
that govern macro response of the discontinuous and/or heterogeneous material system characterized 
by low fracture energy. Each bulk particle, associated with a node of an underlying irregular, two-
dimensional network, is linked initially to its six nearest neighbors (Fig. 1) by “chemical” bonds that 
are strongly nonlinear in compression and linear in tension prior to the steep rupture [15]. The choice 
of this simple central-force interaction renders the total elastic deformation energy of the system 
dependent exclusively on the mutual distances among particles, rij = rj – ri (= r; hereinafter for 
brevity).  The computer simulation technique requires solution of the system of differential equations 
of motion of the system of particles with defined momenta, which are approximated by an appropriate 
system of finite differences and then solved using one of the many available algorithms [20]. In order 
to increase the speed of program execution, it is useful to make and maintain a list of neighbors for 
each particle in accordance with the common MD practice.  

The hybrid potential: 
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is a combination of Born-Mayer (1a) and Hookean (1b) potentials. In Eqs. (1a, 1b), superscripts r and 
a denote, respectively, the repulsive and attractive branch of the interaction; 

0rr/r  , with subscript 0 

referring to the reference configuration and indices (i, j) marking interacting particles dropped for 
brevity.  Also, the average bond stiffness is proportional to the modulus of elasticity ( 15/38 0Ek  ), 

while the steepness of the repulsive wall parameter B can be selected, for example, by matching the 
ballistic equation of state [18]. Obviously, in this case, the parameters of the interparticle potential are 
selected by considering the behavior of the material on macro scale (top-down approach [20]). Watson 
and Steinhauser [24] recently devised a similar particle potential to model hypervelocity impact of 
aluminum spheres into a fixed thin plate with a notable difference that, instead of the Born-Mayer 
potential, a “more ductile” Leonard-Jones 6-12 potential is used in the nonlinear repulsive branch, 
Eq. (1a). 

  

Fig. 1  (a) Detail of schematics of the PD simulation of the CCE with the radial velocity vr. Examples 
of the effect of geometrical disorder on the particle-associated lattice: (b) ζr = 0.001 (the maximum 
disorder within the present PD simulation framework), (c) ζr = 0.5, and (d) ζr = 1 (the ideal lattice). 
(The current cavity radius is marked by R; its change during CCE is ΔR = R – R0 = 

0rR  ; the lattice 

nodes represent locations of particles while the short lines between them depict interparticle forces.) 
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The resulting force-elongation relation (f = –dφ/dr)—linear with tensile cut-off in the attractive 
and nonlinear in the repulsive branch—was proved capable to capture some salient features of the 
deformation process typical of the considered quasi-brittle materials subjected to dynamic loading 
such as: brittle tensile behavior, increase in shock wave velocity and decrease in compressibility with 
increasing pressure [15].  

Modeling of microstructural randomness and concomitant stochastic damage evolution is crucial 
for the model ability to capture the essence of penetration phenomenology. In general, the quenched 
disorder introduced into the particle network may be topological (unequal coordination numbers 
among particles, z), geometrical (unequal interparticle distances, r0; Fig. 1), or structural (unequal 
bond strengths and/or stiffnesses, k). In the present PD model, the geometrical and structural 
disorders were, respectively, introduced by the normal distribution of the reference-configuration 
interparticle distances (r0) and the uniform distribution of the corresponding bond stiffnesses (k)— 

  krkrkr
krkr 000 2   —with their bandwidths defined by the geometrical (ζr) and structural 

(ζk) disorder parameters such that 0 < ζr|k < 1 [15]. The rupture of interparticle bond was defined by 
the critical elongation εcr = (rcr / r0 – 1). The mean critical link elongation is the model parameter that 
can be determined from the uniaxial tensile testing of the material. It cannot be overemphasized that 
this inherent aleatory variability of the quasibrittle material system is further enhanced by the damage 
evolution governed, in turn, by the local fluctuations of stress acting upon the quenched energy 
barriers. 

The present PD model recognizes two different types of interparticle interaction: chemical and 
mechanical. The chemical bonding is limited to nearest neighbors while the number of particles 
interacting by mechanical bonding is unlimited. The healing of a microcrack is prevented by ruling 
out the establishment of the attractive force between two particles that were not linked initially or 
were separated at some point in the process of deformation by the rupture of the link that kept them 
together. However, the repulsive force can be established between two particles, which were originally 
not linked together1 or, were separated beyond the critical limit. Thus, the repulsive interaction can be 
either chemical or mechanical as opposed to the attractive interaction that is solely of the former kind. 
The formation of the repulsive force between the particles that were not connected initially by 
cohesive forces is essential to model the cataclastic flow of the fragmented rock that is of crucial 
importance for the CCE modeling. 

Computer simulations of the cavity nucleation and its dynamic growth are conceptually simple. 
The cavity is nucleated at the middle of the underlying particle network. After that, all particles on the 
cavity surface are driven radially outward at a prescribed expansion rate (Fig. 1a). The size of the 
particle system increased three times (≈ 34000 particles) compared to the original studies [15, 16] 
while its geometric and structural parameters are the same: the average (mean) equilibrium distance 

between particles 10 r , the average link stiffness 50k , the geometrical disorder parameter  ζr = 

0.001 (the maximum disorder illustrated in Fig. 1b), the structural disorder parameter ζk = 0.6, and 
the critical (fracture) strain εcr = 0.1%. (The maximum geometrical disorder and the small fracture 
strain are selected with aim to capture behavior of a highly brittle material.) The comparison of the 
key PD simulation results, the radial traction time histories, obtained for various values of εcr, ζk and ζr 
is shown in Fig. 4.  

Finally, if the interaction of a system of particles can be approximated by the central-force 
potential, the expression for the components of the stress tensor 
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can be adopted from statistical mechanics (e.g., [18, 20, 25] and references therein). In Eq. (2)  is 
the averaging-region area, while (rij)α and (rij)β are the α and β components of the distance vector rij 
between particles i and j. The stress expression (2), based solely on the interparticle-force term, is a 
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proven valid measure of mechanical stress at the scale of the small set of particles, which can be 
identified with the Cauchy stress [25].  

The approximation of a quasibrittle solid by an ensemble of particles interacting via the nonlinear 
potential is selected for a number of reasons. First, the random microstructure of the subject materials, 
characterized by morphological and structural disorder, is straightforwardly incorporated. Second, the 
selection of the constitutive relations capturing the essential physics can be, in principle, inferred from 
the molecular models (bottom-up approach [20, 22]). Third, procedures to achieve the rigorous 
mapping of the geometrical and structural (elastic) properties of a disordered polycrystalline 
microstructure into a particle network are developed and validated by Rinaldi and coauthors [19]. 
Finally, there is no need to develop ingenious, time-consuming computational techniques to track the 
material interfaces.  

3  General expressions for the penetration resistance of long rigid projectiles 

A long rigid projectile with an ogive nose (Fig. 2) impacts the target at normal incidence with striking 
velocity vs and continues to penetrate it with velocity vz (vs ≥ vz ≥ 0). For the rigid projectile, the 
motion history and penetration depth can be calculated if the penetration resistance force is known. 
The penetration resistance derivation in this section is based on the target approximation by thin 
independent layers of material perpendicular to the penetration direction (emphasized by the gray-
shaded areas in Fig. 2), which facilitates the use of the CCE theory.  

The ogive nose geometry is defined by the caliber radius head 
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where l is the projectile nose length, and a is the shank radius as indicated on Fig. 2a. 
Note that the use of CCE is inherently more suitable for modeling the “sharper” ogive-nose 

projectiles characterized by larger caliber-radius-head values (3), which are better approximated by 
the plane-strain conditions than those with blunter nose that are better suited for the use of the 
spherical cavity expansion models. Since the target is idealized as a stack of thin material layers, the 
penetration resistance is determined by the radial force necessary to dynamically open the cylindrical 
cavity. The equality of elementary works necessary to perform this task provides the following 
relationship 

 

Fig. 2  Geometry of the ogive nose projectile and corresponding penetration parameters. The forces 
and velocities correspond to the radial (r) and tangential (t) directions with respect to the ogive nose 
contour while those in the penetration direction are marked with subscript z. The sketches emphasize 
the axial symmetry of the problem and the CCE approximation (vr, Fr). 



 

 

 

6

 

dz

dr
dFdF

rz
   (4a) 

If the elementary force, Eq. (4a), necessary to open a cylindrical cavity, is augmented by the 
elementary resistance force due to the sliding friction (assumed in the form dFt = μ σr dA), the 
elementary penetration resistance is 

   θdθsrπσμ
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dz)rπ(σdF

rrz
sin22    (4b) 

Note that within the CCE approximation, the radial traction σr, responsible for the penetration 
resistance, consequently provides the far-field compression at the contact interface for the frictional 
resistance. This treatment of friction is consistent within the CCE framework and falls within the 
overall epistemic uncertainty in the frictional resistance, which is discussed in detail in the present 
study. 

From the ogive nose geometry, illustrated in Fig. 2, it follows that 
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It is also convenient to introduce the following relationships:  
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Consequently, Eq. (4b) could be expanded in the following form: 
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and integrated 
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The evaluation of the integrals appearing in Eq. (8) requires an analytical form of the traction at 
the projectile nose, σr (vz, θ), that resists penetration. Usually, the analytical form of this traction is 
obtained from a one-dimensional, symmetric analysis of a cavity expansion (spherical or cylindrical). 
As already mentioned, in the present study the analytical form of the radial traction is deduced based 
on the information provided by the CCE PD simulations summarized in the following section. 

4  The PD-informed modeling of the radial traction dependence upon the CCE velocity 

The CCE PD simulations provide a functional dependence of the radial traction on the cavity surface, 
σr, on the cavity expansion velocity, vr, that is depicted by square symbols in Fig. 3.  

The abovementioned set of simulation results is enlarged substantially in the present study, 
compared to the original set [15], with additional expansion-velocity simulations performed with a 
larger PD model. It cannot be overemphasized that these additional simulations affect the key 
modeling inputs not only quantitatively but also qualitatively.  

First, the additional simulations confirm the original observation of the linear Kσσ rr  vs. 
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Cvv
rr

  dependence in the medium-to-high CCE velocity range ( 
r

v  [0.0135, 0.20]), which is  

defined by the slope (1 – υ) /(1 + υ) as illustrated in Fig. 3 and Eq. (9). (Where K, C and υ denote, 
respectively, the bulk modulus, velocity of longitudinal elastic wave propagation and Poisson ratio of 
the pristine material.) It is not inconceivable that this more-or-less pronounced quasi-linearity of the 

 rr vfσ   mid-range is a feature distinguishing the brittle materials (with the random microstructure 

and inferior tensile strength predisposed to microcracking) from the ductile materials. 
The PD simulation results shown in Fig. 3 are obtained from the radial traction time histories 

illustrated in Fig. 4 (due to the controlled-displacement loading, time scales with the change of cavity 
radius presented on abscissas). All σr time histories are characterized by a steep stress jump to a very 
large magnitude, followed by a more-or-less rapid (depending on the loading rate) decline and, 
eventually, a relaxation into a saturation state (obviously, the steady-state in terms of a “long” time 
average). Figs. 4b-4d indicate that the peak and the saturation (steady-state, stagnation) radial traction 
values are practically not affected by the choice of the PD model input parameters (the link rupture 
strain, εcr; structural disorder parameter, ζk; and geometrical disorder parameter ζr).   

The abovementioned σr slope (depicted by the dashed line in Fig. 3) stems from the noted 
regularity of the radial traction histories (Fig. 4): 
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that, fortuitously or not, relates the discerned low-bound stress value ( lb

rσ ) with the radial stress at the 

elastic wave front at the cavity edge ( F

r
σ ) derived by Kromm [4].  Mastilovic and Krajcinovic [15] 

noted that F

r
σ  (marked by a solid black circle at the ordinate of the radial traction time histories 

presented in Fig. 4) captures with uncanny accuracy the value of the σr initial jump.  
 

 

Fig. 3  Normalized radial traction at the cavity surface vs. normalized cavity expansion velocity. The 
square symbols mark the substantially expanded set of CCE PD simulation results originally presented 
by Mastilovic and Krajcinovic [15]. The black circle at the ordinate corresponds to the radial traction 
necessary to expand cavity statically;  

strσ , defined by Eq. (11a). The lines represent two different 

analytical curves modeling the data, which are discussed in Appendix A. 
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Fig. 4  Radial traction at the cavity surface vs. change of the cavity radius (normalized values) for four 
widely different cavity expansion velocities (vr/C): (a) 0.0135, (b) 0.135, (c) 0.33 and (d) 0.50. The 
black circles on the ordinates mark the values corresponding to the analytical solutions of the radial 
stress at the elastic wave front at the cavity edge F

rσ  [4]. The empty rectangles on the right correspond 

to the one-third of the peak stresses, given by Eq. (9), and approximate reasonably well the stagnation 
(steady-state) values of the radial traction in the medium-to-high expansion velocity range 
[0.0135, 0.20] marked by the thick red lines. For the highest expansion velocities, vr > 0.2·C, the 
steady-state radial tractions deviate from the one-third rule of thumb and  

rr
vfσ   exhibits 

pronounced nonlinearity. The change of cavity radius on abscissa scales with time. (The curve sets at 
Fig. 4b-d illustrate results of the sensitivity analysis of the radial traction time histories with respect to 
the change of the PD input parameters: the link rupture strain, εcr; structural disorder parameter, ζk; 
and geometrical disorder parameter ζr. The upper plots highlight the proportionality of the peak and 
the steady-state radial tractions.) 

Importantly, the additional simulations indicate that the steady-state (saturation) radial-traction 
values eventually deviate from the one-third rule of thumb (9) in the range of the highest expansion 
velocities (vr > 0.20·C), which is evident from Figs. 4c-d. Consequently, pronounced nonlinearity of 
the functional dependence  rr vfσ   emerges2. 

It cannot be overemphasized that the radial traction functional dependence on the CCE velocity, 
 

rr
vfσ  , suggested by Fig. 3, is the key ingredient to the penetration resistance expression (8) in 

the preceding section. In the original article [15] (that overlooked the nonlinearity in the high velocity 
range), this functional dependence has been analytically represented by two approximations: (i) the 
bilinear, and (ii) the second-order parabola. The obvious problem with the bilinear approximation (in 

                                                
2 This nonlinearity is reminiscent of the pressure - particle velocity curves observed in the shock 
physics. This is not just a coincidence, since, within the present PD framework, σr and vr indeed 
represent the internal pressure at the cavity surface and the radial velocity of the corresponding 
particles. 



 

 

 

9

addition to the “non-smoothness”) is that it underestimates the radial traction for the high expansion 
velocities (vr > 0.20·C) since the nonlinearity passed unnoticed originally due to the narrower CCE 
velocity range explored. The problem with the parabolic approximation (that is commonly used in 
analytical modeling) is that it likely overestimates radial tractions for the larger expansion velocities if 
the characteristic slope in the medium-to-high expansion velocity range is to be accounted for in the 
model in the manner described in Appendix A. 

In the present study, the functional dependence of the radial traction on the radial velocity of the 
CCE is assumed in the following form 

1  γ,γ,vσ γ

rr
AB   (10)  

The derivation of model parameters 
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is presented in Appendix A. 
Succinctly, A and γ are obtained from requirement that the radial traction curve (10), approaching 

from above, touches the lower bound (9) at 
r

v  (where α > 1) as shown in Fig. 8 of Appendix A. In 

Eq. (11a),  
str

σ  marks the radial traction at the cavity surface corresponding to the static CCE, while 

σf designates the indirect tensile strength associated with the elastic-cracked response [15, 16].3 An 
example of different sets of parameters (11a-11c) corresponding to the functional dependence (10) is 
left for Appendix A. 

Obviously, the larger values of the exponent γ capture better the nonlinearities corresponding to 
the small-velocity and the high-velocity regions; the smaller γ values naturally flatten the curve and, 
thus, favor its linear-like appearance in the medium-to-high velocity region (i.e., the function (10) 
“comes closer” to the inclined lower bound (9); Fig. 3). It is evident that a compromise between these 
two conflicting requirements (the quasi-linearity in the medium-to-high, and the nonlinearity in the 
high, velocity region) is necessary in order for ansatz (10) to reproduce the PD simulation results. 
Therefore, Fig. 3 suggests that a reasonable overall agreement with the PD simulation results is 
achieved with exponent γ = 5/4 that departs from the observed radial traction at 

r
v ≈ 0.5 (which is, for 

example, over 2000 m/s for Salem limestone used in the numerical examples to follow). 
Finally, it should be noted that, in engineering applications involving massive targets made of 

quasibrittle solids, the power law exponent γ is an independent parameter (1 < γ ≤ 2). The actual 
choice of the value of this model parameter is a problem-specific task, but it is clear that the 
impression of quasi-linearity of the  rr vfσ   mid-range is increasingly difficult to retain for γ ≥ 3/2. 

The target inertia for ductile metals is usually proportional to v2 by analogy to the resistance term of 
the traditional fluid mechanics (e.g., Poncelet equation [1]). The PD simulation results suggest the 
working assumption that the exponent γ < 2 might be more convenient for the rigid penetration of the 
materials susceptible to microcracking characterized by inherently less ductile dynamic response.   

                                                
3 Despite the importance of the tensile strength in controlling failure processes on all micro/meso 
scales, it is often overlooked recently in engineering practice in general, and the penetration modeling 
in particular, due to difficulties with obtaining reliable experimental data. Be it as it may, the fracture 
initiation in materials characterized by low fracture energy is dominantly a tensile phenomenon on the 
spatial scale that dominates macro-response regardless of the sign of the far-field loading. 
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5  Calculations of the penetration depth based on the PD-informed modeling of the radial 

traction dependence upon the CCE velocity 

The penetration resistance acting on the ogive nose is defined by the integral expression (8). Thus, 
upon the substitution of the radial traction (10) into Eq. (8), and evaluation of the integrals, the 
following analytical form of this force is derived 
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where 2F1 (a, b; c; f(z)) designates the hypergeometric function (e.g., [26]) 
The expressions for parameters αco and βco may appear cumbersome but they are unambiguously 

determined by the material properties (K, υ, σf), the ogive-nose geometry (a, ψ), and the sliding 
friction coefficient (μ) and can be readily evaluated. 

The penetration resistance expression (12a) is then substituted into Newton’s second law of motion 
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and the evaluation of the integrals in Eq. (13)2 eventually yields the penetration depth in the form 
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where mp stands for the projectile mass, vs – the striking velocity and KE – the kinetic energy of the 
impacting projectile. 

The proportionality between the penetration depth of the ogive nose projectile and its kinetic 
energy at impact is observed frequently in empirical formulas [27]. 

6  Numerical examples for the penetration depth of the rigid ogive-nose projectiles 

The present model is validated by using a set of ballistics tests in which Salem limestone targets were 
impacted by rigid ogive-nose projectiles having different sizes [28, 29]. It is obvious from Eq. (14) 
and the expressions for the corresponding parameters (12b-c) that, in addition to the striking velocity, 
the penetration depth of the rigid ogive-nose projectiles is dependent upon:  
 projectile data (mp – projectile mass, a – shank radius, ψ - caliber radius head); 
 target material properties (K – bulk modulus, υ – Poisson ratio, σf – splitting tensile strength); 
 sliding friction coefficient (μ); 
 power-law exponent (γ ↔ α).  

The physical and mechanical material properties of quasibrittle materials are well known for their 
extremely pronounced scatter (e.g., [30, 31]). This aleatory variability may have far-reaching 
consequences on engineering applications in general, and the model validation in particular, since it 
is unlikely that all necessary inputs are reported in experimental penetration studies while compilation 
of the material properties from different sources is an iffy endeavor.  
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The material properties of the Salem limestone used herein (K = 26.5 MPa, υ = 0.23, 
C = 4280 m/s, and σf = 9 MPa) are compiled from the experimental penetration study by Frew and 
coauthors [29] and the triaxial compression experiments by Green [32] and Crosby [33]. It should be 
noted that the indirect (splitting) tensile strength σf is, out of necessity, estimated based on the 
uniaxial compressive strength σc = 75 MPa [32] and 72.3 MPa [33]. The σf choice naturally affects the 
calculation results and the necessity to use this stochastic and extrinsic property, difficult to 
objectively determine experimentally, needs to be investigated. The tensile strength of the quasibrittle 
materials susceptible to microcracking is typically an order of magnitude inferior to the uniaxial 
compressive strength. The limestone penetration studies rarely even report σf while the available 
experimental data suggest values from σc/10 to σc/7 [31]. Moreover, the value σf = 9 MPa is suggested 
by the recently-developed empirical correlation formula between the unconfined compressive strength 
and the indirect tensile strength of limestone rock samples, σf = (σc [MPa]/9.25)1/0.947 [31]. Clearly, the 
uncertainty remains; as an example, Frew et al. [29] report a range of lower σc values from 58 MPa to 
67 MPa, while the estimate of σf based on σc is a source of uncertainty in itself. Rosenberg and 
collaborators [43] associate the different compressive strengths of limestone to the well-known size 
effect in rocks. 

The comparisons of the penetration depth predictions (14) based on the newly-developed model 
(Eqs. (10) and (11a-c)) and the experimental data on the penetration depth of the ogive-nose 
projectiles into the Salem limestone targets [28, 29] are presented in Tables 1 and 2 and Figs. 5 and 6. 
The agreement between the experimental and computational results is reasonable keeping in mind 
that the estimate is based solely on the elastic material properties and the tensile strength obtained 
under the static loading conditions. Nonetheless, it should not be overlooked that the PD model, 
regardless of its simplicity, is capable to capture some subtle features of the high-rate response of the 
quasibrittle materials such as the adiabatic elastic moduli [21], the damage evolution and 
corresponding patterns [15, 22, 23], the cataclastic flow [16]. Actually, based on Fig. 5, it seems that 
the largest differences between results at a few striking velocities—specifically, (a) 853 m/s and 
1134 m/s, and (b) 939 m/s and 1098 m/s—are more likely than not due to the experimental 
uncertainty. (Relatively large striking-velocity increases that result in comparably modest penetration-
depth increases.) Nevertheless, the calculation-results sensitivity to some stochastic input parameters 
may cast a shadow on the model applicability if left unexplored. 

6.1  Parametric sensitivity of calculation results    

The sensitivity of calculation results with respect to the choice of key model-input parameters is 
investigated as shown in Tables 1 and 2.  

First, the value of the exponent γ determines: (i) the “closeness” of the   rr v  curve to the 

linear inclined lower bound, and (ii) the degree of the nonlinearity in the high-velocity range (Fig. 3). 
The selection of smaller value of the exponent, γ = 10/9, results in a less nonlinear  

rr
vf  and, 

consequently, a smaller penetration resistance for the higher striking velocities. Nonetheless, the large 
difference between the two curves should emerge only at relatively high radial expansion velocities 
(vr > 0.4∙C ≈ 1600-1700 m/s for Salem limestone), which is beyond the velocity range used herein for 
validation and parametric sensitivity study. Consequently, the comparison of the calculation results in 
the 3rd (corresponding to γ = 5/4) and 4th (γ = 10/9) columns of Tables 1 and 2, shows that the 
difference becomes pronounced only at the higher striking velocities (roughly, vs > 1000 m/s) as 
expected. Overall, although the results are not too sensitive within the explored γ range, the fact 
remains that in engineering applications γ represents an independent model parameter that may take 
larger (1 < γ ≤ 2) values than those suggested by the PD simulation results (Fig. 3). 

On the other hand, the tensile strength reduction (from σf = 9 MPa to σf = 6 MPa) results in the 
12% increase of the penetration depth on average, for both small-size (Table 1) and medium-size 
(Table 2) projectiles. The difference in results is relatively uniformly distributed over the entire 
explored striking-velocity range. This σf effect appears acceptable bearing in mind the overall 
uncertainty of the penetration depth estimate. 
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Table 1.  Comparison of the test and computational results for penetration of a small-size ogive-nose 
projectile (mp = 0.117 kg, 2a = 12.7 mm, ψ=3.0; Table 1 of ref. [28]) into Salem limestone targets. 
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[kg/m3] [m] [m] [m] [m] [m] 

459 0.141 0.156 0.153 0.181 0.192 
608 0.232 0.254 0.252 0.291 0.310 
853 0.362 0.445 0.448 0.504 0.543 
956 0.523 0.535 0.543 0.603 0.652 

1134 0.562 0.703 0.720 0.787 0.853 
1269 0.812 0.838 0.866 0.935 1.016 
1404 0.924 0.980 1.021 1.090 1.188 
1502 1.017 1.087 1.139 1.206 1.316 

 

Table 2.  Comparison of the test and computational results for penetration of a medium-size ogive-
nose projectile (mp = 0.61 kg, 2a = 25.4 mm, ψ=3.0; Table 2 of ref. [28]) into Salem limestone target. 
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560 0.30 0.29 0.28 0.33 0.35 
731 0.42 0.45 0.45 0.51 0.55 
793 0.53 0.52 0.52 0.58 0.63 
939 0.73 0.68 0.69 0.76 0.82 
984 0.74 0.73 0.74 0.82 0.89 

1098 0.79 0.87 0.89 0.98 1.06 
1184 1.03 0.98 1.01 1.10 1.19 

 

Fig. 5. Dependence of penetration depth on striking velocity. Comparison of experimental (rectangles) 
and computational results for penetration of:  (a) small-size (Table 1) and (b) medium-size (Table 2) 
ogive-nose projectile into Salem limestone targets. (Note that the solid lines correspond to the basic 
set of computational set of results - 3rd columns in Tables 1 and 2, while the dashed blue lines and the 
dash-dotted red lines correspond to the 5th and 6th columns, respectively. ) 
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The noticeable tendency of the present model to overestimate the penetration depth could, at least 
to some extent, be attributed to the neglect of the peak of the  

rr
vf  curve in the derivation of the 

penetration resistance (recall the radial traction time histories of Fig. 4 and the use of steady-state 
values in Fig. 3). More importantly, it could be attributed to the use of the CCE approximation that is 
estimated by Bishop, Hill and Mott [3] to result in approximately 15% lower resistance pressure at a 
conical indenter compared to the spherical cavity approximation. The same authors suggested that 
“the pressure on a lubricated punch deep in a material” is likely to be somewhere in between the two 
approximations with general tendency to lean toward the CCE with increase on the nose sharpness 
(specifically, the caliber radius head ψ for the ogive nose projectile). (An appropriate correction factor 
could be introduced easily into the radial traction expression (10) to account for this uncertainty.) 

 

Fig. 6. Dependence of penetration depth on striking velocity. Comparison of the test and 
computational results for penetration of a large-size ogive-nose projectile (mp = 0.931 kg, 
2a = 25.4 mm, ψ=3.0; Table 4 of ref. [29]) into Salem limestone targets. 
 

6.2  Sensitivity to sliding friction    

The obvious importance of the sliding friction on the penetration depth is discussed from the very 
onset of the penetration studies [3] to the present [34, 35]. These deliberations are to this day 
hampered by lack of experimental techniques that can quantify the frictional phenomena at the high 
sliding velocities. Early on, Forrestal and Grady [36] set the friction coefficient value to μ = 0.08, 
based on the data available at the time. Not long after, Forrestal and coworkers [37] explored the 
friction coefficient values 0.02 and 0.10 for the rigid penetration into 6061-T651 aluminum targets. In 
these early studies, the frictional resistance was introduced hypothetically to bring the analytical 
models in agreement with the experimental data [39]. Importantly, Hill suggested in retrospect, that 
the frictional component of the penetration resistance can be “disregarded because of surface melting” 
[40], which effectively promotes the contact lubrication (see the closing remarks in Appendix B). The 
physical soundness of this intuitive suggestion was confirmed by detailed and complex finite element 
analysis by Camacho and Ortiz [41] (matched against the aluminum armor penetration experiments) 
that indicated a very thin melted layer in the target-projectile contact zone that resulted in a 
practically frictionless interface. Recently, the frictional resistance is neglected frequently (e.g., [12, 
38]) but not entirely. As an example, a study of Jiang and coauthors [35] on the role of friction in 
rigid penetration into concrete-like materials, resulted in the observation that below a certain critical 
striking velocity adding friction improves the agreement with the experimental data; while, with the 
rise in striking velocity, the sliding friction effect weakens to the extent that it can be ignored. 
Numerical results obtained from various engineering models developed in the last two decades ([34, 
35] and references therein), continue to deliberate on the dependence of the friction coefficient on the 
sliding velocity and suggest that the friction coefficient, after all, could be a legitimate ingredient into 
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the penetration models. Be it as it may, Anderson [1] concluded not long ago that “when an accurate 
constitutive model is used, there is no need to include friction for ballistic penetration modeling.” 

Nonetheless, it cannot be overemphasized that the penetration depth estimate (14) rests on PD 
simulation results (Fig. 3) based on the constitutive modeling [15] that can be classified as semi-
quantitative rather than accurate in the abovementioned sense. Therefore, it seems appropriate to 
investigate herein to what extent the choice of the friction coefficient affects the ability of this simple 
model to reproduce the experimental data. The approach is twofold.   

6.2.1  Constant friction coefficient    

First, two relatively-small values of the friction coefficient μ are selected for this sensitivity study 
(0.08 and 0.02). These values are then applied over the whole striking velocity range (Tables 1 and 2). 
The μ reduction caused the penetration depth increase of 20.0% and 21.4% on average for the two 
projectile sizes, respectively.4 The observed penetration-depth difference is perhaps not alarming, 
bearing in mind the reduction of the friction coefficient by the factor of four, but (since both values 
used are relatively small) it reaffirms that the choice of this parameter should not be taken lightly. 
Moreover, as discussed above, with the increase of the striking velocity, the value of the sliding 
friction coefficient tends to zero, which highlights the importance of judicious use of the model given 
by Eqs. (14) and (12a-c). The present model needs to account for frictional resistance in order to 
reproduce the experimental data accurately. 

6.2.2  Velocity-dependent friction coefficient    

Second, it is recognized that, at low striking velocities, the use of the constant friction coefficient 
throughout the entire penetration process is an iffy approach in itself (see Appendix B). On one side, 
penetration starts with the initial striking velocity (vz = vs) and ends with the projectile arrest (vz ≡ 0). 
On the other side, at any moment of the penetration process (at any given penetration velocity) the 
sliding velocity varies from the minimum value at the tip of the projectile nose to the maximum at the 
nose-shank transition. For example, for vz = 250 m/s and the ogive nose with ψ = 3.0, the sliding 
velocity at the nose varies within the range [181, 250] m/s. Thus, to explore the effect of this range of 
different velocities, a simplified analytical model is developed in Appendix B, able to include the 
friction coefficient that changes with the sliding velocity. Fig. 7a offers comparison of the two 
simplified analytical models developed in Appendix B corresponding to the friction coefficient that is 
treated as a constant, Eq. (28), or the velocity-dependent, Eq. (30), as illustrated in Fig. 9a. It should 
be noted that the two abovementioned penetration depth expressions are derived under the restrictive 
assumption of the linearized )vf(σσ

r

lb

rr
  dependence—Eq. (26)—which neglects the quasistatic 

resistance and the significant deviation from the linear lower the high-velocity range. Therefore, the 
comparison in Fig. 7a is meant solely to emphasize the effects of the velocity-dependent treatment of 
the friction coefficient compared to the use of the constant value (i.e., the calculation results among 
themselves) and the experimental data is added only for the illustrative purpose.   

Thus, the comparison of the results corresponding to the constant μ calculations (the blue dash-
double dotted line for 0.02 and the red dashed line for 0.08 in Fig. 7a) indicates the mutual difference 
of approximately 15% (as depicted by the shaded yellow area). On the other hand, the results for the 
calculation with the velocity-dependent friction coefficient (the green solid and black dash-dotted lines 
in Fig. 7a; see Appendix B, for details) highlight a few observations. First, the penetration depth for 
the low striking velocities is smaller notably compared to the μ = 0.02 calculation. This is expected, 
since for these small striking velocities the mean values of the friction coefficients determined 
(Fig. 7b) are much larger than μ = 0.02 (see also Fig. 9a), which increases the penetration resistance 
and, consequently, reduces the penetration depth. For example, according to Fig. 7a, at vs ≈ 800 m/s 
the cumulative effect of the friction coefficient exponential reduction—Eq. (29) of Appendix B for 

                                                
4 The latter results correspond to difference of 17.8% and 17.6%, respectively, if μ is increased from 
0.02 to 0.08, which is in good agreement with observations reported in [33] that “a difference up to 
25% was noticed when the friction coefficient was varied from 0.02 to 0.1"; see also [34]. 



 

 

 

15

τ = 200 m/s—results in equal penetration depth with the μ = 0.08 calculation. (Interestingly, the 
crossover velocity, vs ≈ 800 m/s, corresponds to an order of magnitude smaller friction coefficient 
μ ≈ 0.008 for τ = 200 m/s, according to Fig. 9a.) Also, the penetration depth corresponding to the 
calculation with μ = 0.02 consistently overestimates the results from the μ = f (vz) calculations (up to 
the highest striking velocities for τ = 100 m/s), which is understandable considering the values of the 
mean coefficients of friction shown in Fig. 7b.5 This may, at least formally, suggest the need to use the 
velocity-dependent friction coefficient in calculations (instead of any constant value) due to its 
cumulative effect whenever the penetration process is accompanied by a significant change in the 
value of the coefficient of friction (which could be the case for low-velocity impacts). Unfortunately, a 
quantitative prediction of the evolution of the friction coefficient corresponding to a specific striking 
velocity (like those schematized in Fig. 9b) poses a challenge and it is uncertain to what extent is even 
accessible from experimental measurements.   

 

Fig. 7. (a) Comparison of penetration depth calculation results for penetration of a small-size ogive-
nose projectile (mp = 0.117 kg, 2a = 12.7 mm, ψ=3.0) into Salem limestone targets obtained under 
four different treatments of the friction coefficient for the linearized  rr vf  dependence 

(Appendix B). The black rectangles mark the corresponding experimental data (Table 1 of ref. [28]). 
(b) Mean value of the friction coefficient during the penetration process calculated as 

     sss
v

zz vvvvdv
s

1exp0

0
   (refer to Appendix B and Eq. (29)). 

                                                
5 With respect to Fig. 7b, caution should be exercised bearing in mind the discussion in Appendix B. 
Namely, the functional dependence μ = f (vz)— hypothetically known based on the experimental data 
fitting and extrapolation—is likely not usable (in the sense of the path 1 in Fig. 9b) in the course of 
projectile deceleration (vz → 0). At the onset of the (high-velocity) penetration, the thin layer of 
contact surface softens (melts) and μ is reduced (to zero). The corresponding microstructural changes 
of the interface are irreversible and affect subsequent sliding. Later deceleration of the projectile 
during penetration may lead to some increase in the coefficient of friction which is unlikely to follow 
the experimentally obtained Eq. (29).      
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Finally, all four linearized models overestimate the experimentally-obtained penetration depth at 

low striking velocity (due to the neglect of the quasistatic resistance). At the high striking velocities, 
the overestimate of the penetration depth is significantly reduced due to the competing effects of the 
overestimate of the frictional resistance (because the friction coefficient is in reality equal to zero or 
only slightly higher) and the underestimate of the radial traction (due to the linearized models). 

7  Summary 

The present study is dedicated to investigation of the penetration depth of long rigid projectiles into 
the brittle materials susceptible to microcracking. The ogive nose geometry of the projectile is 
considered as one frequently used and the better suited for the CCE approximation employed herein 
than the spherical nose geometry. Thus, the functional dependence of the radial traction at the cavity 
surface on the CCE velocity is stipulated based on the PD simulations. These simulations suggest the 
mildly nonlinear dependence ( 

rr
v , 1 < γ < 2) composed on the nonlinear response in the range of 

extremely low (the quasistatic) and extremely high CCE velocities and only a weakly nonlinear 
(practically almost linear) response in between. The described PD-driven functional dependence is at 
the core of the proposed model. This analytical form results in the penetration depth expressions in 
terms of hypergeometric functions. Consequently, it may be argued that the simplicity of similar 
empirical formulas is not maintained, which is not convenient for engineering application. 
Nonetheless, as demonstrated in this analysis, the expressions developed herein are easily evaluated 
by software systems for modern technical computing (such as, for example, Wolfram Mathematica), 
while their simplicity rests upon only a few static properties needed (a pair of elastic constants among 
them) for the estimate.   

The approximate model developed based on the key inputs from the PD simulation is validated in 
the present article against the experimental results for Salem limestone targets and the ogive nose 
projectiles of three different sizes. These comparisons demonstrate the model capability to predict the 
penetration depth reasonably well, especially bearing in mind the simplicity of the PD simulations and 
the fact that the model predictions are based on the mechanical properties obtained under the static 
loading conditions. However, it is recognized that the proposed model utilizes the indirect (splitting) 
tensile strength, which is an extrinsic material property, characterized by a large data scatter, and 
difficult to determine experimentally. The investigation indicate that the one-third reduction of the 
tensile strength results in the 12% increase of the penetration depth on average, for both small-size 
and medium-size projectiles, which is considered acceptable. Furthermore, the choice of the exponent 
γ, which defines the CCE rate dependence of the radial traction at the projectile nose, 

rr
v , is 

proved to be relatively robust in the PD-suggested range of interest, 0 < γ ≤ 1.5 within the range of 
striking velocities that are of practical interest. Arguably the most important parameter choice is that 
of the friction coefficient. Our simple model in the present form needs to include the frictional 
component in order to reproduce the experimental data. The investigation conducted here draws 
attention to advantages of using a velocity-dependent friction coefficient in penetration modeling 
whenever physically justified (presumably, at low impact velocities) and available. In such cases, the 
use of constant friction coefficient is an iffy proposition since every penetration event is a complex 
process that encompasses a range of sliding velocities that affect the friction coefficient value. The 
effect is cumulative and very difficult, if not impossible, to address objectively with the friction 
coefficient insensitive to the sliding velocity. On the other hand, for the high striking velocities, the 
irreversible micromechanical and thermomechanical transformations on the contact surface (melting 
included) render the effect of projectile deceleration on the coefficient of friction largely negligible if 
not irrelevant. In such cases, the use of frictionless contact is the most physically justified approach.  

Finally, the necessity to include frictional resistance in the present model could be alleviated by 
introducing a correction factor (ranging, for example, from 1.05 to 1.2 depending on the value of the 
caliber head radius ψ) which would take into account the “sharpness" of the ogive nose and, 
consequently, the degree of suitability of the CCE approximation.   
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Appendix A – Modeling of the radial traction dependence upon the cavity expansion velocity 

In the present study, the functional dependence of the radial traction on the CCE radial velocity is 
assumed in the following form 
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Based on the results of the CCE PD simulations, the ansatz (15) should satisfy the following four 
boundary conditions illustrated in Fig. 8: 
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The first boundary condition (16a) yields  
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The subscript st indicates the static solution for the elastic-cracked CCE case, where σf designates 
the indirect tensile strength (the tensile strength corresponding to splitting under the far-field 
compression rather than tension; also known as, Brazilian tensile strength). 

Eq. (15) satisfies the second boundary condition (16b) by definition.  
The coupled boundary conditions (16c) and (16d) imply that the curve (15) approaches from above 

the lower bound given by the inclined line 
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The parameter α > 1 determines the point of contact ( 
r

v ) as indicated by Fig. 8. The transition 

velocity ( 
rv ) is uniquely defined by the intercept of the horizontal line corresponding to the static 

radial traction,  
str  (17), and the inclined line corresponding to the lower-bound radial traction (18). 

This transition velocity is characterized by the balance of kinetic and potential energies [15]. 
The remaining boundary conditions (16c) and (16d) could be, respectively, developed as follows  
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Fig. 8. Schematic representation of the radial traction at the cavity surface vs. CCE velocity. Note that 
the PD simulation results pinpoint 

r
v  to 0.0143, which for the Salem limestone used in the numerical 

example corresponds to 60 m/s. (Interestingly, it has been observed that the narrow range of radial 
velocities centered on 

rv  is characterized by the balance of kinetic and potential energies [15].) 

If both sides of Eq. (20) are multiplied by  rv , and (15) substituted into the resulting equality, it 

follows   
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Since the transitional velocity is defined by the equality 
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the relationship between two parameters  
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can be readily obtained from Eq. (21)2. 
Furthermore, the parameter A can be expressed from Eq. (21)1   
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By substituting Eq. (23) into (24)2 the unknown parameter can be obtained straightforwardly 
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The expressions (17), (23) and (25) define parameters of the radial traction (15). An example of 
these model parameters is presented in Table 3. 
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Table 3  Example of four sets of model parameters based on PD inputs υ = 0.25 and   0086.0st r
 . 

(Note that α is selected as the independent parameter. This role is interchangeable with γ.). 

α γ A 

2 2.00 10.47 

3 3/2 = 1.50 1.929 

4 4/3 = 1.33 1.167 

5 5/4 = 1.25 0.928 

10 10/9 = 1.11 0.670 

Appendix B – Integration of the penetration resistance for μ = f(vz) 

The introduction of the velocity-dependent friction coefficient into the penetration depth calculation 
presented in Section 5 is not only beset with difficulties regarding necessary inputs but also renders 
the analytical solution intractable. Consequently, in order to simplify the following analysis, it is 
assumed henceforth that  
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The assumption (26) neglects: (i) the quasistatic resistance, and (ii) the significant deviation from 
the linear lower bound (18) in the high-velocity range. Based on Fig. 3, the effect of the first 
assumption may be considered modest, while the effect of the latter assumption disregarding 
nonlinearity in the high-velocity region should be more pronounced, especially for the higher striking 
velocities. Nonetheless, the effects of the simplifying linearization (26) should be examined on case-
by-case basis. As an example, Wang and coauthors [42], in their calculation of penetration depth of 
the rigid projectile into rock, use the linear dependence (26) and estimate the quasistatic-resistance 
abandon to less than 5% for vs ≥ 400 m/s and the influence of the neglect of nonlinearity in the high 
velocity range to less than 4% for vs ≤ 1000 m/s.   

Thus, under the assumption (26), the resistance penetration force is obtained as the linear function 
of the penetration velocity 
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The corresponding penetration depth is obtained by integration outlined in Section 5 
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In order to take into account the friction coefficient increase with sliding velocity decrease during 
projectile deceleration, the following ansatz  
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is introduced and illustrated in Fig. 9a for τ = 100 m/s and 200 m/s and μ0 = 0.4. The preceding 
values are selected arbitrarily to facilitate discussion; the evolution of the friction coefficient as a 
function of loading history is a captivating problem in itself. (Also, note that Eq. (29) neglects, for 
simplicity, the dependence of the sliding velocity on the penetration velocity: vt = vz sinθ.) The 
constant values of the friction coefficient, used in Section 6, are marked in Fig. 9a. It can be seen, that 
the constant μ values of 0.02 (0.08) corresponds to Eq. (28) value for 600 (320) m/s. In other words, 
for vt < 600 (320) m/s, the friction coefficient exceeds 0.02 (0.08) with exponential rate of increase. 
On the other hand, at vt > 1000 m/s the friction appears negligible for all practical purposes.  

 

Fig. 9. (a) Assumed friction-coefficient velocity dependence; Eq. (29). (b) Schematics of various 
variants of the friction coefficient evolution during penetrator deceleration at low striking velocities; 
with the rise in striking velocity, the sliding friction effect weakens to the extent that it can be ignored  

The penetration depth that takes into account the velocity dependent friction, as described above, is 
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where τ and μ0 are parameters of Eq. (29). 
Finally, it seems appropriate to conclude this appendix with reflections on the inherent 

complexities of the evolution of the friction coefficient depending on the loading history. It is well 
known that the structure and geometry of the interface between two solid surfaces in contact are of 
fundamental importance to the phenomenon of friction. The thermomechanisms on the microscale 
involved with the interfacial failure caused by sliding are extremely complex [44]. The actual contact 
is established through a myriad of discrete entities (randomly distributed asperities) accounting, 
cumulatively, to only a small portion of the total nominal area of contact. It cannot be overemphasized 
that micromechanical and thermomechanical rearrangements of these asperities (and, consequently, 
the contact interface) during sliding are irreversible. Consequently, it should be noted that although 
assumed functional dependence defined by Eq. (29) can be, in principle, obtained by fitting the 
dynamic-friction experimental data, the actual evolution of the friction coefficient in the course of 
projectile deceleration is more complex and not likely to obey such experimentally determined 
μ = f (vz). The reason is that Eq. (29) does not capture the loading history of surfaces involved in the 
friction contact but is determined by fitting and extrapolating experimental data obtained by a small 
set of sliding velocities. Namely, if the green dashed line in Fig. 9b represents the experimentally 
determined Eq. (29), the evolution μ = f (vz) following projectile deceleration after the impact with the 
striking velocity vs would not likely follow the path 1 during the projectile deceleration (again, 
especially for high velocity impacts). This is because the high-energy impact leads to rapid, 
irreversible thermomechanical and chemical changes to the contacting surfaces. In the case of the 
high striking velocity, a thin layer of material at the projectile nose would melt and act as a lubricant 
that effectively promotes the frictionless penetration (μ = 0). Even if the melting is not fully 
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accomplished, the friction coefficient value defined by the striking velocity μ = f (vs) in accordance 
with Eq. (29), may remain largely unchanged for the rest of penetration (the path 3 in Fig. 20). Thus, 
the friction coefficient evolution paths 1 and 3 represent the upper and the lower bound, respectively, 
with actual change in reality taking place somewhere in between (the path 2 in Fig. 20). (In that case, 
the static friction coefficient becomes a function of the entire contact-surface history of change, which 
is marked in Fig. 9b by μ0 = μ0 (vs).) It seems reasonable to expect that the higher the striking velocity 
the closer the path 2 gets to the lower bound (the path 3) with the trend to approach the frictionless 
penetration, which renders the modeling of friction unnecessary [39].  
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