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The aim of this work was to synthesize semiconducting
oxide nanoparticles using a simple method with low
production cost to be applied in natural sunlight for
photocatalytic degradation of pollutants in waste water.
Iron titanate (Fe2TiO5) nanoparticles with an orthorhombic
structure were successfully synthesized using a modified
sol–gel method and calcination at 750°C. The as-prepared
Fe2TiO5 nanoparticles exhibited a moderate specific surface
area. The mesoporous Fe2TiO5 nanoparticles possessed strong
absorption in the visible-light region and the band gap was
estimated to be around 2.16 eV. The photocatalytic activity
was evaluated by the degradation of methylene blue under
natural sunlight. The effect of parameters such as the amount
of catalyst, initial concentration of the dye and pH of the
dye solution on the removal efficiency of methylene blue
was investigated. Fe2TiO5 showed high degradation efficiency
in a strong alkaline medium that can be the result of the
facilitated formation of OH radicals due to an increased
concentration of hydroxyl ions.
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1. Introduction
The major worldwide challenge for the twenty-first century is to supply and ensure safe water for the
entire ecosystem. Rapid industrialization growth is the major cause of water pollution. Dyes are a
class of organic compounds, widely used in textiles, printing and food industry. Dye effluents have a
considerable negative influence on the environment, and most of them are highly toxic and non-
biodegradable [1,2]. Methylene blue (MB) is a phenothiazine derivative, used for dying textiles, and it
is highly toxic and carcinogenic [3]. Conventional methods like adsorption, ozonation, etc., have been
used for removing these highly toxic compounds; however, due to different limitations, these
pollutants cannot be eliminated from waste water [4]. Advanced oxidation processes (AOPs) are a
class of oxidation techniques in which organic contaminants are degraded to harmless products.
Namely, in this process, ·OH radicals produced in situ, initiate oxidation reactions ending with
complete mineralization of CO2 and H2O [5,6]. In this regard, semiconductor photocatalysis is a
promising technique for the degradation of organic pollutants. There are several reasons why using
semiconductors as activators in AOPs has an advantage: (i) they are low-cost and non-toxic; (ii) their
electronic and optical properties can be modified by size reduction, doping or sensitizers; (iii) the
multi-electron transfer process is facilitated; and (iv) they are recyclable without substantial loss in
photocatalytic activity [5,7]. TiO2 has been extensively investigated as a photocatalyst for the
decomposition of organic pollutants [8,9]. Despite its good chemical stability and low production cost,
one major difficulty using this photocatalyst is its large band gap limiting photocatalytic activity in
the visible-light region. Thus, it is necessary to develop materials which will absorb in the visible-light
regime and prevent electron−hole recombination. Haematite (Fe2O3) with a band gap of 2.1–2.2 eV, is
also a promising material for use in photocatalysis due to its ability to absorb light up to 600 nm,
high stability in an oxidative environment, abundance and low-cost fabrication [10]. However, due to
low conductivity and short hole diffusion length, its photocatalytic performance is still limited [11,12].
Iron titanate (Fe2TiO5), a hybrid of TiO2 and Fe2O3, is a narrow band gap (Eg approx. 2.2 eV)
semiconductor absorbing in the visible-light spectrum, similar to Fe2O3. It is an inexpensive, non-toxic
material with high chemical stability. Additionally, its electronic and atomic structures are similar to
TiO2 [13,14], thus recombination of photo-generated electrons and holes could be suppressed
facilitating transport to hydroxyl groups on the particle surface [15].

In this study, Fe2TiO5 nanoparticles were synthesized by a modified sol–gel method and we have
performed a detailed characterization of their structure, morphology, texture and chemistry, optical and
electronic properties. The photocatalytic activity of prepared Fe2TiO5 nanoparticles was evaluated by
the degradation of a cationic dye—methylene blue (MB) exposed to 4 h of natural sunlight. Several
operating parameters, such as dose of photocatalyst and the initial pH of the solutions, were also evaluated.
2. Materials and methods
2.1. Reagents and materials
Methylene blue, iron(III) nonahydrate (Fe(NO3)3 · 9H2O ACS reagent, purity greater than or equal to
98%), titanium isopropoxide—(Ti(OCH(CH3)2) purity 98%) oxalic acid (Puriss, purity greater than or
equal to 99%) and cetyltrimethylammonium bromide (CTAB, purity greater than or equal to 98%)
were purchased from Sigma Aldrich (Merck, Darmstadt, Germany). All chemicals were used as
received, without further purification.

2.2. Synthesis of iron titanate nanoparticles
Fe2TiO5 nanoparticles were synthesized by a modified sol–gel method using Fe(NO3)3 · 9H2O and
Ti(OCH(CH3)2) as starting reagents, oxalic acid as a chelating agent and CTAB as a surfactant. Details
of the synthesis procedure are described in [16]. The obtained powder was calcined at 750°C for 3 h to
obtain the desired Fe2TiO5 nanoparticles.

2.3. Characterization
The prepared sample was characterized by various techniques. The morphology was examined by
transmission electron microscopy (TEM) and field emission electron microscopy (FESEM) on JEM-2100
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200 kV (Japan) and TESCAN MIRA3XM (Czech Republic) devices, respectively. The crystal structure and
phase identification were investigated by X-ray diffraction (XRD) analysis using Ni-filtered Cu Kα radiation
with the wavelength of 1.54178 Å, in the range of 2θ = 10− 90°, with the step of 0.05 s and acquisition rate
of 1 ° min−1 on a Rigaku Ultima IV diffractometer (Japan). Fourier transform infrared (FT-IR) spectra were
recorded on an FT-IR Nicolet 6700 ATR device (Thermo Fisher, UK) in the range 400− 4000 cm−1. UV-vis
diffuse reflectance spectra (DRS) were measured on a Shimadzu UV-2600 device with an ISR2600 Plus
Integrating sphere attachment (Japan) in the measuring range 200−1400 nm.

Photoluminescence spectra at room temperature were measured on a Horiba Jobin Yvon Fluorolog
FL3–22 spectrofluorometer (Japan), using a xenon 450 W lamp as the light source. It was coupled to a
double grating monochromator in a wavelength range 220−600 nm. Emission spectra were measured
using a double grating monochromator in the 350–650 nm range and side-on photomultiplier
(Hamamatsu, model 928P, Japan). The measured spectra were corrected for the spectral response of
the measuring system and spectral distribution of the xenon lamp.

Zeta potential and particle size by dynamic light scattering (DLS) at 25 ± 0.1°C were determined for a
0.1 mg ml−1 suspension of Fe2TiO5 powder dispersed ultrasonically in deionized water and measured in
a disposable zeta cell (DTS 1070) of a NanoZS90 (Malvern, UK) device with a 4 mW He-Ne laser source
(λ = 633 nm). The pH was varied between 3 and 12 by adding 0.1 M aqueous solutions of HCl and
NaOH. Samples were measured after 1 h of equilibrium time at a constant ionic strength of 0.01 M set
by NaCl. All measurements were performed at a given kinetic state followed by a minute of
relaxation. The average value of the hydrodynamic diameter was calculated as the number weighted
size from fits of the correlation functions.

The specific surface area (SSA) and the porous properties of the photocatalyst were determined based
on N2 adsorption–desorption isotherms measured using a Micromeritics ASAP 2020 instrument (USA).
Samples were degassed at 150°C for 10 h under reduced pressure. SSA of samples was calculated
according to the Brunauer–Emmett–Teller (BET) method from the linear part of the nitrogen
adsorption isotherm. The total pore volume (Vtot) was given at p/p0 = 0.998. The volume of the
mesopores was calculated according to the Barrett–Joyner–Halenda method from the desorption
branch of the isotherm. The volume of micropores was calculated from the alpha-S plot.

2.4. Photocatalytic experiments
The photocatalytic activity of Fe2TiO5 nanoparticles was evaluated by the photodegradation of
methylene blue (MB) aqueous solution under direct solar radiation in July 2019 between 10.00 and
14.00, where the average daily temperature was 31 ± 2°C. Before irradiation, the solutions were
magnetically stirred in dark for 60 min to achieve adsorption–desorption equilibrium between
photocatalyst and pollutant. A stock solution of 1000 mg l−1 MB was prepared by dissolving MB in 1 l
of distilled water. Different amounts of Fe2TiO5 catalyst (10, 30 and 50 mg l−1) were tested for the
degradation of MB solution. Samples were collected in appropriate time intervals (up to 4 h) and were
centrifuged to remove the catalyst. The removal of MB was determined based on the absorption at
662 nm by using a UV–vis spectrophotometer. Then, the absorption was converted to the
concentration through the standard calibration curve.
3. Results and discussion
3.1. Iron titanate structure
Figure 1a shows the measured XRD pattern of the obtained Fe2TiO5 powder. Structural parameters were
refined using the Rietveld method and the GSAS II software package [18]. Pseudobrookite was refined
assuming the Cmcm (D17

2h) space group starting with a random distribution of TiO6 and FeO6

octahedra, where 67% iron ions are both in 4c and 8f sites of the FeO6 octahedra [19]. As starting unit
cell parameters, we used the values previously determined for Fe2TiO5 nanocrystalline powder
obtained by solid-state synthesis [20]. All diffraction peaks can be indexed to the orthorhombic phase
of Fe2TiO5 with space group D17

2h (Cmcm) without any peaks originating from impurities. The
Williamson–Hall method [21] was applied to estimate the crystallite size of Fe2TiO5 powder as
48.77 nm with a positive tensile strain of 0.00108. The determined unit cell parameters and atomic
positions are given in table 1. Refinement of ion occupancy showed that differing from the previously
obtained fully disordered structure [19] iron ions showed a slight preference for 4c sites occupying
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Figure 1. X-ray diffraction pattern of synthesized Fe2TiO5 nanocrystalline powder and Rietveld analysis (a) and FT-IR transmittance
spectrum of Fe2TiO5 nanocrystalline powder; inset: crystal structure was drawn using VESTA [17] (b).
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72%, while 64% iron ions are on 8f sites. Such an iron preference was previously noted by Guo et al. [22]
of 72% and Rodrigues et al. [23] of 75%. The crystal structure drawn using these parameters and the
VESTA software package [17] is shown as an inset in figure 1b composed of randomly distributed
TiO6 and FeO6 octahedra. Ti ions are blue (one third), iron ions are purple (two thirds) parts of the
balls in the polyhedra representing metal ions, while green are oxygen ions.

Structural properties such as the vibrational frequency of the bonds in Fe2TiO5 were further
characterized by FT-IR spectroscopy (figure 1b). In our measured spectra, we can note only peaks
originating from Fe2TiO5, at approximately 425, 615, 655 and 800 cm−1 representing vibrations of Fe–O
and Ti–O bonds [24–27].

3.2. Morphology
The Fe2TiO5 powder particle size and morphology was examined by FESEM and TEM. The FESEM
image shown in figure 2a reveals that Fe2TiO5 powder consisted of relatively uniformly sized



(a) (b)
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Figure 2. FESEM, magnification 50 000 (a), TEM images (b) magnification 25 000, (d ) magnification 50 000 and HRTEM and FFT
images (c) magnification 500 000 of Fe2TiO5 powder.

Table 1. Unit cell parameters and atomic positions determined for Fe2TiO5, wR = 2.987%.

pseudobrookite (Fe2TiO5)
space group Cmcm, a = 3.73055(28), b = 9.7927(12), c = 9.9766(10) Å;
crystallite size 48.77 nm, microstrain 1937.2, (wR = 2.797%)

atom site x y z occupancy Uiso

Fe1 8f 0.00000 0.1388(11) 0.5667(13) 0.64 0.012(5)

Ti1 8f 0.00000 0.1388 0.5667 0.36 0.012

Fe2 4c 0.00000 0.1875(13) 0.25000 0.72 0.008(8)

Ti2 4c 0.00000 0.1875 0.25000 0.28 0.008

O1 4c 0.00000 0.757(5) 0.25000 1.000 0.011(18)

O2 8f 0.00000 0.050(3) 0.117(3) 1.000 0.015(13)

O3 8f 0.00000 0.319(4) 0.084(4) 1.000 0.046(12)
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nanoparticles with a rhombic shape ranging from 28 to 83 nm and average diameter determined from
72 particles in TEM images of 49.7 nm ± 12.6 (standard deviation). This morphology was confirmed
by TEM (figure 2b,d), showing that the Fe2TiO5 powder had a rhombic-shaped morphology and
different sized agglomerates consisting of smaller particles. This could be due to the coalescence of
small particles into agglomerates [28,29]. Analysis of periodic lattice fringes in the high-resolution
transmission electron microscopy (HRTEM) image shown in figure 2c was performed using a fast
Fourier transform (FFT). The calculated FFT patterns enabled the determination of the lattice spacing
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Figure 3. Nitrogen adsorption–desorption isotherms (a) and BET pore size distribution curves (b) for Fe2TiO5 powder.

Table 2. Textural properties for the Fe2TiO5 powder.
a

sample SBET (m
2 g−1) Vtot (cm

3 g−1) Vmeso (cm
3 g−1) Vmicro (cm

3 g−1) Dav (nm) Dmax (nm)

Fe2TiO5 11.8 0.1072 0.1060 0.0035 31.0 30.5
aIncludes SBET—BET specific surface area, Vtot—total volume of the pores, Vmeso—volume of the mesopores Vmicro—volume of
the micropores, Dav—the mean pore diameter, Dmax—diameter of the pores occupying the greatest portion of the volume.
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of 0.49 nm (marked in figure 2c) that corresponds to the (020) plane of an orthorhombic Cmcm Fe2TiO5

structure in accordance with the parameters determined by Rietveld analysis of the measured X-ray
diffraction pattern.

3.3. Texture
Figure 3a shows the N2 adsorption–desorption isotherm of Fe2TiO5 powder. According to the IUPAC
nomenclature [30], the shape of the nitrogen isotherm could be considered to be a type V isotherm,



(a)

(b)

5

0

10

15

20

(h
n 

F(
R

))
2

25

30

35

0.5

0

1.0

1.5

2.0

(F
(R

)h
n)

1/
2

2.5

1.6 1.8

2.16 eV

1.81 eV

indirect band gap

DRS spectrum

wavelength (nm)

2.0 2.2 2.4 2.6 2.8 3.0 3.2

hn (eV)
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

200 400 600 800 1000 1200 1400

20

40

60

80

100

wavelength (nm)

ab
so

rb
an

ce
 (

ar
b.

 u
ni

ts
)

200 400 600 800 1000 1200
0

0.5

1.0

1.5

2.0

Figure 4. Tauc plot for estimation of direct (a) and indirect (b) band gaps of Fe2TiO5 powder; measured diffuse reflectance
spectrum, inset (a), absorbance obtained by Kubelka–Munk approximation, inset (b).

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200708
7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 A

pr
il 

20
22

 

which is typical for mesoporous materials. N2 adsorption−desorption isotherm data for Fe2TiO5 powder
are depicted in table 2. The specific surface area of the examined sample was 11.8 m2 g−1 and the total
pore volume was found to be 0.1072 cm3 g−1. The presence of mesopores [31] with pore diameters
ranging from 10 to 60 nm and Dmax approximately 30.5 nm (figure 3b) was confirmed from pore size
distribution analysis.

3.4. Band gap
The measured diffraction reflection spectrum (DRS) of Fe2TiO5 powder is shown as an inset in figure 4a.
It can be seen that Fe2TiO5 nanoparticles have strong visible-light absorption. The equivalent absorption
coefficient was calculated using the Kubelka–Munk function and is shown as an inset in figure 4b. Tauc
plots for a direct (figure 4a) and indirect (figure 4b) system [32] enabled estimation of the optical band
gap values using the relationship of Davis and Mott [33]. Direct and indirect band gap values were
estimated as 2.16 and 1.81 eV, respectively. These are similar to some previously obtained values for
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Fe2TiO5 [34,35], though many authors have experimentally and by DFT calculations obtained higher
values for the indirect band gap in the range 2–2.2 eV [24,27,36–38]. Considering these results, as
synthesized Fe2TiO5 nanoparticles could have the potential for the degradation of different pollutants
in the visible-light region.
3.5. Photoluminescence and colloidal properties
Photoluminescence spectrum of Fe2TiO5 nanoparticle powder measured with an excitation wavelength
of 270 nm is shown in figure 5a. Overall low values were obtained indicating that recombination of
the photo-generated electron–hole pairs is inhibited. The separation efficiency of photo-excited
electron–hole pairs is enhanced leading to improved photocatalytic properties [39]. This has been
observed before for Fe2TiO5/TiO2 nanoheterostructures and composites [39,40].
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Determining the point of zero charge (pHPZC) is significant to predict the charge on the nanoparticle
surface during photocatalytic degradation of pollutants [41]. The stability of as-synthesized Fe2TiO5

particles was analysed by measuring the zeta potential in an aqueous system using a deionized water
suspension at room temperature. When metal oxide nanoparticles are dispersed in water or an
organic solvent, –OH surface groups can be protonated or deprotonated leading to surface charged
groups (−OH2

+ or –O−), respectively. The zeta potential observed for Fe2TiO5 particles was −21.6 ±
6.8 mV. This value is negative and high and indicates particle stability in water and low
agglomeration [42]. Adsorption of cationic dyes such as MB on a negative surface charge is favoured
due to electrostatic forces of attraction (Van der Waals) [43]. Variation of the zeta potential with pH is
given in figure 5b. All values were negative showing that the point of zero charge (PZC) or isoelectric
point (IEP) of pseudobrookite is below pH 3. The zeta potential value can be an indicator of the
particle surface charge and is influenced by the preparation process [44]. Muthukumar et al. [44]
obtained high positive values for pseudobrookite (iron titanate) synthesized using a solvothermal
method that depended on the duration of treatment in reduced oxygen conditions (19.4 for 5 h, 19.98
for 10 h, 33.6 for 15 h and 17.43 for 20 h). Such values enabled acidic site availability. In our case, the
obtained gel was calcined in an air atmosphere rich in oxygen that resulted in a negative charge.
Mehdilo et al. [45] measured the zeta potential of ilmenite ore (raw, heat-treated (fired) at 500, 600, 750
and 950°C). Compared with raw ilmenite with a point of zero charge (PZC) determined at pH 5.4,
heat treating of ilmenite at 600°C accompanied with the decomposition of ilmenite to haematite and
rutile (at 750°C) and then ferric pseudobrookite (Fe2TiO5), haematite and rutile at 950°C lead to an
overall decrease in zeta potential values over the pH range from 2.5 to 7.5 and shift of the PZC to pH
3.9, 2.9 and 3 at 600, 750 and 950°C, respectively. Suttiponparnit et al. [46] investigated the role of
surface area, primary particle size and crystal phase on TiO2 dispersion properties and determined
that in the case of anatase, increase in particle size leads to a reduction of the dispersion zeta potential
and increase in hydrodynamic size, with a completely negative zeta potential for particles of 102 nm.
This could also be the case for Fe2TiO5 and needs further investigation on different-sized particles.

The hydrodynamic radius of Fe2TiO5 particles was determined as 175 ± 7 nm. Taking into account
that the average particle size was estimated to be around 50 nm in FESEM images and that
agglomerates were noted in TEM images, this value shows that some particle aggregation remained.
3.6. Photodegradation of methylene blue
The photocatalytic activity of Fe2TiO5 was evaluated by the degradation of MB aqueous solution under
direct sunlight.
3.6.1. Effect of initial photocatalyst concentration on methylene blue degradation

The effect of initial photocatalyst concentration under direct sunlight irradiation was investigated by
varying the initial Fe2TiO5 concentration from 10 to 50 mg per 100 ml of 10 mg l−1 MB dye solution as
shown in figure 6a. It can be seen from figure 6b that the dye removal efficiency without Fe2TiO5 was
negligible which is consistent with previously reported literature data [47]. When the amount of
photocatalyst was increased from 10 to 50 mg, the photocatalytic activity was found to be increasing,
which could be caused by an increased number of active sites on the catalyst surface. Further
increase in the catalyst amount above 50 mg decreased the activity, which could be due to the
phenomenon of light scattering and screening effects (electronic supplementary material, S.1). Namely,
this can be ascribed to the increased aggregation of particles acting as barriers for the light irradiation
[48,49].
3.6.2. Effect of the initial dye concentration

The effect of the initial concentration of MB on the decomposition of the dye was investigated by varying
the initial concentration from 10 to 30 mg l−1 with constant catalyst loading (50 mg). As shown in
electronic supplementary material S.2, the photodegradation process decreased with the increase in
dye concentration. This can be explained as follows: due to increased adsorption of dye molecules on
surface-active sites on the photocatalyst, adsorption of OH− is decreased, and therefore the formation
of the highly oxidative, OH· radical is reduced. In addition, higher dye concentrations reduce the light
path length of the photons thus the light-triggered catalyst decreases [50,51].
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3.6.3. Effect of solution pH on the degradation of methylene blue

The pH is considered to be the main parameter in the photocatalytic process, due to its impact on the
surface charge of the photocatalyst affecting dye degradation [52]. Hence, an attempt was made to
study the influence of pH on the degradation of MB at pH values in the range of 7–11 (figure 7a), and
it was adjusted before adsorption. We also investigated photocatalytic degradation in acidic conditions
(pH = 3), where the influence was negligible. The degradation efficiency increased with increased pH
(97% at pH = 11) which is 1.79 times higher than the degradation efficiency at the normal pH
condition. The corresponding colour change is given in electronic supplementary material, S.3. Since
the zeta potential was negative with pH change, it is expected that adsorption of MB (cationic dye)
on the surface of the Fe2TiO5 photocatalyst would be enhanced at higher pH values [1,53]. Namely, in
the photocatalytic oxidation process after irradiation and excitation of electrons from the valence
to the conduction band (figure 8), photo-generated holes either directly oxidize dye to reactive
intermediates (equation (3.2)) or react with hydroxyl ions (OH−) leading to the formation of highly
oxidative hydroxyl radicals (OH·) and further complete mineralization of the dye (equation (3.5)) [54].

Fe2TiO5 þ hv ! Fe2TiO5(e�CB þ hþVB) ð3:1Þ

and

hþVB þMB ! MB�þ ! oxidation of MB, ð3:2Þ
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or

hþVB þH2O(OH�) ! OH� þHþ ð3:3Þ

and

OH� þMB dye ! CO2 þH2O: ð3:4Þ

However, since the adsorption of dye was low as the surface area was moderate (11.8 m2 g−1), a
possible reason for enhanced photocatalytic degradation of MB at higher pH values is the formation
of OH radicals due to a large number of hydroxyl ions in the alkaline medium [55].

A simplified Langmuir–Hinshelwood (L–H) kinetic model (equation 3.5) was used to describe the
photocatalytic degradation rate of MB by plotting the graph of −ln(C/C0) versus time, t, (figure 7b) at
different pH values [49].

�ln
C
Co

¼ kt, ð3:5Þ

where C0 and C are the concentrations of MB in solution at time 0 and t, respectively, and k is the
apparent first-order reaction rate constant. The obtained values of k are equal to 4.65 × 10−4, 0.00356,
0.00612 and 0.016 min−1 for initial pH values 3, 7.19, 9 and 11, while correlation constants, R2, for the
fitted lines were 0.753, 0.977, 0.979 and 0.994, respectively.
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3.6.4. Possible mechanism of methylene blue degradation

Efficient charge separation is the key factor determining the photocatalytic activity of a semiconducting
photocatalyst. Thus, it was essential to determine the conduction band (CB) and valence band (VB)
potentials of the Fe2TiO5 photocatalyst, using the following empirical equations [56]:

EVB ¼ xþ 0:5Eg � Ee ð3:6Þ
and

ECB ¼ EVB � Eg , ð3:7Þ
where EVB is the valence band (VB) edge potential, ECB is the conduction band (CB) edge potential, χ is
the electronegativity of the semiconductor, Ee is the energy of free electrons on the hydrogen scale
(4.5 eV) and Eg is the band gap energy of the semiconductor. Electronegativity of Fe2TiO5 was
calculated using the following equation:

x ¼ [x(A)ax(B)bx(C)c]1=aþbþc, ð3:8Þ
where a, b and c are the number of atoms in the compound, while electronegativity of Fe, Ti and O was
calculated as the arithmetic mean of the atomic electron affinity and the first ionization energy [57]. The
value of χ of Fe2TiO5 was calculated to be 2.086 while ECB and EVB were estimated to be −0.826 and +
1.334 eV versus normal hydrogen electrode (NHE) and results are presented in figure 8. The conduction
band of Fe2TiO5 is more negative than that of O2/·O2

− (−0.282 eV versus NHE); therefore, the electrons
can reduce EVB O2 to generate superoxide anions ·O2

−, while the EVB of Fe2TiO5 (+1.334 eV versus NHE)
was not positive enough to oxidize OH−/H2O (2.27 V versus NHE) to form active species ·OH [58]. This
indicates that MB dye was degraded mainly by the active species ·O2

− and by the accumulation of holes.
Enhanced photocatalytic degradation efficiency could be ascribed to a large number of hydroxyl ions in
the alkaline medium, as mentioned above.
4. Conclusion
In summary, Fe2TiO5 nanopowder was successfully synthesized through a simple sol–gel route followed
by calcination at 750°C. The Fe2TiO5 powder consisted of relatively uniformly sized nanoparticles with a
rhombic shape and an average diameter of around 50 nm. The specific surface area from BET analysis
was around 11.8 m2 g−1. The band gap was estimated to be 2.16 eV. The zeta potential observed for
Fe2TiO5 was negative and high and indicated particle stability in water and low agglomeration.
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Photocatalytic measurements showed that as-synthesized Fe2TiO5 displays moderate degradation
efficiency. The degradation of efficiency significantly depends on the particle specific surface area. In
addition, catalyst loading and pH of the solution greatly affected the degradation process. A reaction
mechanism was proposed.
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