COSTEuropean Cooperation in Science and Technology (COST) [MP 1407]

Link to this page

COSTEuropean Cooperation in Science and Technology (COST) [MP 1407]

Authors

Publications

Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions

Jović, Vladimir D; Jović, Borka M; Lačnjevac, Uroš; Krstajić, Nedeljko V; Zabinski, P.; Elezović, Nevenka R.

(Elsevier Science Sa, Lausanne, 2018)

TY  - JOUR
AU  - Jović, Vladimir D
AU  - Jović, Borka M
AU  - Lačnjevac, Uroš
AU  - Krstajić, Nedeljko V
AU  - Zabinski, P.
AU  - Elezović, Nevenka R.
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1167
AB  - Electrodeposited NiSn alloy coatings onto Ni 40 mesh substrate were tested for application as cathodes and anodes in the cell for alkaline water electrolysis in 30 wt% KOH at 80 degrees C. The "accelerated service life test" (ASLT) was performed for the hydrogen evolution reaction (HER), as well as for the oxygen evolution reaction (OER), and compared to that recorded for the Ni coating (Ni-dep) and Ni-mesh for both reactions. The morphology and chemical compositions of the NiSn and Ni coatings were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), while their surface composition was investigated by X-ray photoelectron spectroscopy (XPS) before and after the ASLT for both reactions, respectively. By measuring the potential at j = 0.3 A cm (-2) it was shown that during the ASLT the NiSn alloy coating catalytic activity for the HER decreases (about 24 mV after 25 cycles), while the catalytic activity for the OER increases (about 50 mV after 25 cycles), so that the cell voltage decreases for about 26 mV. The Ni-dep and Ni-mesh electrodes catalytic activity was found to increase for the HER (for about 103 mV), as well as for the OER (for about 52 mV) during the ASLT. Hence, the cell voltage for the Ni-dep and Ni-mesh electrodes decreased from 2.402 V to 2.245 V during the ASLT, while that for the NiSn electrode decreased from 1.967 V to 1.941 V. The cell voltage saving with the NiSn electrodes amounts to about 435 mV before the ASLT and about 304 mV after the ASLT. SEM results showed that no changes in the morphology of as prepared samples could be detected after the ASLTs for both reactions. EDS analysis confirmed that some changes occurred during the ASLT, particularly for the oxygen content in the surface layer. Similar conclusions were made from the XPS analysis.
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Electroanalytical Chemistry
T1  - Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions
EP  - 25
SP  - 16
VL  - 819
DO  - 10.1016/j.jelechem.2017.06.011
ER  - 
@article{
author = "Jović, Vladimir D and Jović, Borka M and Lačnjevac, Uroš and Krstajić, Nedeljko V and Zabinski, P. and Elezović, Nevenka R.",
year = "2018",
abstract = "Electrodeposited NiSn alloy coatings onto Ni 40 mesh substrate were tested for application as cathodes and anodes in the cell for alkaline water electrolysis in 30 wt% KOH at 80 degrees C. The "accelerated service life test" (ASLT) was performed for the hydrogen evolution reaction (HER), as well as for the oxygen evolution reaction (OER), and compared to that recorded for the Ni coating (Ni-dep) and Ni-mesh for both reactions. The morphology and chemical compositions of the NiSn and Ni coatings were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), while their surface composition was investigated by X-ray photoelectron spectroscopy (XPS) before and after the ASLT for both reactions, respectively. By measuring the potential at j = 0.3 A cm (-2) it was shown that during the ASLT the NiSn alloy coating catalytic activity for the HER decreases (about 24 mV after 25 cycles), while the catalytic activity for the OER increases (about 50 mV after 25 cycles), so that the cell voltage decreases for about 26 mV. The Ni-dep and Ni-mesh electrodes catalytic activity was found to increase for the HER (for about 103 mV), as well as for the OER (for about 52 mV) during the ASLT. Hence, the cell voltage for the Ni-dep and Ni-mesh electrodes decreased from 2.402 V to 2.245 V during the ASLT, while that for the NiSn electrode decreased from 1.967 V to 1.941 V. The cell voltage saving with the NiSn electrodes amounts to about 435 mV before the ASLT and about 304 mV after the ASLT. SEM results showed that no changes in the morphology of as prepared samples could be detected after the ASLTs for both reactions. EDS analysis confirmed that some changes occurred during the ASLT, particularly for the oxygen content in the surface layer. Similar conclusions were made from the XPS analysis.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Electroanalytical Chemistry",
title = "Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions",
pages = "25-16",
volume = "819",
doi = "10.1016/j.jelechem.2017.06.011"
}
Jović, V. D., Jović, B. M., Lačnjevac, U., Krstajić, N. V., Zabinski, P.,& Elezović, N. R.. (2018). Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions. in Journal of Electroanalytical Chemistry
Elsevier Science Sa, Lausanne., 819, 16-25.
https://doi.org/10.1016/j.jelechem.2017.06.011
Jović VD, Jović BM, Lačnjevac U, Krstajić NV, Zabinski P, Elezović NR. Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions. in Journal of Electroanalytical Chemistry. 2018;819:16-25.
doi:10.1016/j.jelechem.2017.06.011 .
Jović, Vladimir D, Jović, Borka M, Lačnjevac, Uroš, Krstajić, Nedeljko V, Zabinski, P., Elezović, Nevenka R., "Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions" in Journal of Electroanalytical Chemistry, 819 (2018):16-25,
https://doi.org/10.1016/j.jelechem.2017.06.011 . .
26
4
28

Electrochemical deposition and characterization of AgPd alloy layers

Elezović, Nevenka R.; Zabinski, Piotr; Krstajic-Pajic, M. N.; Tokarski, Tomasz; Jović, Borka M; Jović, Vladimir D

(Srpsko hemijsko društvo, Beograd, 2018)

TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Zabinski, Piotr
AU  - Krstajic-Pajic, M. N.
AU  - Tokarski, Tomasz
AU  - Jović, Borka M
AU  - Jović, Vladimir D
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1131
AB  - The AgPd alloys were electrodeposited onto Au and glassy carbon disc electrodes from the solution containing 0 001 mol dm(-3) PdCl2 + 0.04 mol dm(-3) AgCl + 0.1 mol dm(-3) HCl + 12 mol dm(-3) LiCl under the non-stationary diffusion (quiescent electrolyte) and convective diffusion (omega = 1000 rpm) to the different amounts of charge and at different current densities. Electro-deposited alloy layers were characterized by the anodic linear sweep voltam-metry (ALSV), scanning electron microscopy, energy dispersive X-ray spectro-scopy (EDS) and X-ray photoelectron spectroscopy (XPS). The compositions of the AgPd alloys determined by the EDS were almost identical to the theoretically predicted ones, while the compositions obtained by XPS and ALSV analysis were similar to each other, but different from those obtained by EDS. Deviation from the theoretically predicted values (determined by the ratio j(L)(Pd)/j(Ag)) was more pronounced at lower current densities and lower charges of AgPd alloys electrodeposition, due to the lower current efficiencies for alloys electrodeposition. The ALSV analysis indicated the presence of Ag and Pd, expressed by two ALSV peaks, and in some cases the presence of the additional peak, which was found to correspond to the dissolution of large AgPd crystals, formed at thicker electrodeposits (higher electrodeposition charge), indicating, for the first time, that besides the phase structure, the morphology of alloy electrodeposit could also influence the shape of the ALSV response. In addition to Ag and Pd, the XPS analysis confirmed the presence of AgCl at the surface of samples electrodeposited to low thicknesses (amounts of charge).
PB  - Srpsko hemijsko društvo, Beograd
T2  - Journal of the Serbian Chemical Society
T1  - Electrochemical deposition and characterization of AgPd alloy layers
EP  - 609
IS  - 5
SP  - 593
VL  - 83
DO  - 10.2298/JSC171103011E
ER  - 
@article{
author = "Elezović, Nevenka R. and Zabinski, Piotr and Krstajic-Pajic, M. N. and Tokarski, Tomasz and Jović, Borka M and Jović, Vladimir D",
year = "2018",
abstract = "The AgPd alloys were electrodeposited onto Au and glassy carbon disc electrodes from the solution containing 0 001 mol dm(-3) PdCl2 + 0.04 mol dm(-3) AgCl + 0.1 mol dm(-3) HCl + 12 mol dm(-3) LiCl under the non-stationary diffusion (quiescent electrolyte) and convective diffusion (omega = 1000 rpm) to the different amounts of charge and at different current densities. Electro-deposited alloy layers were characterized by the anodic linear sweep voltam-metry (ALSV), scanning electron microscopy, energy dispersive X-ray spectro-scopy (EDS) and X-ray photoelectron spectroscopy (XPS). The compositions of the AgPd alloys determined by the EDS were almost identical to the theoretically predicted ones, while the compositions obtained by XPS and ALSV analysis were similar to each other, but different from those obtained by EDS. Deviation from the theoretically predicted values (determined by the ratio j(L)(Pd)/j(Ag)) was more pronounced at lower current densities and lower charges of AgPd alloys electrodeposition, due to the lower current efficiencies for alloys electrodeposition. The ALSV analysis indicated the presence of Ag and Pd, expressed by two ALSV peaks, and in some cases the presence of the additional peak, which was found to correspond to the dissolution of large AgPd crystals, formed at thicker electrodeposits (higher electrodeposition charge), indicating, for the first time, that besides the phase structure, the morphology of alloy electrodeposit could also influence the shape of the ALSV response. In addition to Ag and Pd, the XPS analysis confirmed the presence of AgCl at the surface of samples electrodeposited to low thicknesses (amounts of charge).",
publisher = "Srpsko hemijsko društvo, Beograd",
journal = "Journal of the Serbian Chemical Society",
title = "Electrochemical deposition and characterization of AgPd alloy layers",
pages = "609-593",
number = "5",
volume = "83",
doi = "10.2298/JSC171103011E"
}
Elezović, N. R., Zabinski, P., Krstajic-Pajic, M. N., Tokarski, T., Jović, B. M.,& Jović, V. D.. (2018). Electrochemical deposition and characterization of AgPd alloy layers. in Journal of the Serbian Chemical Society
Srpsko hemijsko društvo, Beograd., 83(5), 593-609.
https://doi.org/10.2298/JSC171103011E
Elezović NR, Zabinski P, Krstajic-Pajic MN, Tokarski T, Jović BM, Jović VD. Electrochemical deposition and characterization of AgPd alloy layers. in Journal of the Serbian Chemical Society. 2018;83(5):593-609.
doi:10.2298/JSC171103011E .
Elezović, Nevenka R., Zabinski, Piotr, Krstajic-Pajic, M. N., Tokarski, Tomasz, Jović, Borka M, Jović, Vladimir D, "Electrochemical deposition and characterization of AgPd alloy layers" in Journal of the Serbian Chemical Society, 83, no. 5 (2018):593-609,
https://doi.org/10.2298/JSC171103011E . .
5
5
4