Sinteza, karakterizacija i primena nanostruktuiranih katalizatora na različitim nosačima u gorivnim spregovima, elektrolizi vode i elektroorganskoj sintezi

Link to this page

info:eu-repo/grantAgreement/MESTD/MPN2006-2010/142038/RS//

Sinteza, karakterizacija i primena nanostruktuiranih katalizatora na različitim nosačima u gorivnim spregovima, elektrolizi vode i elektroorganskoj sintezi (en)
Синтеза, карактеризација и примена наноструктуираних катализатора на различитим носачима у горивним спреговима, електролизи воде и електроорганској синтези (sr)
Sinteza, karakterizacija i primena nanostruktuiranih katalizatora na različitim nosačima u gorivnim spregovima, elektrolizi vode i elektroorganskoj sintezi (sr_RS)
Authors

Publications

Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction

Elezović, Nevenka R.; Babić, Biljana M.; Gajić-Krstajić, Ljiljana M; Radmilović, Velimir R; Krstajić, Nedeljko V; Vračar, Ljiljana M

(Elsevier Science Bv, Amsterdam, 2010)

TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Babić, Biljana M.
AU  - Gajić-Krstajić, Ljiljana M
AU  - Radmilović, Velimir R
AU  - Krstajić, Nedeljko V
AU  - Vračar, Ljiljana M
PY  - 2010
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/426
AB  - In order to point out the effect of the support to the catalyst for oxygen reduction reaction nano-crystalline Nb-doped TiO2 was synthesized through a modified sol-gel route procedure. The specific surface area of the support, S-BET, and pore size distribution, were calculated from the adsorption isotherms using the gravimetric McBain method. The support was characterized by X-ray diffraction (XRD) technique. The borohydride reduction method was used to prepare Nb-TiO2 supported Pt (20 wt.%) catalyst. The synthesized catalyst was analyzed by TEM technique. Finally, the catalytic activity of this new catalyst for oxygen reduction reaction was investigated in acid solution, in the absence and the presence of methanol, and its activity was compared towards the results on C/Pt catalysts. Kinetic analysis reveals that the oxygen reduction reaction on Nb-TiO2/Pt catalyst follows four-electron process leading to water, as in the case of C/Pt electrode, but the Tafel plots normalized to the electrochemically active surface area show very remarkable enhancement in activity of Nb-TiO2/Pt expressed through the value of the current density at the constant potential. Moreover, Nb-TiO2/Pt catalyst exhibits higher methanol tolerance during the oxygen reduction reaction than the C/Pt catalyst. The enhancement in the activity of Nb-TiO2/Pt is consequence of both: the interactions of Pt nanoparticles with the support and the energy shift of the surface d-states with respect to the Fermi level what changes the surface reactivity.
PB  - Elsevier Science Bv, Amsterdam
T2  - Journal of Power Sources
T1  - Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction
EP  - 3968
IS  - 13
SP  - 3961
VL  - 195
DO  - 10.1016/j.jpowsour.2010.01.035
ER  - 
@article{
author = "Elezović, Nevenka R. and Babić, Biljana M. and Gajić-Krstajić, Ljiljana M and Radmilović, Velimir R and Krstajić, Nedeljko V and Vračar, Ljiljana M",
year = "2010",
abstract = "In order to point out the effect of the support to the catalyst for oxygen reduction reaction nano-crystalline Nb-doped TiO2 was synthesized through a modified sol-gel route procedure. The specific surface area of the support, S-BET, and pore size distribution, were calculated from the adsorption isotherms using the gravimetric McBain method. The support was characterized by X-ray diffraction (XRD) technique. The borohydride reduction method was used to prepare Nb-TiO2 supported Pt (20 wt.%) catalyst. The synthesized catalyst was analyzed by TEM technique. Finally, the catalytic activity of this new catalyst for oxygen reduction reaction was investigated in acid solution, in the absence and the presence of methanol, and its activity was compared towards the results on C/Pt catalysts. Kinetic analysis reveals that the oxygen reduction reaction on Nb-TiO2/Pt catalyst follows four-electron process leading to water, as in the case of C/Pt electrode, but the Tafel plots normalized to the electrochemically active surface area show very remarkable enhancement in activity of Nb-TiO2/Pt expressed through the value of the current density at the constant potential. Moreover, Nb-TiO2/Pt catalyst exhibits higher methanol tolerance during the oxygen reduction reaction than the C/Pt catalyst. The enhancement in the activity of Nb-TiO2/Pt is consequence of both: the interactions of Pt nanoparticles with the support and the energy shift of the surface d-states with respect to the Fermi level what changes the surface reactivity.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Journal of Power Sources",
title = "Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction",
pages = "3968-3961",
number = "13",
volume = "195",
doi = "10.1016/j.jpowsour.2010.01.035"
}
Elezović, N. R., Babić, B. M., Gajić-Krstajić, L. M., Radmilović, V. R., Krstajić, N. V.,& Vračar, L. M.. (2010). Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction. in Journal of Power Sources
Elsevier Science Bv, Amsterdam., 195(13), 3961-3968.
https://doi.org/10.1016/j.jpowsour.2010.01.035
Elezović NR, Babić BM, Gajić-Krstajić LM, Radmilović VR, Krstajić NV, Vračar LM. Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction. in Journal of Power Sources. 2010;195(13):3961-3968.
doi:10.1016/j.jpowsour.2010.01.035 .
Elezović, Nevenka R., Babić, Biljana M., Gajić-Krstajić, Ljiljana M, Radmilović, Velimir R, Krstajić, Nedeljko V, Vračar, Ljiljana M, "Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction" in Journal of Power Sources, 195, no. 13 (2010):3961-3968,
https://doi.org/10.1016/j.jpowsour.2010.01.035 . .
3
79
64
76

Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction

Elezović, Nevenka R.; Gajić-Krstajić, Ljiljana M; Vračar, Ljiljana M; Krstajić, Nedeljko V

(Pergamon-Elsevier Science Ltd, Oxford, 2010)

TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Gajić-Krstajić, Ljiljana M
AU  - Vračar, Ljiljana M
AU  - Krstajić, Nedeljko V
PY  - 2010
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/433
AB  - The influence of poisoning of MoOx-Pt catalyst by CO on the kinetics of H-2 oxidation reaction (HOR) at MoOx-Pt electrode in 0 5 mol dm(-3) HClO4 saturated with H-2 containing 100 ppm CO was examined on rotating disc electrode (RIDE) at 25 C MoOx-Pt nano catalyst prepared by the polyole method combined with MoOx post deposition was supported on commercial carbon black Vulcan XC 72 The MoOx-Pt/C catalyst was characterized by TEM technique The catalyst composition is very similar to the nominal one and post deposited MoOx species block only a small fraction of the active Pt particle surface area MoOx deposition on the carbon support can be ruled out from the EDAX results and from the low mobility of these oxides under used conditions Based on Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations from a dual pathway model were derived to describe oxidation current potential behavior on RIDE over entire potential range at venous CO coverages The polarization RIDE curves were fitted with derived polarization equations according to the proposed model The fitting showed that the HOR proceeded most likely via the Tafel-Volmer (TV) pathway A very high electrocatalytic activity observed at MoOx-Pt catalyst for the hydrogen oxidation reaction in the presence of 100 ppm CO is achieved through chemical surface reaction of adsorbed CO with Mo surface oxides
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - International Journal of Hydrogen Energy
T1  - Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction
EP  - 12887
IS  - 23
SP  - 12878
VL  - 35
DO  - 10.1016/j.ijhydene.2010.09.004
ER  - 
@article{
author = "Elezović, Nevenka R. and Gajić-Krstajić, Ljiljana M and Vračar, Ljiljana M and Krstajić, Nedeljko V",
year = "2010",
abstract = "The influence of poisoning of MoOx-Pt catalyst by CO on the kinetics of H-2 oxidation reaction (HOR) at MoOx-Pt electrode in 0 5 mol dm(-3) HClO4 saturated with H-2 containing 100 ppm CO was examined on rotating disc electrode (RIDE) at 25 C MoOx-Pt nano catalyst prepared by the polyole method combined with MoOx post deposition was supported on commercial carbon black Vulcan XC 72 The MoOx-Pt/C catalyst was characterized by TEM technique The catalyst composition is very similar to the nominal one and post deposited MoOx species block only a small fraction of the active Pt particle surface area MoOx deposition on the carbon support can be ruled out from the EDAX results and from the low mobility of these oxides under used conditions Based on Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations from a dual pathway model were derived to describe oxidation current potential behavior on RIDE over entire potential range at venous CO coverages The polarization RIDE curves were fitted with derived polarization equations according to the proposed model The fitting showed that the HOR proceeded most likely via the Tafel-Volmer (TV) pathway A very high electrocatalytic activity observed at MoOx-Pt catalyst for the hydrogen oxidation reaction in the presence of 100 ppm CO is achieved through chemical surface reaction of adsorbed CO with Mo surface oxides",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "International Journal of Hydrogen Energy",
title = "Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction",
pages = "12887-12878",
number = "23",
volume = "35",
doi = "10.1016/j.ijhydene.2010.09.004"
}
Elezović, N. R., Gajić-Krstajić, L. M., Vračar, L. M.,& Krstajić, N. V.. (2010). Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction. in International Journal of Hydrogen Energy
Pergamon-Elsevier Science Ltd, Oxford., 35(23), 12878-12887.
https://doi.org/10.1016/j.ijhydene.2010.09.004
Elezović NR, Gajić-Krstajić LM, Vračar LM, Krstajić NV. Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction. in International Journal of Hydrogen Energy. 2010;35(23):12878-12887.
doi:10.1016/j.ijhydene.2010.09.004 .
Elezović, Nevenka R., Gajić-Krstajić, Ljiljana M, Vračar, Ljiljana M, Krstajić, Nedeljko V, "Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction" in International Journal of Hydrogen Energy, 35, no. 23 (2010):12878-12887,
https://doi.org/10.1016/j.ijhydene.2010.09.004 . .
17
14
18

Kinetic study of the hydrogen oxidation reaction on sub-stoichiometric titanium oxide-supported platinum electrocatalyst in acid solution

Babić, Biljana M.; Gulicovski, J.; Gajić-Krstajić, Ljiljana M; Elezović, Nevenka R.; Radmilović, Velimir R; Krstajić, Nedeljko V; Vračar, Ljiljana M

(Elsevier Science Bv, Amsterdam, 2009)

TY  - JOUR
AU  - Babić, Biljana M.
AU  - Gulicovski, J.
AU  - Gajić-Krstajić, Ljiljana M
AU  - Elezović, Nevenka R.
AU  - Radmilović, Velimir R
AU  - Krstajić, Nedeljko V
AU  - Vračar, Ljiljana M
PY  - 2009
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/306
AB  - The kinetics and mechanism of the hydrogen oxidation reaction were studied in 0.5 mol dm(-3) HClO4 solution on an electrode based on titanium oxide with Magneli phase structure-supported platinum electrocatalyst applied on rotation Au disk electrode. Pt catalyst was prepared by impregnation method from 2-propanol solution of Pt(NH3)(2)(NO2)(2) and sub-stoichiometric titanium oxide powder. Sub-stiochiometric titanium oxide Support was characterized by X-ray diffraction and BET techniques. The synthesized catalyst was analyzed by TEM technique. Based on Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations were derived to describe the hydrogen oxidation current-potential behavior on RDE over the entire potential region. The polarization RIDE curves were fitted with derived polarization equations according to proposed model. The fitting shows that the HOR on Pt proceeds most likely via the Tafel-Volmer (TV) pathway in the lower potential region, while the Heyrovsky-Volmer (HV) pathway is operative in the higher potential region. It is pointed out that Tafel equation that has been frequently used for the kinetics analysis in the HOR, can not reproduce the polarization curves measured with high mass-transport rates. Polarization measurements on RDE revealed that the Pt catalyst deposited on titanium suboxide support showed equal specific activity for the HOR compared to conventional carbon-supported Pt fuel cell catalyst.
PB  - Elsevier Science Bv, Amsterdam
T2  - Journal of Power Sources
T1  - Kinetic study of the hydrogen oxidation reaction on sub-stoichiometric titanium oxide-supported platinum electrocatalyst in acid solution
EP  - 106
IS  - 1
SP  - 99
VL  - 193
DO  - 10.1016/j.jpowsour.2008.11.142
ER  - 
@article{
author = "Babić, Biljana M. and Gulicovski, J. and Gajić-Krstajić, Ljiljana M and Elezović, Nevenka R. and Radmilović, Velimir R and Krstajić, Nedeljko V and Vračar, Ljiljana M",
year = "2009",
abstract = "The kinetics and mechanism of the hydrogen oxidation reaction were studied in 0.5 mol dm(-3) HClO4 solution on an electrode based on titanium oxide with Magneli phase structure-supported platinum electrocatalyst applied on rotation Au disk electrode. Pt catalyst was prepared by impregnation method from 2-propanol solution of Pt(NH3)(2)(NO2)(2) and sub-stoichiometric titanium oxide powder. Sub-stiochiometric titanium oxide Support was characterized by X-ray diffraction and BET techniques. The synthesized catalyst was analyzed by TEM technique. Based on Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations were derived to describe the hydrogen oxidation current-potential behavior on RDE over the entire potential region. The polarization RIDE curves were fitted with derived polarization equations according to proposed model. The fitting shows that the HOR on Pt proceeds most likely via the Tafel-Volmer (TV) pathway in the lower potential region, while the Heyrovsky-Volmer (HV) pathway is operative in the higher potential region. It is pointed out that Tafel equation that has been frequently used for the kinetics analysis in the HOR, can not reproduce the polarization curves measured with high mass-transport rates. Polarization measurements on RDE revealed that the Pt catalyst deposited on titanium suboxide support showed equal specific activity for the HOR compared to conventional carbon-supported Pt fuel cell catalyst.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Journal of Power Sources",
title = "Kinetic study of the hydrogen oxidation reaction on sub-stoichiometric titanium oxide-supported platinum electrocatalyst in acid solution",
pages = "106-99",
number = "1",
volume = "193",
doi = "10.1016/j.jpowsour.2008.11.142"
}
Babić, B. M., Gulicovski, J., Gajić-Krstajić, L. M., Elezović, N. R., Radmilović, V. R., Krstajić, N. V.,& Vračar, L. M.. (2009). Kinetic study of the hydrogen oxidation reaction on sub-stoichiometric titanium oxide-supported platinum electrocatalyst in acid solution. in Journal of Power Sources
Elsevier Science Bv, Amsterdam., 193(1), 99-106.
https://doi.org/10.1016/j.jpowsour.2008.11.142
Babić BM, Gulicovski J, Gajić-Krstajić LM, Elezović NR, Radmilović VR, Krstajić NV, Vračar LM. Kinetic study of the hydrogen oxidation reaction on sub-stoichiometric titanium oxide-supported platinum electrocatalyst in acid solution. in Journal of Power Sources. 2009;193(1):99-106.
doi:10.1016/j.jpowsour.2008.11.142 .
Babić, Biljana M., Gulicovski, J., Gajić-Krstajić, Ljiljana M, Elezović, Nevenka R., Radmilović, Velimir R, Krstajić, Nedeljko V, Vračar, Ljiljana M, "Kinetic study of the hydrogen oxidation reaction on sub-stoichiometric titanium oxide-supported platinum electrocatalyst in acid solution" in Journal of Power Sources, 193, no. 1 (2009):99-106,
https://doi.org/10.1016/j.jpowsour.2008.11.142 . .
16
13
18

Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction

Elezović, Nevenka R.; Babić, Biljana M.; Vračar, Ljiljana M; Radmilović, Velimir R; Krstajić, Nedeljko V

(Royal Soc Chemistry, Cambridge, 2009)

TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Babić, Biljana M.
AU  - Vračar, Ljiljana M
AU  - Radmilović, Velimir R
AU  - Krstajić, Nedeljko V
PY  - 2009
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/352
AB  - The hydrogen oxidation reaction (HOR) was studied at the home made TiOx-Pt/C nanocatalysts in 0.5 mol dm(-3) HClO4 at 25 degrees C. Pt/C catalyst was first synthesized by modified ethylene glycol method (EG) on commercially used carbon support (Vulcan XC-72). Then TiOx-Pt/C catalyst was prepared by the polyole method followed by TiOx post-deposition. The synthesized catalyst was characterized by XRD, TEM and EDX techniques. It was found that Pt/C catalyst nanoparticles were homogenously distributed over carbon support with the mean particle size of about 2.4 nm. The quite similar, homogenous distribution and particle size were obtained for Pt/C doped by TiOx catalyst which was the confirmation that TiOx post-deposition did not lead to significant growth of the Pt nanoparticles. The electrochemically active surface area of the catalyst was determined by using the cyclic voltammetry technique. The kinetics of hydrogen oxidation was investigated by the linear sweep voltammetry technique at the rotating disc electrode (RDE). The kinetic equations used for the analysis were derived considering the reversible or irreversible nature of the kinetics of the HOR. It was found that the hydrogen oxidation reaction for an investigated catalyst proceeded as an electrochemically reversible reaction. The values determined for the kinetic parameters-Tafel slope of 28 mV dec(-1) and exchange current density about 0.4 mA cm(Pt)(-2) are in good agreement with usually reported values for a hydrogen oxidation reaction with platinum catalysts in acid solutions.
PB  - Royal Soc Chemistry, Cambridge
T2  - Physical Chemistry Chemical Physics
T1  - Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction
EP  - 5197
IS  - 25
SP  - 5192
VL  - 11
DO  - 10.1039/b822249e
ER  - 
@article{
author = "Elezović, Nevenka R. and Babić, Biljana M. and Vračar, Ljiljana M and Radmilović, Velimir R and Krstajić, Nedeljko V",
year = "2009",
abstract = "The hydrogen oxidation reaction (HOR) was studied at the home made TiOx-Pt/C nanocatalysts in 0.5 mol dm(-3) HClO4 at 25 degrees C. Pt/C catalyst was first synthesized by modified ethylene glycol method (EG) on commercially used carbon support (Vulcan XC-72). Then TiOx-Pt/C catalyst was prepared by the polyole method followed by TiOx post-deposition. The synthesized catalyst was characterized by XRD, TEM and EDX techniques. It was found that Pt/C catalyst nanoparticles were homogenously distributed over carbon support with the mean particle size of about 2.4 nm. The quite similar, homogenous distribution and particle size were obtained for Pt/C doped by TiOx catalyst which was the confirmation that TiOx post-deposition did not lead to significant growth of the Pt nanoparticles. The electrochemically active surface area of the catalyst was determined by using the cyclic voltammetry technique. The kinetics of hydrogen oxidation was investigated by the linear sweep voltammetry technique at the rotating disc electrode (RDE). The kinetic equations used for the analysis were derived considering the reversible or irreversible nature of the kinetics of the HOR. It was found that the hydrogen oxidation reaction for an investigated catalyst proceeded as an electrochemically reversible reaction. The values determined for the kinetic parameters-Tafel slope of 28 mV dec(-1) and exchange current density about 0.4 mA cm(Pt)(-2) are in good agreement with usually reported values for a hydrogen oxidation reaction with platinum catalysts in acid solutions.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "Physical Chemistry Chemical Physics",
title = "Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction",
pages = "5197-5192",
number = "25",
volume = "11",
doi = "10.1039/b822249e"
}
Elezović, N. R., Babić, B. M., Vračar, L. M., Radmilović, V. R.,& Krstajić, N. V.. (2009). Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction. in Physical Chemistry Chemical Physics
Royal Soc Chemistry, Cambridge., 11(25), 5192-5197.
https://doi.org/10.1039/b822249e
Elezović NR, Babić BM, Vračar LM, Radmilović VR, Krstajić NV. Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction. in Physical Chemistry Chemical Physics. 2009;11(25):5192-5197.
doi:10.1039/b822249e .
Elezović, Nevenka R., Babić, Biljana M., Vračar, Ljiljana M, Radmilović, Velimir R, Krstajić, Nedeljko V, "Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction" in Physical Chemistry Chemical Physics, 11, no. 25 (2009):5192-5197,
https://doi.org/10.1039/b822249e . .
13
9
13

Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction

Elezović, Nevenka R.; Gajić-Krstajić, Ljiljana M; Radmilović, Velimir R; Vračar, Ljiljana M; Krstajić, Nedeljko V

(Pergamon-Elsevier Science Ltd, Oxford, 2009)

TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Gajić-Krstajić, Ljiljana M
AU  - Radmilović, Velimir R
AU  - Vračar, Ljiljana M
AU  - Krstajić, Nedeljko V
PY  - 2009
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/322
AB  - The influence of poisoning of Pt catalyst by CO on the kinetics and mechanism of H-2 oxidation reaction (HOR) at Pt/C electrode in 0.5 mol dm(-3) HClO4, saturated with H-2 containing 100 ppm CO, was examined with rotating disc electrode (RDE) at 22 degrees C. Commercial carbon black, Vulcan XC-72 was used as support, while Pt/C catalyst was prepared by modified polyol synthesis method in an ethylene glycol (EG) solution. The kinetically controlled current (l(k)) for the HOR at Pt/C decreases significantly at CO coverage (Theta(co)) > 0.6. For Theta(co)  lt  0.6 the HOR takes place through Tafel-Volmer mechanism with Tafel reaction as rate-determining step at the low CO coverage, while Volmer step controls the overall reaction rate at the medium CO coverage. When CO coverage is higher then 0.6, Heyrovsky-Volmer mechanism is operative for the HOR with Heyrovsky as the rate-determining step (rds).
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Electrochimica Acta
T1  - Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction
EP  - 1382
IS  - 4
SP  - 1375
VL  - 54
DO  - 10.1016/j.electacta.2008.08.067
ER  - 
@article{
author = "Elezović, Nevenka R. and Gajić-Krstajić, Ljiljana M and Radmilović, Velimir R and Vračar, Ljiljana M and Krstajić, Nedeljko V",
year = "2009",
abstract = "The influence of poisoning of Pt catalyst by CO on the kinetics and mechanism of H-2 oxidation reaction (HOR) at Pt/C electrode in 0.5 mol dm(-3) HClO4, saturated with H-2 containing 100 ppm CO, was examined with rotating disc electrode (RDE) at 22 degrees C. Commercial carbon black, Vulcan XC-72 was used as support, while Pt/C catalyst was prepared by modified polyol synthesis method in an ethylene glycol (EG) solution. The kinetically controlled current (l(k)) for the HOR at Pt/C decreases significantly at CO coverage (Theta(co)) > 0.6. For Theta(co)  lt  0.6 the HOR takes place through Tafel-Volmer mechanism with Tafel reaction as rate-determining step at the low CO coverage, while Volmer step controls the overall reaction rate at the medium CO coverage. When CO coverage is higher then 0.6, Heyrovsky-Volmer mechanism is operative for the HOR with Heyrovsky as the rate-determining step (rds).",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Electrochimica Acta",
title = "Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction",
pages = "1382-1375",
number = "4",
volume = "54",
doi = "10.1016/j.electacta.2008.08.067"
}
Elezović, N. R., Gajić-Krstajić, L. M., Radmilović, V. R., Vračar, L. M.,& Krstajić, N. V.. (2009). Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction. in Electrochimica Acta
Pergamon-Elsevier Science Ltd, Oxford., 54(4), 1375-1382.
https://doi.org/10.1016/j.electacta.2008.08.067
Elezović NR, Gajić-Krstajić LM, Radmilović VR, Vračar LM, Krstajić NV. Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction. in Electrochimica Acta. 2009;54(4):1375-1382.
doi:10.1016/j.electacta.2008.08.067 .
Elezović, Nevenka R., Gajić-Krstajić, Ljiljana M, Radmilović, Velimir R, Vračar, Ljiljana M, Krstajić, Nedeljko V, "Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction" in Electrochimica Acta, 54, no. 4 (2009):1375-1382,
https://doi.org/10.1016/j.electacta.2008.08.067 . .
35
34
34

Temperature dependence of the kinetics of oxygen reduction on carbon-supported Pt nanoparticles

Elezović, Nevenka R.; Babić, Biljana M.; Krstajić, Nedeljko V; Gojković, Snežana Lj; Vračar, Ljiljana M

(Srpsko hemijsko društvo, Beograd, 2008)

TY  - JOUR
AU  - Elezović, Nevenka R.
AU  - Babić, Biljana M.
AU  - Krstajić, Nedeljko V
AU  - Gojković, Snežana Lj
AU  - Vračar, Ljiljana M
PY  - 2008
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/290
AB  - The temperature dependence of oxygen reduction reaction (ORR) was studied on highly dispersed Pt nanoparticles supported on a carbon cryogel. The specific surface area of the support was 5 17 m(2) g(-1), the Pt particles diameter was about 2.7 nm and the loading of the catalyst was 20 wt. %. The kinetics of the ORR at the Pt/C electrode was examined in 0.50 mol dm(-3) HClO4 solution in the temperature range from 274 to 318 K. At all temperatures, two distinct E-log j regions were observed at low current densities with a slope of -2.3RT/F and at high current densities with a slope of -2.3 x 2RT/F. In order to confirm the mechanism of oxygen reduction previously suggested at a polycrystalline Pt and a Pt/Ebonex nanostructured electrode, the apparent enthalpies of activation at selected potentials vs. the reversible hydrogen electrode were calculated in both current density regions. Although Delta H-a,l(not equal) > Delta H-a,h(not equal), it was found that the enthalpies of activation at the zero Galvani potential difference were the same and hence it could be concluded that the rate-determining step of the ORR was the same in both current density regions. The synthesized Pt/C catalyst showed a small enhancement in the catalytic activity for ORR in comparison to the polycrystalline Pt, but no change in the mechanism of the reaction.
PB  - Srpsko hemijsko društvo, Beograd
T2  - Journal of the Serbian Chemical Society
T1  - Temperature dependence of the kinetics of oxygen reduction on carbon-supported Pt nanoparticles
EP  - 654
IS  - 6
SP  - 641
VL  - 73
DO  - 10.2298/JSC0806641E
ER  - 
@article{
author = "Elezović, Nevenka R. and Babić, Biljana M. and Krstajić, Nedeljko V and Gojković, Snežana Lj and Vračar, Ljiljana M",
year = "2008",
abstract = "The temperature dependence of oxygen reduction reaction (ORR) was studied on highly dispersed Pt nanoparticles supported on a carbon cryogel. The specific surface area of the support was 5 17 m(2) g(-1), the Pt particles diameter was about 2.7 nm and the loading of the catalyst was 20 wt. %. The kinetics of the ORR at the Pt/C electrode was examined in 0.50 mol dm(-3) HClO4 solution in the temperature range from 274 to 318 K. At all temperatures, two distinct E-log j regions were observed at low current densities with a slope of -2.3RT/F and at high current densities with a slope of -2.3 x 2RT/F. In order to confirm the mechanism of oxygen reduction previously suggested at a polycrystalline Pt and a Pt/Ebonex nanostructured electrode, the apparent enthalpies of activation at selected potentials vs. the reversible hydrogen electrode were calculated in both current density regions. Although Delta H-a,l(not equal) > Delta H-a,h(not equal), it was found that the enthalpies of activation at the zero Galvani potential difference were the same and hence it could be concluded that the rate-determining step of the ORR was the same in both current density regions. The synthesized Pt/C catalyst showed a small enhancement in the catalytic activity for ORR in comparison to the polycrystalline Pt, but no change in the mechanism of the reaction.",
publisher = "Srpsko hemijsko društvo, Beograd",
journal = "Journal of the Serbian Chemical Society",
title = "Temperature dependence of the kinetics of oxygen reduction on carbon-supported Pt nanoparticles",
pages = "654-641",
number = "6",
volume = "73",
doi = "10.2298/JSC0806641E"
}
Elezović, N. R., Babić, B. M., Krstajić, N. V., Gojković, S. L.,& Vračar, L. M.. (2008). Temperature dependence of the kinetics of oxygen reduction on carbon-supported Pt nanoparticles. in Journal of the Serbian Chemical Society
Srpsko hemijsko društvo, Beograd., 73(6), 641-654.
https://doi.org/10.2298/JSC0806641E
Elezović NR, Babić BM, Krstajić NV, Gojković SL, Vračar LM. Temperature dependence of the kinetics of oxygen reduction on carbon-supported Pt nanoparticles. in Journal of the Serbian Chemical Society. 2008;73(6):641-654.
doi:10.2298/JSC0806641E .
Elezović, Nevenka R., Babić, Biljana M., Krstajić, Nedeljko V, Gojković, Snežana Lj, Vračar, Ljiljana M, "Temperature dependence of the kinetics of oxygen reduction on carbon-supported Pt nanoparticles" in Journal of the Serbian Chemical Society, 73, no. 6 (2008):641-654,
https://doi.org/10.2298/JSC0806641E . .
10
9
10