Popović, Nikolina

Link to this page

Authority KeyName Variants
orcid::0000-0001-6774-3739
  • Popović, Nikolina (4)

Author's Bibliography

Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization

Popović, Nikolina; Przulj, Dunja; Mladenović, Maja; Prodanović, Olivera; Ece, Selin; Ilic-Durdic, Karla; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Elsevier, Amsterdam, 2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Przulj, Dunja
AU  - Mladenović, Maja
AU  - Prodanović, Olivera
AU  - Ece, Selin
AU  - Ilic-Durdic, Karla
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1490
AB  - High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV-Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
PB  - Elsevier, Amsterdam
T2  - International Journal of Biological Macromolecules
T1  - Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization
EP  - 1080
SP  - 1072
VL  - 181
DO  - 10.1016/j.ijbiomac.2021.04.115
ER  - 
@article{
author = "Popović, Nikolina and Przulj, Dunja and Mladenović, Maja and Prodanović, Olivera and Ece, Selin and Ilic-Durdic, Karla and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2021",
abstract = "High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV-Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.",
publisher = "Elsevier, Amsterdam",
journal = "International Journal of Biological Macromolecules",
title = "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization",
pages = "1080-1072",
volume = "181",
doi = "10.1016/j.ijbiomac.2021.04.115"
}
Popović, N., Przulj, D., Mladenović, M., Prodanović, O., Ece, S., Ilic-Durdic, K., Ostafe, R., Fischer, R.,& Prodanović, R.. (2021). Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules
Elsevier, Amsterdam., 181, 1072-1080.
https://doi.org/10.1016/j.ijbiomac.2021.04.115
Popović N, Przulj D, Mladenović M, Prodanović O, Ece S, Ilic-Durdic K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. in International Journal of Biological Macromolecules. 2021;181:1072-1080.
doi:10.1016/j.ijbiomac.2021.04.115 .
Popović, Nikolina, Przulj, Dunja, Mladenović, Maja, Prodanović, Olivera, Ece, Selin, Ilic-Durdic, Karla, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization" in International Journal of Biological Macromolecules, 181 (2021):1072-1080,
https://doi.org/10.1016/j.ijbiomac.2021.04.115 . .
3
28
2
27

Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization

Popović, Nikolina; Stanisic, Marija; Ilic-Durdic, Karla; Prodanović, Olivera; Polović, Natalija; Prodanović, Radivoje

(Elsevier, Amsterdam, 2021)

TY  - JOUR
AU  - Popović, Nikolina
AU  - Stanisic, Marija
AU  - Ilic-Durdic, Karla
AU  - Prodanović, Olivera
AU  - Polović, Natalija
AU  - Prodanović, Radivoje
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1484
AB  - Pectins are a group of heterologous polysaccharides capable of forming hydrogels and applicable in many industrial processes. A new type of modified pectin was synthesized by periodate oxidation and reductive amination with dopamine and sodium cyanoborohydride. The success of modification was confirmed by UV-Vis, FTIR, and H-1 NMR spectroscopy. The obtained dopamine-pectin could form hydrogels by ionic crosslinking of carboxyl groups with calcium or by crosslinking phenol groups with laccase. For enzymatic crosslinking with laccase from Streptomyces cyaneus expressed in E. coli, isolation and purification of the enzyme was done. Using emulsion-based enzymatic crosslinking polymerization, dopamine-pectin microbeads with immobilized laccase were made. The immobilized laccase showed improved thermal and pH stability in comparison to the free enzyme. The immobilized biocatalyst effectively decolorized various dyes: Amido Black 10B, Reactive Black 5, and Evans Blue. After ten cycles of repeated use, the microbead immobilized laccase could still decolorize 60% and 36% of Amido Black 10B and Reactive Black 5, respectively.
PB  - Elsevier, Amsterdam
T2  - Environmental Technology & Innovation
T1  - Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization
VL  - 22
DO  - 10.1016/j.eti.2021.101399
ER  - 
@article{
author = "Popović, Nikolina and Stanisic, Marija and Ilic-Durdic, Karla and Prodanović, Olivera and Polović, Natalija and Prodanović, Radivoje",
year = "2021",
abstract = "Pectins are a group of heterologous polysaccharides capable of forming hydrogels and applicable in many industrial processes. A new type of modified pectin was synthesized by periodate oxidation and reductive amination with dopamine and sodium cyanoborohydride. The success of modification was confirmed by UV-Vis, FTIR, and H-1 NMR spectroscopy. The obtained dopamine-pectin could form hydrogels by ionic crosslinking of carboxyl groups with calcium or by crosslinking phenol groups with laccase. For enzymatic crosslinking with laccase from Streptomyces cyaneus expressed in E. coli, isolation and purification of the enzyme was done. Using emulsion-based enzymatic crosslinking polymerization, dopamine-pectin microbeads with immobilized laccase were made. The immobilized laccase showed improved thermal and pH stability in comparison to the free enzyme. The immobilized biocatalyst effectively decolorized various dyes: Amido Black 10B, Reactive Black 5, and Evans Blue. After ten cycles of repeated use, the microbead immobilized laccase could still decolorize 60% and 36% of Amido Black 10B and Reactive Black 5, respectively.",
publisher = "Elsevier, Amsterdam",
journal = "Environmental Technology & Innovation",
title = "Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization",
volume = "22",
doi = "10.1016/j.eti.2021.101399"
}
Popović, N., Stanisic, M., Ilic-Durdic, K., Prodanović, O., Polović, N.,& Prodanović, R.. (2021). Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization. in Environmental Technology & Innovation
Elsevier, Amsterdam., 22.
https://doi.org/10.1016/j.eti.2021.101399
Popović N, Stanisic M, Ilic-Durdic K, Prodanović O, Polović N, Prodanović R. Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization. in Environmental Technology & Innovation. 2021;22.
doi:10.1016/j.eti.2021.101399 .
Popović, Nikolina, Stanisic, Marija, Ilic-Durdic, Karla, Prodanović, Olivera, Polović, Natalija, Prodanović, Radivoje, "Dopamine-modified pectin for a Streptomyces cyaneus laccase induced microbeads formation, immobilization, and textile dyes decolorization" in Environmental Technology & Innovation, 22 (2021),
https://doi.org/10.1016/j.eti.2021.101399 . .
10
2
9

Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain

Balaž, Ana Marija; BLazic, Marija B.; Popović, Nikolina; Prodanović, Olivera; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(Srpsko hemijsko društvo, Beograd, 2020)

TY  - JOUR
AU  - Balaž, Ana Marija
AU  - BLazic, Marija B.
AU  - Popović, Nikolina
AU  - Prodanović, Olivera
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1297
AB  - Production of soluble cellobiose dehydrogenase (CDH) mutant proteins previously evolved on the surface of S. cerevisiae yeast cells was established for use in biosensors and biofuel cells. For this purpose, mutant cdh genes tm (D20N, A64T, V592M), H5 (D20N, V22A, A64T, V592M) and H9 (D20N, A64T, T84A, A261P, V592M, E674G, N715S) were cloned to pPICZ alpha plasmid and transformed into Pichia pastoris KM71H strain for high expression in a soluble form and kinetic characterization. After 6 days of expression under methanol induction, the CDHs were purified by ultrafiltration, ion-exchange chromatography and gel filtration. Sodium dodecyl sulfate electrophoresis confirmed the purity and presence of a single protein band at a molecular weight of 100 kDa. Kinetic characterization showed that the H5 mutant had the highest catalytic constant of 43.5 s(-1) for lactose, while the mutant H9 showed the highest specificity constant for lactose of 132 mM(-1) s(-1). All three mutant proteins did not change the pH optimum that was between 4.5 and 5.5. Compared to the previously obtained wild types and mutants of CDH from Phanerochaete chrysosporium, the variants reported in this article had higher activity and specificity that together with high protein expression rate in P. pastoris, makes them good candidates for use in biotechnology for lactobionic acid production and biosensor manufacture.
PB  - Srpsko hemijsko društvo, Beograd
T2  - Journal of the Serbian Chemical Society
T1  - Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain
EP  - 35
IS  - 1
SP  - 25
VL  - 85
DO  - 10.2298/JSC190320058B
ER  - 
@article{
author = "Balaž, Ana Marija and BLazic, Marija B. and Popović, Nikolina and Prodanović, Olivera and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2020",
abstract = "Production of soluble cellobiose dehydrogenase (CDH) mutant proteins previously evolved on the surface of S. cerevisiae yeast cells was established for use in biosensors and biofuel cells. For this purpose, mutant cdh genes tm (D20N, A64T, V592M), H5 (D20N, V22A, A64T, V592M) and H9 (D20N, A64T, T84A, A261P, V592M, E674G, N715S) were cloned to pPICZ alpha plasmid and transformed into Pichia pastoris KM71H strain for high expression in a soluble form and kinetic characterization. After 6 days of expression under methanol induction, the CDHs were purified by ultrafiltration, ion-exchange chromatography and gel filtration. Sodium dodecyl sulfate electrophoresis confirmed the purity and presence of a single protein band at a molecular weight of 100 kDa. Kinetic characterization showed that the H5 mutant had the highest catalytic constant of 43.5 s(-1) for lactose, while the mutant H9 showed the highest specificity constant for lactose of 132 mM(-1) s(-1). All three mutant proteins did not change the pH optimum that was between 4.5 and 5.5. Compared to the previously obtained wild types and mutants of CDH from Phanerochaete chrysosporium, the variants reported in this article had higher activity and specificity that together with high protein expression rate in P. pastoris, makes them good candidates for use in biotechnology for lactobionic acid production and biosensor manufacture.",
publisher = "Srpsko hemijsko društvo, Beograd",
journal = "Journal of the Serbian Chemical Society",
title = "Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain",
pages = "35-25",
number = "1",
volume = "85",
doi = "10.2298/JSC190320058B"
}
Balaž, A. M., BLazic, M. B., Popović, N., Prodanović, O., Ostafe, R., Fischer, R.,& Prodanović, R.. (2020). Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain. in Journal of the Serbian Chemical Society
Srpsko hemijsko društvo, Beograd., 85(1), 25-35.
https://doi.org/10.2298/JSC190320058B
Balaž AM, BLazic MB, Popović N, Prodanović O, Ostafe R, Fischer R, Prodanović R. Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain. in Journal of the Serbian Chemical Society. 2020;85(1):25-35.
doi:10.2298/JSC190320058B .
Balaž, Ana Marija, BLazic, Marija B., Popović, Nikolina, Prodanović, Olivera, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain" in Journal of the Serbian Chemical Society, 85, no. 1 (2020):25-35,
https://doi.org/10.2298/JSC190320058B . .
3
2

Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay

Blazic, Marija; Balaž, Ana Marija; Prodanović, Olivera; Popović, Nikolina; Ostafe, Raluca; Fischer, Rainer; Prodanović, Radivoje

(MDPI, Basel, 2019)

TY  - JOUR
AU  - Blazic, Marija
AU  - Balaž, Ana Marija
AU  - Prodanović, Olivera
AU  - Popović, Nikolina
AU  - Ostafe, Raluca
AU  - Fischer, Rainer
AU  - Prodanović, Radivoje
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1240
AB  - Featured Application Developed fluorescent assay and expression system can be used for obtaining improved cellobiose dehydrogenase whole cell biocatalysts for lactobionic acid production and building of biosensors and biofuel cells. Cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium can be used in lactobionic acid production, biosensor for lactose, biofuel cells, lignocellulose degradation, and wound-healing applications. To make it a better biocatalyst, CDH with higher activity in an immobilized form is desirable. For this purpose, CDH was expressed for the first time on the surface of S. cerevisiae EBY100 cells in an active form as a triple mutant tmCDH (D20N, A64T, V592M) and evolved further for higher activity using resazurin-based fluorescent assay. In order to decrease blank reaction of resazurin with yeast cells and to have linear correlation between enzyme activity on the cell surface and fluorescence signal, the assay was optimized with respect to resazurin concentration (0.1 mM), substrate concentration (10 mM lactose and 0.08 mM cellobiose), and pH (6.0). Using optimized assay an error prone PCR gene library of tmCDH was screened. Two mutants with 5 (H5) and 7 mutations (H9) were found having two times higher activity than the parent tmCDH enzyme that already had improved activity compared to wild type CDH whose activity could not be detected on the surface of yeast cells.
PB  - MDPI, Basel
T2  - Applied Sciences-Basel
T1  - Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay
IS  - 7
VL  - 9
DO  - 10.3390/app9071413
ER  - 
@article{
author = "Blazic, Marija and Balaž, Ana Marija and Prodanović, Olivera and Popović, Nikolina and Ostafe, Raluca and Fischer, Rainer and Prodanović, Radivoje",
year = "2019",
abstract = "Featured Application Developed fluorescent assay and expression system can be used for obtaining improved cellobiose dehydrogenase whole cell biocatalysts for lactobionic acid production and building of biosensors and biofuel cells. Cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium can be used in lactobionic acid production, biosensor for lactose, biofuel cells, lignocellulose degradation, and wound-healing applications. To make it a better biocatalyst, CDH with higher activity in an immobilized form is desirable. For this purpose, CDH was expressed for the first time on the surface of S. cerevisiae EBY100 cells in an active form as a triple mutant tmCDH (D20N, A64T, V592M) and evolved further for higher activity using resazurin-based fluorescent assay. In order to decrease blank reaction of resazurin with yeast cells and to have linear correlation between enzyme activity on the cell surface and fluorescence signal, the assay was optimized with respect to resazurin concentration (0.1 mM), substrate concentration (10 mM lactose and 0.08 mM cellobiose), and pH (6.0). Using optimized assay an error prone PCR gene library of tmCDH was screened. Two mutants with 5 (H5) and 7 mutations (H9) were found having two times higher activity than the parent tmCDH enzyme that already had improved activity compared to wild type CDH whose activity could not be detected on the surface of yeast cells.",
publisher = "MDPI, Basel",
journal = "Applied Sciences-Basel",
title = "Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay",
number = "7",
volume = "9",
doi = "10.3390/app9071413"
}
Blazic, M., Balaž, A. M., Prodanović, O., Popović, N., Ostafe, R., Fischer, R.,& Prodanović, R.. (2019). Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. in Applied Sciences-Basel
MDPI, Basel., 9(7).
https://doi.org/10.3390/app9071413
Blazic M, Balaž AM, Prodanović O, Popović N, Ostafe R, Fischer R, Prodanović R. Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay. in Applied Sciences-Basel. 2019;9(7).
doi:10.3390/app9071413 .
Blazic, Marija, Balaž, Ana Marija, Prodanović, Olivera, Popović, Nikolina, Ostafe, Raluca, Fischer, Rainer, Prodanović, Radivoje, "Directed Evolution of Cellobiose Dehydrogenase on the Surface of Yeast Cells Using Resazurin-Based Fluorescent Assay" in Applied Sciences-Basel, 9, no. 7 (2019),
https://doi.org/10.3390/app9071413 . .
3
9
7
8