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Silicon (Si) is a widely recognized beneficial element in plants. With the

emergence of nanotechnology in agriculture, silicon nanoparticles (SiNPs)

demonstrate promising applicability in sustainable agriculture. Particularly, the

application of SiNPs has proven to be a high-efficiency and cost-effective

strategy for protecting plant against various biotic and abiotic stresses such as

insect pests, pathogen diseases, metal stress, drought stress, and salt stress. To

date, rapid progress has been made in unveiling the multiple functions and

related mechanisms of SiNPs in promoting the sustainability of agricultural

production in the recent decade, while a comprehensive summary is still

lacking. Here, the review provides an up-to-date overview of the synthesis,

uptake and translocation, and application of SiNPs in alleviating stresses aiming

for the reasonable usage of SiNPs in nano-enabled agriculture. The major points

are listed as following: (1) SiNPs can be synthesized by using physical, chemical,

and biological (green synthesis) approaches, while green synthesis using

agricultural wastes as raw materials is more suitable for large-scale production

and recycling agriculture. (2) The uptake and translocation of SiNPs in plants

differs significantly from that of Si, which is determined by plant factors and the

properties of SiNPs. (3) Under stressful conditions, SiNPs can regulate plant stress

acclimation at morphological, physiological, and molecular levels as growth

stimulator; as well as deliver pesticides and plant growth regulating chemicals

as nanocarrier, thereby enhancing plant growth and yield. (4) Several key issues

deserve further investigation including effective approaches of SiNPs synthesis

and modification, molecular basis of SiNPs-induced plant stress resistance, and

systematic effects of SiNPs on agricultural ecosystem.
KEYWORDS
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1 Introduction

Silicon (Si) is a typical metalloid and the second most abundant

element in the earth’s crust (Epstein, 1994). Due to its growth

promotion effects in plants, particularly for those grown under

stressful conditions, Si is widely recognized as a plant beneficial

element (Epstein, 1999; Liang et al., 2015). In recent years, with the

progressive integration of agriculture and nanotechnology, the

application of nanoparticles (NPs) is shown to be an effective

agronomic approach in crop production to address the escalating

global food demand (Agathokleous et al., 2020; Wang et al., 2020;

Sharma et al., 2023). Among the various NPs, silicon nanoparticles

(SiNPs) demonstrate impressive advantages and applicability in

nano-enabled agriculture for promoting plant stress resistance and

ensuring stable crop yield (Rastogi et al., 2019; Dhakate et al., 2022).

Technically, SiNPs refer to fabricated Si particles at nanoscale,

with the dimensions ranging from 1 to 100 nm. Based on the

structures of SiNPs, they can be categorized into various types such

as spheric, hollow, shaped (e.g., rod, cube), and porous (Mathur and

Roy, 2020). SiNPs exhibit significant advantages over bulk Si

sources including high surface/volume ratio, distinct charge

properties and improved plant bioavailability (Jeelani et al., 2020).

The characteristics and structures of SiNPs are commonly

determined by the synthesizing process, which can be classified

into physical, chemical, and biological synthesis (green synthesis),

depending on the driving force (Naidu et al., 2023). The green

synthesis of SiNPs with agricultural wastes as raw materials is

gaining growing attention owing to its significant applicability in

recycling and sustainable agricultural production (Mahawar et al.,

2023). In plants subject to foliar or root application of SiNPs, due to
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the size effect and charge property, SiNPs can directly penetrate

plant barriers such as epidermis, cell wall and plasma membrane,

subsequently being accumulated and translocated in plants (Jeelani

et al., 2020; Wang et al., 2022a). In addition to the direct

penetration, plants also utilize SiNPs in the form of silicic acid

after dissolution under the facilitation of Si channels and

transporters (e.g., Lsi1, Lsi2, Lsi3 and Lsi6) (Ma and Yamaji,

2015; Mandlik et al., 2020).

The unique features and advantages of SiNPs including

nanoscale sizes, nutritional effects, surface properties and porous

nature, endowing them versatile functions in nano-enabled

agriculture such as plant growth stimulator, nanocarrier, and soil

conditioner (Figure 1; Ji et al., 2018; Rastogi et al., 2019; Mahawar

et al., 2023). To date, numerous laboratory and field studies affirm

that SiNPs, as plant growth stimulator, can enhance plant resistance

to various biotic (e.g., insect pest, pathogen disease) and abiotic

(e.g., metal stress, drought stress, salt stress) stress, thereby

promoting plant growth, yield and quality (Bansal et al., 2022;

Verma et al., 2022; Wang et al., 2022a). In addition, the porous

nature of SiNPs makes them ideal carriers for delivering chemicals

(e.g., fertilizer, pesticide, plant growth regulator) and bioactive

molecules (e.g., DNA, protein) in agricultural production and

plant biotechnology (Mathur and Roy, 2020; Zhang et al., 2023).

Furthermore, SiNPs can also be applied for the improvement of soil

properties, detection and monitoring of certain biochemical

parameters relevant for agronomic production, and remediation

of agricultural contamination (Giraldo et al., 2014; Kannan and

Sujatha, 2022).

Overall, SiNPs show significant applicability to sustainable

agricultural production, while rapid progress has been made to
FIGURE 1

The application of SiNPs in nano-enabled agriculture.
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unveil the interaction between SiNPs and crops, especially for those

under stressful conditions in the recent decade. This review

provides an updated summary of the synthesis and application of

SiNPs in agriculture, their uptake and accumulation in plants under

foliar and root application, and the multiple roles and underlying

mechanisms of SiNPs in protecting plants against biotic and abiotic

stresses. In addition, several key issues related to the current

limitations and future perspectives of SiNPs research and

application in nano-enabled agriculture are highlighted.
2 SiNPs synthesis

The unique characteristics and attributes of SiNPs are

predominantly dependent on precursors and methods employed

in their synthesis processes (Jeelani et al., 2020). Presently, two

strategies called top-to-down strategy and bottom-to-top strategy

are mostly applied in the synthesis of NPs (Figure 2; Vetchinkina

et al., 2019; Salami et al., 2022). The top-to-down strategy indicates

the breakdown of larger materials into smaller particles using

methods such as physical milling and chemical decomposition.

Conversely, the bottom-to-up strategy involves the assemble of

atomic or molecular precursors into complex nanostructures based

on natural physical principles or external forces (Rahman and

Padavettan, 2012; Tang et al., 2012).

According to the driven forces and precursors involved, the

synthesis processes of NPs can be classified into physical, chemical,
Frontiers in Plant Science 03
and biological (green synthesis) approaches (Figure 2; Usman et al.,

2020; Zhao et al., 2020). Typically, physical and chemical synthesis

are conducted using silicate precursors such as tetraethyl

orthosilicate (TEOS) and tetramethyl orthosilicate (TMOS), while

green synthesis usually utilizes plants and microorganisms (Tang

et al., 2012). Physical methods include ball milling, ultrasonic

peening, and laser ablation, while chemical methods encompass

vapor condensation, microemulsion, co-precipitation, and sol-gel

method (Debnath et al., 2012; Croissant et al., 2020). In most

biogenic synthesis of SiNPs using plant materials, the process

involves two steps including the extraction of silicate and the

formation of SiNPs through the sol-gel method using inorganic

salt neutralization with hydrochloric acid (Seroka et al., 2022).

Although the physical methods are relatively simple and direct

with quick synthesis processes, they may be limited by prosomal

material and usually result in nanoparticles with uncontrollable sizes.

On the other hand, the chemical methods offer better control of particle

size and functional manipulation, however, the usage of chemicals with

potential toxicity could raise environmental risks (Figure 2). In

contrast, the green synthesis using agricultural wastes such as rice

straw and husk (Wang et al., 2012a; Gu et al., 2015; Bose et al., 2018),

maize stalk (Adebisi et al., 2020; Piela et al., 2020), sugarcane bagasse

(Alves et al., 2017), and coconut shell (Marousek et al., 2022) shows

significant advantages over physical and chemical synthesis

approaches. Especially, green synthesis demonstrates a significant

potential for the large-scale production of SiNPs in recycling and

sustainable agricultural production (Mahawar et al., 2023).
FIGURE 2

The strategies and approaches of SiNPs synthesis.
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3 SiNPs absorption and translocation
in plant

3.1 Si uptake and translocation

In the nature, Si mainly exists in the forms of SiO2 and silicates and

silicic acid. As the soluble and sole form of Si that can be absorbed by

plants root, mono-silicic acid would form silicates when the

environmental pH > 9 (Epstein, 1994). In arable soils, the

concentration of mono-silicic acid ranges from 0.1 to 0.6 mM (lower

than its saturation solubility, about 2 mM), which is mainly determined

by parent materials, development levels, and physical and chemical

properties of soil (Liang et al., 2015; Yan et al., 2018). After being

absorbed by root, most of Si (more than 90%) is loaded in xylem and

transported from root to shoot in the form of silicic acid and then

unloaded to parenchyma cells. In plants’ shoot, along with water loss

driven by plant transpiration, silicic acid is polymerized to silica gel

(SiO2·nH2O) and forms cuticle-silica double layers (Mandlik et al., 2020).

In plants, the accumulation of Si in the above-ground part differs greatly,

ranging from 0.1 to 10.0% on dry weight basis. Accordingly, plants have

been artificially clarified into three categories including high accumulator

(1.5-10%), moderate accumulator (0.2-1.5%), and low accumulator

(lower than 0.2%, also called extruder). On the molecular level, the

difference of existence, function and activity of Si transport proteins are

shown to be responsible for the distinct abilities of Si accumulation

among different plant species (Mitani-Ueno and Ma, 2021).

To the date, a molecular model of Si transport in higher plants

responsible for Si uptake, translocation, distribution and

accumulation has been sketchily established in rice, a typical Si

accumulator and model plant in Si researches following the

identification of Si channels and transporters including Lsi1, Lsi2,

Lsi3 and Lsi6 based on mutant selection and forward genetics (Ma

and Yamaji, 2015; Mitani-Ueno and Ma, 2021). OsLsi1 was the very

first protein responsible for Si uptake in higher plants using a rice

mutant (low silicon 1, lsi1), which belongs to the noduline-26 major

intrinsic protein (NIP) family and act as an SI influx channel (Ma

et al., 2002, Ma et al., 2006). Then, a Si efflux transporter (OsLsi2)

was identified, which belongs to putative anion-channel transporter

family (Ma et al., 2007). OsLsi1 and OsLsi2 are localized to the

plasma membrane of exodermis and endodermis cells, while both

proteins show polar localization (OsLsi1 at distal side and OsLsi2 at

proximal side), and the cooperation of OsLsi1 and OsLsi2 facilitate

Si uptake in rice root. OsLsi6, a homolog of OsLsi1, is localized at

the adaxial side of xylem parenchyma cells and responsible for the

unloading process of Si from xylem to arial parts (Yamaji et al.,

2008; Yamaji and Ma, 2009). Beside the three proteins mentioned

above, OsLsi3, a homolog of OsLsi2, takes the charge of controlling

the distribution between panicles and flag leaves in cooperation

with OsLsi2 and OsLsi6 in rice node (Yamaji et al., 2015).
3.2 SiNPs absorption and translocation

The absorption and translocation of SiNPs significantly affects their

efficacy as plant growth stimulator and nanocarrier in plants and

agricultural production (Lombi et al., 2019; Usman et al., 2020).
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However, in contrast with the relatively well-understood mechanisms

of Si transport, the uptake and translocation of SiNPs in plants,

especially at the subcellular and molecular level, remains unclear.

Moreover, the research on the SiNPs uptake and translocation in

plants also lags those on metal NPs such as silver nanoparticles

(AgNPs), gold nanoparticles (AuNPs), cerium nanoparticles

(CeNPs), and iron nanoparticles (FeNPs). The issue of phytotoxicity

of metal NPs has attractedmuch research attention; on the contrary, no

convincing evidence has confirmed the toxicity of SiNPs (Miralles et al.,

2012; Sharma et al., 2015; Ruttkay-Nedecky et al., 2017).

In general, NPs can directly enter plant shoot and root tissues due

to their nanoscale sizes when supplied with foliar spray and root

application, respectively (Figure 3; Lv et al., 2019; Rastogi et al., 2019).

When supplied via foliar spray, NPs are usually absorbed through

cuticle and/or stomata (Yeats and Rose, 2013). It has been estimated

that the maximum size of NPs that can pass through cuticle is

approximately 5 nm (Eichert and Goldbach, 2008), while the

equivalent pore size of stomata is approximately 20 - 500 nm

(Eichert et al., 2008). Given the fact that most of NPs used in

agricultural practices are larger than 5 nm, the stomatal pathway

could play a dominant role in NPs uptake under foliar application

(Figure 3). In the case of root application, the uptake of NPs usually

occurs in the immature parts of root such as root tips, root hairs, and

lateral root junctions, where the physical barriers (e.g., Casparian strip,

suberin lamella) are underdeveloped (Wang et al., 2022a). Additionally,

SiNPs may be transformed into silicic acid in growth substance driven

by geochemical, microbial, and plant biological factors, which can

successively be taken up by plant roots through Si transport proteins

(Ma and Yamaji, 2015; Mandlik et al., 2020). Once taken up by plant

shoot or root, the shoot-to-root and root-to-shoot translocation of NPs

subsequently occurs in phloem and xylem, respectively (Figure 3;

Wang et al., 2012b; Ma et al., 2017). Moreover, it should be noted

that most of the plant species are low Si accumulators with relatively

poor ability in Si uptake and accumulation, and could benefit from Si

application at relatively lower levels (Liang et al., 2015; Coskun et al.,

2019). In contrast, due to different absorption and transport

mechanisms with Si, the limitations would not exist under the

application of SiNPs, since most of SiNPs are absorbed

independently to Si transport proteins. Therefore, as a novel Si

source, SiNPs show remarkable advantages and applicability, and

may play more significant role in future, while the further research

comparing SiNPs and bulk Si materials are still needed.
3.3 Factors influencing SiNPs absorption

It can be concluded from previous literatures that, in essence, the

uptake and translocation of NPs in plants is the process of NPs passing

through plant biological barriers such as cuticle, stomata, cell wall and

vascular vessels. Therefore, it is not surprising that both NPs properties

(e.g., size and charge property) and plant factors (plant species, growth

and development stage) would influence the uptake and distribution of

NPs in plants (Figure 3; Ma et al., 2010; Tripathi et al., 2017). The size

preference of plants in NPs uptake and translocation has been

documented in different plant species (e.g., wheat, cucumber, and

tobacco), that NPs with smaller size are more easily absorbed by plants
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(Judy et al., 2012; Hong et al., 2014). However, unlike that of size

properties, the effects of charge properties of NPs on their absorption

and translocation are more complicated, which also differs between

root and foliar applications. Under root application, the positively

charged NPs adhere to root surface more tightly, while those with

negative charge are more efficiently translocated from root to shoot

(Zhu et al., 2012; Avellan et al., 2017; Spielman-Sun et al., 2017).

However, under foliar application, Hu et al. (2020) reported that NPs

with positive charge showed the highest delivery efficiency into stomata

and apoplastic space. Moreover, the uptake and translocation of NPs is

also influenced by plant factors since several key parameters differ with

plant species and development stages including (1) the contact area

between plant and NPs based on plant morphological traits; (2) the

amount of immature roots and leaves which are the major entrance of

NPs into plants; (3) the equivalent pore sizes of physiological barriers

such as cell wall, plasma membrane, cuticle, stomata, and vascular

vessels) (Tripathi et al., 2017; Lv et al., 2019; Dhakate et al., 2022).

Overall, current literature is largely based on the determination and/or

observation of NPs in plants, while the mechanisms of NPs uptake and

translocation, especially at cellular andmolecular levels, remain unclear

and deserve further investigation.
4 SiNPs and biotic stress

4.1 Direct effects of SiNPs on pathogens
and pests

As an eco-friendly biocide, SiNPs restrain the growth and

aggressiveness of pathogens and insect pests, thereby protecting

plant against the attack of bacteria, fungi, and pests in agricultural

production (Figure 4; Selvarajan et al., 2020; Goswami et al., 2022).

For instance, it was shown that SiNPs induced significant antifungal
Frontiers in Plant Science 05
effects against Rhizoctonia solani and Alternaria solani in the

incubation experiments (Abdelrhim et al., 2021; Albalawi et al.,

2022). In addition, Si/AgNPs (complex NPs of Si and Ag) also

showed remarkable fungicidal and bactericidal effects against

various plant pathogens such as Botrytis cinerea, Rhizoctonia

solani, Pseudomonas syringae and Xanthomonas campestris (Park

et al., 2006; Baka and El-Zahed, 2022). Furthermore, Khan et al.

(2022) reported that both SiNPs and titanium nanoparticles

(TiNPs) inhibited the growth of Phomopsis vexans and Ralstonia

solanacearum, while SiNPs induced a more prominent recuction of

pathogen growth than TiNPs. As for insect pests, in a surface

contact and feeding experiment, Ayoub et al. (2017) found that

SiNPs induced remarkable pesticidal effects in leafworm

(Spodoptera littoralis), which was also influenced by their size and

surface characteristics. Notably, SiNPs demonstrate unique

advantage over traditional pesticides in that their pesticidal effects

are based on the physical effects, implying pathogens and insect

pests are unlikely to become resistant to SiNPs at physiological level

through evolution.
4.2 SiNPs enhance plant resistance to
biotic stress

In addition to the direct pesticidal effects, SiNPs treatment with

seed priming and foliar application can enhance seed germination,

and plant growth and yield under different biotic stresses (Figure 4;

Naidu et al., 2023; Saw et al., 2023). Seed priming with SiNPs is an

effective agronomic approach in enhancing seed germination and

plant growth under the infection of pathogens. For example, SiNPs

application via seed priming significantly promoted seed germination

and seedling growth in wheat infected by Rhizoctonia solani

(Abdelrhim et al., 2021) and watermelon infected by Fusarium
FIGURE 3

The uptake and translocation of SiNPs in plants.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1393458
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yan et al. 10.3389/fpls.2024.1393458
oxysporum (Buchman et al., 2019). Besides, foliar application of

SiNPs is more commonly used in agricultural practices in

protecting plants against pathogens and pests. It has been reported

that SiNPs foliar spray alleviated pathogen-induced growth inhibition

and disease symptoms in plants under the infection of various

pathogens and insect pests such as Ralstonia solanacearum (Khan

et al., 2022; Wang et al., 2022b), Alternaria solani (Albalawi et al.,

2022), Plasmopara viticola (Rashad et al., 2021), Fusarium oxysporum

(Kang et al., 2021), Mythimna separata (Wang et al., 2021), Aphis

craccivora and Spodoptera littoralis (Thabet et al., 2021).

The SiNPs-induced broad-spectrum biotic stress resistance in

plants is largely based on the regulation of SiNPs on plant defense

system at physiological and molecular levels such as enhancement

of defense compounds metabolism, modulation of antioxidant

system, and regulation of plant hormone signals (Figure 4). For

instance, Suriyaprabha et al. (2014) reported that SiNPs was more

effective than bulk Si in enhancing the resistance of maize to fungal

pathogens including Fusarium oxysporum and Aspergillus niger

through regulating the metabolism of phenolic compounds. As

for insect pests, Wang et al. (2021) found that SiNPs enhanced the

metabolism of chemical defense compounds such as chlorogenic

acid and total phenolics, and protected maize against oriental

armyworm. In a field test, SiNPs treatment reduced the

population of three typical pests in faba bean and soybean via

enhancing the attraction of the predators of pests, which could be

due to the regulation of the metabolism of volatile compounds

(Thabet et al., 2021). Furthermore, it has been documented that

SiNPs regulated the activity of antioxidant enzyme and non-

enzymatic antioxidant, thereby ensuring the homeostasis of

reactive oxygen species (ROS) in eggplant under the infection by

Alternaria solani (Albalawi et al., 2022) and wheat under the

infection oby Rhizoctonia solani (Abdelrhim et al., 2021).

Considering the dual roles of ROS in plants under stress

including signal molecule and toxic radicals, the regulation of

SiNPs on ROS balance could participate in both pathogen
Frontiers in Plant Science 06
recognition and oxidative damage alleviation. Besides ROS, SiNPs

can regulate the plant hormones signal pathways such as salicic acid

(SA), jasmonic acid (JA) and ethylene, which play pivotal roles in

biotic stress response and accilimation. It has been documented that

SiNPs foliar spary enhanced SA metabolism via regulating the

expression of related genes in tomato grown under the infection

of Ralstonia solanacearum (Wang et al., 2022b). Moreover, Rashad

et al. (2021) reported that SiNPs promoted the resistance of

grapevine to Plasmopara viticola by regulating jasmonate and

ethylene signal pathway, and enhacing the expression of pathogen

defense-related genes. Particularly, SiNPs can trigger SA signal via

relasing silicic acid or clogging stomata, thereby inducing systemic

acquired resistance (SAR, a typical plant immune response under

pathogen infection) and enhacing the resistance of Arabidopsis

against Pseudomonas syringae (El-Shetehy et al., 2021).
4.3 SiNPs as pesticide carrier

Although both bulk Si and SiNPs can alleviate biotic stress in

plants acting as plant growth stimulator, SiNPs demonstrate

distinct usage in plant protection. They can be used as vehicle in

delivering pesticides in virtue of their porous nature, while the

pesticide loaded SiNPs exhibit kinds of advantages over direct

pesticide application (Figure 4). Generally, SiNPs can be applied

to deliver pesticides directly or after certain modification in

agricultural practices. The uptake efficiency and durability of

pesticides in plants would be enhanced when loaded into SiNPs,

therefore improving their pesticidal effects. For example, Bilal et al.

(2020) reported that indoxacarb-loaded SiNPs exhibited better

insecticidal activity than commercial indoxacarb in inhibiting

Plutella xylostella when applied at the same dose. The usage of

pectin coated SiNPs as carrier promoted the uptake, translocation,

duration, and antifungal activity of prochloraz in rice

(Abdelrahman et al., 2021). It has also been suggested that a-
FIGURE 4

Effects of SiNPs in agricultural production under biotic stress.
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cyclodextrin anchored SiNPs enhanced the light- and thermal-

shielding ability of avermectin after being loaded, thereby

prolonging the duration of avermectin in controlling Plutella

xylostellla (Kaziem et al., 2018). Furthermore, the surface

modification of SiNPs using copper (Cu) or carboxymethyl

chitosan enhanced their translocation in plants and extended the

release period of azoxystrobin (Xu et al., 2018, Xu et al., 2020).

On the other hand, the application of SiNPs as a vehicle can

improve the targeting precision and foster a controlled release of

pesticide in plants or insect pests after specific modifications

(Figure 4). For instance, Chen et al. (2016) fabricated a SiNPs-

based chlorpyrifos release system with salicylaldehyde or Cu

modification, which showed significant pH sensitivity and

sustained pesticide release. Similarly, Gao et al. (2019) developed

a pH-sensitive abamectin release system based on SiNPs after 3-

(trimethoxysilyl)propyl methacrylate functionalization, which

exhibited higher affinity for rice leaves, longer duration period of,

and higher toxicity to the larvae of Cnaphalocrocis medinalis in

contrast with commercial abamectin. In their further research, Gao

et al. (2020) developed a temperature-responsive pesticide release

formulation based on SiNPs using thermo-responsive copolymer,

which showed stronger adhesion to rice leaves and long-term

bioactivity of thiamethoxam. Moreover, Liang et al. (2020)

modified SiNPs using functionalized starch with biodegradable

disulfide-bridged structure, and then loaded avermectin into

SiNPs. The results showed the modified SiNPs controlled the

release of avermectin in response to glutathione and a-amylase,

thereby enhancing the targeting pesticidal effects against Plutella

xylostella. Analogously, the encapsulation of acetamiprid and

decanethiol in SiNPs would also control the release of

acetamiprid in response to glutathione and induce higher

pesticidal effects in contrast with commercial acetamiprid (Ding

et al., 2023). In the study of Bapat et al. (2020), the triethoxysilane-

functionalized SiNPs was used as vehicle for delivering trypsin

inhibitor, which would release pesticide once being transported to

the gut of Helicoverpa armigera, thereby effectively inhibiting the

activity of gut proteinase and the growth of this pests.

Notably, the excessive application of synthetic pesticide in

agricultural practice threatens food safety and the sustainability of

agricultural production. Under pesticide contamination in agriculture,

SiNPs can decrease pesticide residues in edible parts, and be used for

pesticide extraction and degradation in environmental remediation

(Figure 4; Bapat et al., 2016). For instance, it has been reported that the

usage of SiNPs as carrier in delivering prochloraz and spirotetramat

decreased the final pesticide residue and related metabolites in the

edible parts of cucumber (Zhao et al., 2018a, Zhao et al., 2018b). In the

case of pesticide extraction and degradation, Korrani et al. (2016)

reported that SiNPs effectively extracted three organic phosphorus

pesticides including dicrotophos, chlorpyrifos and diazinon from water

samples, which could be due to its mesoporous nature and high surface

area. Amani et al. (2018) reported that SiNPs can be used for the

removal of diazinon in solution, while the modification of SiNPs with

propyl methacrylate enhanced the removal efficiency. Moreover, Yang

et al. (2016) used SiNPs to immobilize laccase for degradation of 2,4-

dichlorophenol, and the results indicated that the application of SiNPs

enhanced the efficiency of degradation and reusability of laccase.
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However, it should be noted that most of the previous research using

SiNPs for pesticide extraction and degradation were conducted in

aqueous solution, while the potential application of SiNPs in

agricultural soil for environmental remediation deserves

further investigation.
5 SiNPs and abiotic stress

5.1 Metal stress

Under the growing influence of human activities (e.g., mining,

chemical fertilizer application and sewage irrigation) on agriculture,

metal contamination has become one of the major threats in

sustainable agricultural production and food safety (Clemens and

Ma, 2016; Rai et al., 2019). Metal stresses induce oxidative damages,

nutritional imbalance, photosynthesis system destruction, and plant

growth inhibition (Clemens et al., 2002). As a promising tool in

protecting plant against metal stress, SiNPs are proven to effectively

ameliorate various metal toxicity such as cadmium (Cd) (Riaz et al.,

2022a; Zhao et al., 2023), arsenic (As) (Gonzalez-Moscoso et al.,

2022; Yang et al., 2022), mercury (Hg) (Li et al., 2020), lead (Pb)

(Hussain et al., 2020), Cu (Riaz et al., 2022b), aluminum (Al) (de

Sousa et al., 2019), and chromium (Cr) (Tripathi et al., 2015).

Multiple mechanisms are involved behind the SiNPs-induced

broad-spectrum metal stress tolerance (Figure 5).

SiNPs can decrease the accumulation of metals in plants, especially

in arial or edible parts, under metal contamination (Okeke et al., 2023;

Yadav et al., 2023). For example, in wheat grown under Cd exposure,

SiNPs application through seed priming (Hussain et al., 2019), foliar

spray, and soil application (Ali et al., 2019) significantly promoted plant

growth and decreased Cd accumulation in wheat grains. In addition,

Yang et al. (2022) reported that SiNPs application increased As

accumulation in rice shoot and husk but decreased As content in

grain under As contamination, while Tripathi et al. (2015) found that

SiNPs reduced the accumulation of Cr in both shoot and root in pea

seedling growth under Cr stress. As for the underlying mechanisms, it

has been documented that SiNPs treatment reduced Cd accumulation

in rice shoot via enhancing polysaccharides metabolism and cell wall

retention (Riaz et al., 2022a). Moreover, Yan et al. (2023) indicated that

SiNPs were more effective than Si in reducing apoplastic flow of Cd

uptake, thereby decreased Cd accumulation tomato shoot exposed to

Cd. By using suspension rice cells, Cui et al. (2017; 2020) investigated

the effects of SiNPs on Cd and As accumulation and related

mechanisms, and found that SiNPs regulated the expression of genes

responsible for Cd transport (OsLCT1,OsNRAMP5 andOsHMA3) and

chemical components of the cell wall, thereby reducing the

accumulation of Cd and As in rice cells.

In addition to the reduction of toxic metal uptake and

translocation, SiNPs can modulate the activity of antioxidant system

and maintain mineral nutrients homeostasis, successively promoting

plant growth and yield. Under Cd exposure, SiNPs application

enhanced ROS scavenge and ameliorated oxidative injury in wheat

and rapeseed via increasing the activity of antioxidant enzymes such as

superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase

(APX), and peroxidase (POD) (Adrees et al., 2022; Ahmed et al., 2023).
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Additionally, it has been shown that SiNPs alleviated Cd-induced

oxidative damage in rapeseed by modulating the metabolism of

antioxidants including ascorbate, glutathione, and proline (Zhao

et al., 2023). The maintenance of mineral nutrient balance plays a

key role in plant growth and development when grown under metal

stresses, while it has been demonstrated that SiNPs was able to enhance

mineral nutrition status including zinc (Zn), manganese (Mn), iron

(Fe), magnesium (Mg), calcium (Ca), and potassium (K), resulting in

promoted Cd stress resistance in barley (He et al., 2023). Similarly, in

Phaseolus vulgaris under Cd stress, Koleva et al. (2022) reported that

the application of SiNPs enhanced K uptake, polyamines biosynthesis

and photosynthetic capacity, thereby promoting plant growth.
5.2 Salt stress

Salt stress is a major abiotic stress in agricultural production,

affecting approximately 20% total arable land worldwide (Byrt and

Munns, 2008). The alleviative effects of SiNPs on salt stress have

been observed in various crops such as rice (Shalaby et al., 2021),

wheat (Hajihashemi and Kazemi, 2022), maize (Rizwan et al., 2023),

tomato (Sayed et al., 2022), cucumber (Alsaeedi et al., 2018), and

potato (Gowayed et al., 2017). Under salt stress, the germination of

plant seed is inhibited due to the water uptake limitation and ionic

toxicity, while SiNPs priming can improve seed germination in

cucumber (Alsaeedi et al., 2018), lentil (Alsaeedi et al., 2018), and

maize (Naguib and Abdalla, 2019) which could be based on their

regulation on K/Na ratio, ROS homeostasis and hormone

metabolism in seeds. Besides seed germination, SiNPs can
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promote plant growth under salt stress through modulating Na/K

homeostasis, antioxidant system, photosynthesis performance, and

the expression of stress-response genes under salt stress (Etesami

et al., 2021; Muhammad et al., 2022) (Figure 5).

In plant grown under saline condition, salt stress induces ion

toxicity and osmotic constraint, thereby affecting plant growth, yield,

and quality (Munns, 2005; Munns and Tester, 2008). The homeostasis

of Na/K plays the dominant role in plant salt stress resistance, while it

has been documented that SiNPs application regulated Na/K balance in

rice and sweet orange via regulating the expression of Na/K transporter

genes includingHKT, SOS, and NHX (Mahmoud et al., 2022; Ijaz et al.,

2023). Moreover, it was found that SiNPs eliminated the accumulation

of MDA and H2O2 caused by salt stress, via enhancing the activity of

antioxidant enzymes such as glutathione reductase (GR), APX, CAT,

POD, SOD in squash (Cucurbita pepo L.) (Siddiqui et al., 2014) and pea

(Ismail et al., 2022). In tomato grown under hydroponic condition,

Haghighi and Pessarakli (2013) found that SiNPs can improve

photosynthetic rate, mesophyll conductance, and photosynthetic water

use efficiency, thereby promoting plant growth and salt stress resistance.

In addition, Alam et al. (2022) reported that SiNPs promoted tomato

growth, enhanced mineral nutrients accumulation (e.g., Mg, K, Fe, Mn,

Zn) and photosynthesis performance, while foliar application was more

effective in ameliorating salt stress in tomato than root dipping.
5.3 Drought stress

Drought stress is another major abiotic stress adversely affecting

agricultural production. The alleviation effects of SiNPs on drought
FIGURE 5

Effects of SiNPs in agricultural production under abiotic stress.
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stress have been repeatedly documented, with diverse mechanisms

involved (Figure 5). For instance, SiNPs promoted leaf area,

chlorophyll content, and nitrogen assimilation, thereby enhancing

plant growth and fruit yield in cucumber (Alsaeedi et al., 2019).

Similarly, Aqaei et al. (2020) reported that foliar application of

SiNPs on maize ameliorated drought stress-induced mineral

nutrients imbalance and enhanced corn weight. In a field study,

Namjoyan et al. (2020) indicated that SiNPs treatment at 1 mM

improved shoot water status, enhanced photosynthesis rate and

glycine betaine metabolism, and regulated the activities of

antioxidant enzymes including SOD, CAT and GPX in sugar beet.

Moreover, the comparative effects of Si and SiNPs on drought

stress tolerance in plants have been investigated in previous studies.

Rai-Kalal et al. (2021) demonstrated that SiNPs priming was more

efficient than that of bulk Si in promoting seed germination,

seedling growth, chlorophyll fluorescence index in wheat under

drought stress. In strawberry, Zahedi et al. (2023) reported that both

Si and SiNPs improved drought stress tolerance through regulating

photosynthesis performance and modulating the metabolism of

carbon and plant hormone, while the regulatory effects differed

between Si and SiNPs. Additionally, Ghorbanpour et al. (2020)

compared the roles of Si and SiNPs in drought stress recovery in

barley and found that SiNPs application more efficiently promoted

barley growth, modulated antioxidant enzyme activity, and

regulated the metabolism of osmolytes than bulk Si application.
5.4 Synergistic effects of SiNPs in
alleviating abiotic stress

In agricultural practice, SiNPs can also be applied along with

other plant growth regulators such as plant growth promoting

rhizobacteria (PGPR), plant hormones, other NPs, and plant

growth stimulating chemicals, which is more effective in

enhancing plant abiotic stress resistance (Figure 5). As for PGPR,

Eltahawy et al. (2022) indicated that the integrated application of

heavy metal-resistant bacteria and SiNPs more efficiently regulated

antioxidant system and promoted spinach growth under metal

contamination than individual application of SiNPs. In wheat

grown under semi-arid condition, the combined treatment of

SiNPs with CaCO3-precipitating bacteria induced more significant

yield promotion than individual treatment with SiNPs or CaCO3-

precipitating bacteria (Desoky et al., 2022). In addition, SiNPs can

also be applied in conjunction with other NPs in alleviating abiotic

stresses. It has been suggested that the combined application of

SiNPs and selenium nanoparticles (SeNPs) promoted plant growth

and alleviated stress symptoms in strawberry grown under drought

stress (Zahedi et al., 2020) and rice grown under Pb exposure

(Hussain et al., 2020). In wheat subject to Cd stress, the conjunct

application of SiNPs, zinc nanoparticles (ZnNPs), and FeNPs was

more effective than other treatments (individual NPs and

combination of two NPs) in enhancing grain yield and reducing

Cd accumulation (Hussain et al., 2021). In other cases, the

synergistic effects of SiNPs and biochar (Alsamadany et al., 2022),
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indoleacetic acid (IAA) (Sharma et al., 2022), and methyl jasmonate

(MeJA) (Moradi et al., 2022) have also been confirmed to be

effective in alleviating abiotic stresses such as As stress, Cr stress

and salt stress.
6 Conclusion and perspective

Overall, this review summarized recent progress of SiNPs

application in nano-enabled agriculture, focusing on synthesis,

uptake and translocation, and application of SiNPs against

various biotic and abiotic stresses. Based on these literatures, it

can be concluded that SiNPs application is a cost-effective and

multifunctional agronomic approach that is applicable to

sustainable agriculture. However, several key issues need further

investigation for the more widespread and reasonable usage of

SiNPs in agricultural production including: (1) more effective

synthesis approach of SiNPs using agricultural wastes; (2) the

detailed effects of plant factors (e.g. plant species, plant structures

and developmental stages) and SiNPs properties (e.g. size, charge

property and specific modification) on the uptake and translocation

of SiNPs; (3) the physiological and molecular basis of SiNPs-

induced broad-spectrum resistance; (4) the effects and

mechanisms of SiNPs modification on their delivery efficiency; (5)

the main concerns over potential phytotoxicity induced from the

application of SiNPs in agricultural ecosystem.
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