
1 

9th International Congress of the Serbian Society of Mechanics 
July 5-7, 2023, Vrnjačka Banja, Serbia 

 
 

 
UPGRADED TWO-STEP-SCALING APPROACH TO THE DTB 

CHARACTERIZATION OF FERRITIC STEELS     
 

Sreten Mastilovic
1,*

, Branislav Djordjevic
2
, Aleksandar Sedmak

3
  

 
1 University of Belgrade, Institute for Multidisciplinary Research, Kneza Viseslava 1a, Belgrade 
e-mail: misko.mastilovic@imsi.bg.ac.rs  
2 Innovation Center of Faculty of Mechanical Engineering, Kraljice Marije 16, Belgrade, Serbia 
e-mail: brdjordjevic@mas.bg.ac.rs  
3 Faculty of Mechanical Engineering,University of Belgrade, Kraljice Marije 16, Belgrade, Serbia 
e-mail: asedmak@mas.bg.ac.rs  
* Corresponding author 
 

 

Abstract: 
  

The fracture toughness of ferritic steels in the DTB (ductile-to-brittle) transition temperature 
region is a stochastic extrinsic property known for pronounced experimental data scatter that 
necessitates statistical approach in the DTB characterization. The novel two-step-scaling (2SS) 
method, proposed recently for the size effect-modeling across the DTB transition region, is 
developed based on the weakest-link statistics and the two-parametric Weibull distribution. 
Specifically, the size sensitivity of the Weibull parameters of scale and shape are built into the 
appropriate framework. This approach is upgraded in this article to render the comparison with 
the existing models more transparent. Specifically, the original 2SS method is enhanced by 
adding a lower limit on fracture toughness, resulting in the translated (three-parameter) Weibull 
cumulative distribution function. This third Weibull parameter, often dubbed the location 
parameter, defines a threshold value that limits the accessible fracture toughness domain. The 
upgraded 2SS approach is compared to two established methods of the DTB fracture toughness 
assessment, which favorably reflected upon its generality and application flexibility.  
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1. Introduction 

 

The brittle fracture at low temperatures is characterized by pronounced variations of fracture 
toughness (especially for small specimen) as well as others fracture properties and a statistical 
approach is a necessity. The Weibull theory is one of the first size-effect theories of the strength 
of materials that is developed on purely statistical arguments [1, 2]. The Weibull statistics is 
based on the weakest-link theory that is considered appropriate for modeling of the cleavage 
fracture of ferritic steels in the DTB (ductile-to-brittle) transition region, addressed in the present 
study. The plasticity mechanisms and stress redistribution are largely suppressed, which results in 
catastrophic failure, and, consequently, an inherently statistical nature of the size effect – the kind 
traditionally described by the Weibull distribution. Landes et al. (e.g., [4]) based their statistical 
approach on the premise that the cleavage fracture toughness is controlled by the weakest link at 
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the crack front. They used the two-parameter Weibull distribution, W (β, η), which is a frequent 
choice for the DTB characterization to this day (e.g., [3, 5]). A succinct historical survey of some 
of the most influential statistical studies of the cleavage fracture toughness of ferritic steels that 
make use of the Weibull statistics is, as an example, recently compiled in [6]. 

The novel two-step-scaling (2SS) approach has been developed [3, 7] with a focus on the 
DTB assessment of the fracture toughness size effect. The present study upgrades that original 
2SS approach by introducing a lower limit on fracture toughness in the Weibull CDF (cumulative 
distribution function), resulting in a three-parameter Weibull distribution, W (β, η, γ). This third 
Weibull parameter, called the location parameter, defines a threshold value that limits the 
accessible fracture toughness domain [8].    

2.  The 2SS procedure revisited 

The starting point in the present analysis is the translated Weibull CDF: 
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where β, η (= K0-Kmin) and γ (=Kmin=const.) are the Weibull shape, scale and location 
parameters [9], respectively. In Eq. (1), the symbol K is used for the generic critical value of the 
stress intensity, while K0 and Kmin stand for the normalization and the threshold values, respectively.  

The scaling procedure involves also the W (β, η, γ) probability density function (PDF)  
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that represents slope in the F vs. (K-γ) space. Hereinafter, dK = d(K-γ) is used for brevity.  
Furthermore, it is of interest to derive the maximum CDF slope, which corresponds to the 

inflection point (Π) defined by: 

0
1

1exp
22

2

2




















 




















 








 








 





 













 KKK

dK

Fd

KK

  (3) 

The inflection point definition (3) determines its coordinate in the F vs. (K-γ) space  
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that corresponds to fmax (5) and represents the mode of the Weibull distribution (1) by definition. 
After a straightforward derivation, the Weibull CDF slope (2) at the inflection point (4) that 

corresponds to the PDF maximum is obtained in the following form: 
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designates the shape function (as introduced in [3]). The domain definition (6)2 ensures that the 
Weibull CDF assumes the characteristic sigmoid shape [3, 10].  
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2.2  The two-step scaling scheme for the three-parameter Weibull CDF  

The same basic relationships derived in the preceding section are revisited herein in the scaled 
space: F·W

ξ vs. (K-γ)·W
κ illustrated in Fig. 1e. The motivation is that the gist of present approach to 

investigating the fracture toughness size effect rests upon the two scaling premises [3]:  

(i) The scaling condition along the CDF abscissa (driven by the scaling parameter κ):  

  .min0 constWKKW 
   (7) 

defining the size-independent Weibull scale parameter   in the scaled space (Fig. 1c), and   

(ii) The scaling condition along the CDF ordinate (driven by the scaling parameter ξ):   

.constWSS 
   (8) 

defining the common CDF slope S  in the scaled space (Fig. 1e) that represents the common PDF 
maximum (Fig. 1f), related to the PDF maxima in the same space (Fig. 1b) by the formula 
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Thus, it is required to re-derive the CDF slope (5), this time in the F–(K-γ) space, which yields 
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In the preceding derivation, it is convenient to use the change of variables y = F·W
ξ and 

x = (K-γ)·Wκ, which results in the functional dependence of the inflection point coordinate in the 
scaled space upon the Weibull shape parameter  
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that is unchanged compared to Eq. (4)1 (by virtue of the first constancy condition (7)). 
A couple of observations could be made based on Eq. (10). First, the Weibull scale parameter 

in the scaled space is size-independent (Fig. 1c) by virtue of the K-scaling condition, .const  (7). 
Second, the CDF slope in the scaled space F·W

ξ vs. (K-γ)·W
κ is also size-independent (Fig. 1c) by 

virtue of the second step scaling condition, .constS   (8). Consequently, Eq. (10) implies that 

  .constW     (12) 

The value of shape function Ξ 
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can be calculated for each particular specimen size once ξ and S  are determined. 
The pair of scaling parameters (κ, ξ) that govern the two scaling steps (illustrated in Fig. 1) is 

defined by the constancy conditions (7) and (12):  
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where indices i, j (=1,2,..) mark the input experimental data sets (e.g., W1, W2,...= 25, 50,...).  
The shape parameter β(W, ξ) can be determined based on Eq. (6) once the value of Ξ (β|W, ξ) 

is known. 
Finally, the Weibull CDF can now be written in the following form 
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Fig. 1. Schematics of the two scaling steps in the upgraded 2SS procedure (W1 and W2 mark sizes of two 
experimental data sets) 
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3.  Relationship between the novel 2SS method and two established methods for DTB 

characterization of fracture toughness 

The scaling along the abscissa is defined by the parameter κ which ensures that the constancy 
condition (7) is met. Therefore, in the novel 2SS procedure, κ is an independent fitting parameter 
determined by the input experimental data sets. Application of the 2SS method requires as an input 
at least two experimental data sets corresponding to two C(T) specimen size (e.g., W1 and W2 shown 
in Fig. 1). If that is the case, the constancy condition governing the first scaling step (along the 
abscissa) can be written in the form:  

      2min021min012211 WKKWKKWW    (16) 

The constancy condition written in the form of Eq. (16) will serve for comparison of the 2SS 
method with two established methods for DTB fracture toughness assessment.  

First, it is obvious from Eq. (16)1 that if the Weibull scale parameter (η2) for the specimen of 
effective width W2 is unknown, it can be calculated from the corresponding values of the first 
specimen as follows:     
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The relation (17) is identical to the corresponding expression from the 1-point method [5, 6]     
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for the special case κ = 1/β (bearing in mind that the geometric similarity implies B1/B2=W1/W2). 
(Importantly, the 2SS procedure can use any characteristic linear dimension of the C(T) specimen, 
not necessarily the effective width, W. Assuming the geometrical similarity, WB  , the specimen 
thickness can replace the width in Eq. (16) without loss of generality.) 

Similarly, based on the three-parameter Weibull CDF of cleavage fracture with constant shape 
parameter (β = 4), Wallin [8] proposed the following expression  
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It is obvious that Eq. (16)2 reduces Eq. (19) if the scaling parameter κ = 1/β = 1/4 (since KB and 
K0 depict the the same physical property). It should be emphasized that the assumption of the size-
insensitivity of the Weibull shape parameter (β = const.) makes the second scaling in the 2SS 
method unnecessary (i.e., ξ ≡ 0 in Eq. (8) and Fig. 1) since the first scaling would result in the 
overlap of the Weibull CDF in Fig. 1c. This indicates that the 2SS method is both more general and 
more flexible then both above mentioned methods. 

4.  Numerical example: Prediction of CDF (KJc) of 22NiMoCr37 reactor steel at T=-91ºC 

The following numerical example is performed using C(T) sample thickness B as the sample 
size parameter instead of the effective width W to demonstrate that their use is interchangeable in 
the presence of geometric similarity. The application of the 2SS approach starts with the data fitting 
of the two input experimental data sets (B = 12.5, 25) mm with the 3-parameter Weibull CDF. 

Assuming the threshold   = Kmin = 40 MPa√m based on the two available experimental data 
sets [10], the fitting results in the Weibull scale and shape parameters (η and β, respectively) given 
in Table 1. The Ξ values are calculated by using Eq. (6), once β values are known.  
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Table 1.  The Weibull parameters and the corresponding shape function. The values corresponding to 
B = 12.5, 50 mm are the inputs used to calculate the extrapolated estimate for B = 100 mm (the bold font)    

B     Ξ 

12.5 2.70 119. 40. 79.0 1.075 

50 4.25 92.0 40. 52.0 1.611 

100 5.25 82.2 40. 42.2 1.973 

The pair of the scaling parameters (κ, ξ) is calculated from Eq. (14) 
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The size-independent Weibull scale parameter B  in the scaled space, P(KJc·B
κ
) vs. KJc·B

κ, is 
calculated by using the B-related form of the constancy condition (7) and the Weibull parameters 
from Table 1: 

.4.169500.525.120.79 302.0302.0
constB    (21) 

Similarly, the common CDF slope ( BS ) in the scaled space can be calculated based on Eq. (10) 
for each particular specimen dimension B  
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The value of the shape function for the C(T) sample dimension B=100 mm, calculated by using 
Eq. (13), determines the corresponding Weibull shape parameter based on Fig. 2: 

    25.5973.11004.169003035.0292.0,100 292.0    B   (23) 

The red solid line in Fig. 1 illustrated the Weibull CDF extrapolation for B = 100 mm and 
offers the comparison with the experimental data reported in [11].  

 
Fig. 2. The output of the 2SS procedure at T = -91ºC obtained based on the inputs presented in Table 1. The 
estimated KJc CDF for the C(T) sample sizes B = 100 mm represents an extrapolation of the input data. The 
symbols of width ±5 MPa√m are centered at the actual experimental data points. The solid line corresponds to 
3-parameter Weibull predictions with the assumed fracture-toughness thresholds γ = Kmin = 40 MPa√m. 
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Finally, the Weibull CDF can now be written in the following form 
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The extrapolation results in Fig. 2 are considered satisfactory considering the evident 
irregularity of the experimental data sets [10] reflecting the inherent stochasticity of fracture 
toughness in the DTB temperature transition region. 

5.  Summary 

This article is devoted to an upgrade of the novel 2SS approach proposed recently to account for 
the size effect in the two-parameter Weibull (W (β, η)) CDF of fracture toughness in the DTB 
transition temperature region. A model modification consists in the addition of a fracture-toughness 
threshold value (i.e. the Weibull location parameter) which constitutes the transition to the three-
parameter Weibull distribution, W (β, η, γ) used extensively by Wallin and coworkers and many 
other researchers over the last few decades. 

The aforementioned upgrade of the 2SS method highlights its relationship with two established 
models. In comparison, although the 2SS method requires experimental datasets of at least two C(T) 
sizes while the other two methods need only one, it obviously offers greater analytical flexibility in 
return. Importantly, it is shown that 2SS method reduces to the above mentioned methods if κ = 1/β 
= const. Although these relations deserve further study, it can be affirmed without hesitation that the 
assumption β = const. is restrictive and its physical justification is somewhat elusive at present. 
From the standpoint of the 2SS procedure, the size-insensitivity of the Weibull shape parameter 
makes the second scaling (along the CDF ordinate) unnecessary since CDF curves would overlap 
into a single curve after the first scaling. Based on the experimental data analysis performed so far, 
the 2SS approach provides more realistic predictions than the above mentioned methods that are 
admittedly simpler and require smaller experimental data sets; the latter being a circumstance that 
should not be taken lightly. 

Finally, the upgraded 2SS procedure is applied to an experimental data set available for 
22NiMoCr37 ferritic steel extensively utilized as a pressure vessel material in nuclear industry. This 
experimental data, taken from the EURO fracture toughness data set, correspond to temperature 
-91ºC that belongs to the DTB transition region. The extrapolation results are considered 
satisfactory considering the irregularity of the measurement data compiled from two different 
laboratories, which reflect the inherent stochasticity of fracture toughness.   
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