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Abstract

The influence of structural defects in spark plasma sintered BaSn;_,Sb,O3 (BSSO, x = 0.00 and 0.08)
ceramic samples on their electrical properties was investigated in the temperature range of 300—4 K.
X-ray photoelectron spectroscopy (XPS) revealed the presence of point defects, primarily oxygen
vacancies (V) and mixed oxidation states of tin (Sn* " /Sn**") in both samples. As aresult, the
undoped BSSO sample exibited a non-standard semiconductor behavior, retaining its temperature-
dependent resistivity. The electrical resistivity of the doped samples was two orders of magnitude
lower than that of the undoped sample. The presence of structural defects such as V5, mixed oxidation
states of the constituent elements, and significantamounts of O~ species make the electrical resistivity
of the doped sample constant in the temperature range of 300-70 K, indicating heavily-doped
semiconductor behavior.

1. Introduction

The modern industry shows a considerable demand for non-magnetic, non-inductive, and highly
electroconductive materials that can work in conditions unfavorable for metals and alloys [1]. Performance and
endurance of these materials in conditions of constant high voltage, current, and energy, with a particular
emphasis on acidic and humid environmental conditions are also expected. Applying chemically inert and
thermally stable ceramic resistors with linear current-voltage (I- U) characteristic, high energy, and a small
resistivity temperature coefficient would satisfy the stated conditions [1]. For this purpose, the most suitable
materials could be perovskite-type oxides with the general formula ABO; (A = alkaline Earth element;

B = transition metal, O = oxygen). Appropriate doping into A and/or B sites can change perovskites’ flexible
structure and cause many structural modifications, e.g. lattice distortion and defect formation (cation and anion
vacancies, grain boundaries), which significantly affect the materials’ electrical properties [2—6].

In the materials preparation process, apart from doping, sintering conditions have a significant impact on
electrical properties of final material. For example, sintering in the oxygen-poor atmosphere leads to the
formation of oxygen vacancies as native intrinsic defects in ceramics, thus improving their electrical
conductivity [7—10]. Spark plasma sintering (SPS) is a current and pressure assisted technique that takes place
under vacuum conditions in a graphite die. The heating of the sample during the SPS process depends on both
the electrical resistance of tool components and the electrical resistance of the sample material. During sintering
of an insulating powder, at lower thermal treatment temperatures the current passes only through the graphite

© 2023 The Author(s). Published by IOP Publishing Ltd
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die. However, as samples’ electrical conductivity increases at higher temperatures, apart from the graphite die,
the current starts to pass through the sample, i.e., Joule heating in the sample occurs.

Contrary, in the case of highly doped conducting powder, the current passes directly through the sample,
and Joule heating in the sample occurs even at low temperatures, whereby the heat is transmitted by the
conduction to the powder. This sintering technique has a twofold effect on improving the electrical conductivity
of ceramic materials. The first effect is related to the formation of oxygen vacancies in ceramic materials due to
the reduction atmosphere during sintering process. The second one is related to the high current density flow
through the sample with highly doped grains which have low potential barrier at grain boundaries. As a result,
low angle grain boundaries (LAGBs) are formed, causing complete loss of the potential barrier at grain
boundaries [9].

Barium stannate (BaSnO3, BSO), a perovskite-type alkaline Earth stannate, is distinguished among other
perovskite oxides by its ideal cubic crystal structure (space group: Pm3m), Goldschmidt factor close to 1 [11],
thermal stability up to 1000 °C, non-toxicity and easy methods of preparation [4, 5, 12, 13]. Its crystal structure
consists of Ba*" ions on the corners of the cube, with each Ba*" ion coordinated by twelve O>~ ions forming
cubic close-packed lattice, while Sn** ions are occupying octahedral holes created by O*~ ions [13, 14].
Undoped BSO exhibits semiconductor-like behavior with wide band gap in the range 0of 3.1-3.4 eV [3, 4, 12, 13,
15-19], which can be modified by careful replacement of Ba** or/and Sn** with aliovalent cations [3—6, 13, 15].
In dependence on the dopant type and concentration, BSO can show n-type semiconductor behavior, as well as
metallic-like conductivity similar to some heavily-doped semiconductors [3, 4, 18, 20-22]. Based on literature
data, the replacement of tin by antimony can increase the mobility and charge carrier density, thus improving
the electrical conductivity of BSO ceramics [2-5, 15, 16, 19, 23, 24].

In our previous work we reported on the influence of Sb-doping on properties of spark plasma sintered BSO
[25]. Amongall presented ceramic samples, the one with composition BaSng 9,Sbg ¢sO3 stood out, having linear
I-U characteristic and stable electrical conductivity in the temperature range of 25 °C-150 °C. Its metallic-like
behavior was ascribed to the loss of potential barrier at the grain boundary region due to the low angle grain
boundaries present only in this sample. Even though the negative value of the Hall coefficient confirmed n-type
conductivity in BaSng ,Sbg 0503 ceramic sample, suggesting the substitution of Sn** with Sb>", we cannot
completely dismiss the assumption that the Sb>" is also present in the sample, even in small concentrations.
Apart from antimony, tin as a host ion can also exist in different oxidation states. Combination of sintering
conditions and the volatile nature of tin could result in the reduction of Sn** into Sn**, or even to metallic Sn. As
stated before, SPS favors the creation of oxygen vacancies [7—10, 26-28], which behave as electron donors and
improve the materials electrical conductivity with a maximum of two electrons (per vacancy) [5, 6, 15-17, 29].
Compared to other intrinsic defects formed under poor oxygen conditions, they have the lowest formation
energy, and their presence is the most expected in BSSO samples. Apart from LAGBs and Vo, many point defects
suchas Sn**, Sn*", Sn% Sb> " and Sb°*, as well as ionized and neutral impurities originating from antimony
doping and sintering conditions can also exist in BSSO ceramics [5, 13, 15, 19, 29].

The aim of this work was to clarify the striking change from semiconductor-like (BaSnOs3) to metallic-like
(BaSng 9,Sby ¢sO3) electrical properties of spark plasma sintered ceramics. For this purpose we performed a
broad investigation of materials defect structure and electrical properties using x-ray powder diffraction (XRD),
X-ray photoelectron spectroscopy (XPS), Secondary ion mass spectrometry (SIMS) analyses and four probe
electrical measurements.

2. Experimental procedure

The preparation of precursor powders and ceramic samples of BaSn;_,Sb, O3 (x = 0.00 and 0.08), the conditions
of XRD analysis and the method for determination of the average grain size were described in our previous paper
[25]. Using the value of the unit cell parameter for the BSSO0 sample calculated by PowderCelland LSUCRI
software, the structural model of cubic BaSnO; was constructed using CrystalMaker software. Subsequently, in
the same software the Sn—O and Ba—O bond lengths were calculated, as well as the value of Sn—O-Sn bond angle
in both BSSO samples. In dependence of antimony concentration, in this paper samples are denoted as BSSO0
(BaSnOs3, x =0.00) and BSSO8 (BaSn, 9,Sby 503, x = 0.08).

The XPS analysis was carried out in a SPECS instrument equipped with a Phoibos MCD 100 electron
analyzer and a monochromatized source of Al Ko x-rays of 1486.74 eV. The binding energy (BE) scale of XPS
spectra was calibrated by the reference carbon C 1s peak, adjusted to the BE 0f 285.0 eV. The experimental curves
were deconvoluted with Pseudo-Voigt profiles using the Python program [30].

The experimental conditions of spark plasma sintering using high temperature and high pressure in vacuum
atmosphere can cause the evaporation of antimony and the formation of oxide layers on the surface of both
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Figure 1. (a) The cubic perovskite crystal structure of BaSnOj; constructed by CrystalMaker software (green sphere—Ba ions, blue
sphere—tin ions, and small red sphere—oxygen ions), table: Ba—O and Sn—O bond lengths for both BSSO samples; (b) The
dependence of the unit cell parameter and unit cell volume of the Sb concentration; (¢) The dependence of the crystallite and grain size
of the Sb concentration in BSSO samples (x = 0.00, 0.04, and 0.08).

BSSO ceramic samples. For this reason, the surface of the BSSO samples was cleaned by the low energy Ar™ ion
sputtering to remove the topmost layer of the material.

A Hiden SIMS workstation, equipped with the quadruple mass analyzer, was employed for the SIMS
measurements, where the bombardment with 3 keV O3 primary ions at an impact angle of 45° was used for the
collection of positive secondary ions.

Electrical characterization of BSSO0 and BSSO8 ceramic samples has been performed in the temperature
range from room temperature to liquid helium temperature (300—4 K). The current was provided using the
Keithley 6221 current source and the voltage was measured using Keithley 2182A nanovoltmeter. The electrical
contacts were painted using the conductive silver paint DuPont 4929N in linear 4-probe configuration.

3. Results and discussion

3.1. Structural analyses

3.1.1. XRD analysis

XRD analysis revealed that the dominant phase in both samples is cubic BaSnO;[25]. The amount of secondary
phase, Ba,SnO,, decreased upon doping with Sb from 15 to 8% for BSSO0 and BSSO8, respectively [25].

Figure 1(a) presents the structural model of cubic BSSO constructed by CrystalMaker software using the value of
the unit cell parameter previously obtained by PowderCell and LSUCRI software [25]. It also shows that doping
with antimony induces the changes in the crystal lattice of BSO, leading to the increase of Sn—O and Ba—O bond
lengths in the doped BSSO8 sample. (figure 1(a), (Inset table). Although these changes are small, they have a
significant influence on structural, microstructural, and especially on electrical properties of Sb-doped sample
(Electrical properties, section 3.2). The value of the Sn—O-Sn bond angle is 180° and is identical for both
analyzed samples.

Figure 1b shows the dependence of the unit cell parameter on the dopant concentration, with obvious
expansion of the unit cell upon doping. Since the BSSO ceramic samples were prepared in vacuum atmosphere,
the presence of oxygen vacancies in both BSSO samples is expected. These defects can induce the increase of the
unit cell parameter through the increase of electrostatic repulsion between Sn and Ba cations [16]. The more
pronounced expansion of the unit cell parameter in the BSSO8 sample is caused by a joint effect of doping and
sintering conditions: incorporation of Sb>" ions on the Sn*" sites and stronger Coulomb repulsion between
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Figure 2. The survey XPS spectra for the: (a) BSSO0 and (b) BSSO8 samples after Ar ion. sputtering.

Ba®>" and cations with mixed-valence states (Sn>*/Sn** and Sb>* /Sb™™). Doping with Sb decreases both
crystallite and grain sizes, resulting in almost identical values of these parameters for the BSSO8 sample, ~43 nm
(figure 1(c)).

3.1.2. XPS analysis

The survey of XPS spectra (figures 2(a) and (b), respectively) confirmed the presence of Ba, Sn and O in of BSSO0
and BSSO8 samples. Recorded spectra have been measured after Ar ion sputtering, with the intent of eliminating
uncoordinated oxide layers formed on the surface, as well as the possible carbon contamination as a result of the
sample handling. According to the literature data, the inert noble gas does not change the chemistry of the
surface but it can be incorporated in the structure [31].

The presence of Sb was not detected in the survey XPS spectra of BSSO8 after cleaning of the surface with the
Arions. This apparent lack of Sb could be limited only to the samples surface, since XPS is a surface sensitive
technique, probing only a few layers of material.

XPS spectra of Ba 3d core level for BSSO0 and BSSO8 samples show a spin—orbit doublet structure
(figures 3(a) and (b)), corresponding to the 3ds, and 3d; ), states of Ba. A spin—orbit splitting of 15.3 eV and 15.4
eV confirms the presence of Ba*" [32—-34] in both BSSO0 and BSSO8 samples, respectively.

In the case of BSSO0 sample, the Ba peak of 3ds /, core level was fitted by a single Pseudo-Voigt profile
centered at 780.5 eV (figure 3(c)), while for the BSSO8 sample the same peak is broader and deconvoluted into
two components centered at 780.5 eV and 782.4 eV, (figure 3(d)). Low energy component with binding energy of
780.5 eV corresponds to Ba>* ions. The high energy broad peak has already been reported in the perovskite
materials, but its origin was left undiscussed [35]. We assume that high energy Ba 3ds/, peak originates from the
defects formed in BSSO crystal lattice upon Sb doping. These defects could induce drastic changes in Ba—O
bonds resulting in a new component centered at 782.4 eV.

The binding energies of the Sn 3ds , core level in three oxidation states Sn’, Sn*" and Sn*" can be observed
at485.0 eV, 485.9 eV and 486.6 eV, respectively [21]. The spin—orbit splitting (figures 4(a) and (b)), after Arion
sputtering is about 8.4 eV and 8.5 ¢V for the BSSO0 and BSSO8, respectively, confirming the existence of Sn**
[5,19, 34, 36].

In the case of Sn spectra of BSSO0 sample (figure 4(c)), the peak of 3ds /, core level was fitted by two
components centered at 485.8 eV and 486.7 eV, corresponding to the Sn*" and Sn*™ states, respectively.
Identical components, regarding energy were observed in BSSO8 sample, but with different relative integrated
intensity (figure 4(d)).

Spark plasma sintering performed in a vacuum atmosphere at temperatures above 600 °C canlead to a
reaction between carbon from the graphite mold (and possibly from foil) with oxygen form the sample. This
process decreases the oxygen partial pressure, resulting in the formation of CO, oxygen vacancies and reduction
atmosphere in the reaction system. Consequently, we could expect the reduction of some amount of Sn** into
Sn*" or even metallic Sn, which was already proven in our previous paper [25]. However, the presence of the
metallic tin was not detected in any sample, since the topmost layers containing it were removed during the Ar
ion sputtering.

In both BSSO0 and BSSOS, relative quantity of Sn** was calculated from the ratio of integrated intensity of
components Sn** /Sn**. The BSSO0 sample has 5.8% of Sn*" of the total amount of tin, while BSSO8 sample
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Figure 3. XPS spectra of the Ba core levels of the 3ds ,, and 3d5 , states of the: (a) BSSO0 and (b) BSSO8 samples. Experimental data
and fitted lines of Ba 3ds /; states of the: (c) BSSO0 and (d) BSSO8 samples, after Ar ion sputtering. Red line represents the experimental
data, blue line is total fit, while green and pink lines represent components when more then one pseudo-Voigt profile was used.

has only 0.5% of bivalent tin. This indicates that the incorporation of antimony in BSO matrix stabilizes the
perovskite structure. This stabilization is reflected in the decrease of the secondary phase content in this sample,
uniformity of its grain size distribution and the overall reduction of the grain size, which in BSSO8 is
approximately equal to crystallite size (figure 1(c)).

The O 1s spectra (shown on figures 5(a) and (b)) of both samples show a broad and highly asymmetric
structure. The spectrum of BSSO0 sample is deconvoluted into two components one at 530.2 eV and 531.9 eV,
while for the BSSO8 the component energies are 530.3 eV and 532.5 eV. The low energy component for both
samples is associated with the presence of 0>~ oxygen species, commonly referred to as lattice oxygen [5, 18, 32].
The higher energy peak is associated with O™ species in both samples disregarding the 0.6 eV shift. The exact
origin of the O™ species is not clear [37]. Sometimes high energy peaks are correlated to the presence of the
oxygen vacancies and oxygen species adsorbed on the samples surface [18, 19, 32, 33].

We present here our hypothesis for the origin of the O™ species which can be correlated with the structural
properties. We presume that the oxygen in the ceramic samples exists at least in two different environments, first
coordinated oxygen in the crystal lattice (O> ") and the second one, O™, either the surface oxygen or the grain
boundary oxygen. This hypothesis fits well with our data, because BSSO8 has smaller grain size and lower density
which implies higher concentration of grain boundaries and surfaces which further implies more O~ species in
this sample.

Relative percentage of integrated intensity of the deconvoluted components (0>~ and O™ species) in BSSO0
sample is 60.0% and 40.0% while in the BSSO8 sample is 52.1% and 47.9%, respectively.

3.1.3. SIMS analysis

During the XPS measurements, to the best of our attempts, we could not find clear evidence of electrons ejected
from Sb core levels in the doped sample. We here stress that considerable amount of time has passed between the
sample preparation and the XPS measurements, and that during this period surface Sb has diffused out from the
topmost layers. Taking this reasoning into account, we examined the presence of antimony in bulk and on the
samples surface using SIMS analysis for it is more sensitive technique for elemental analysis. Antimony in its
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Figure 4. XPS spectra of the Sn core levels of the 3d5 ;, and 3d; , states of the: (a) BSSO0 and (b) BSSO8 samples. Experimental data
and fitted lines of Sn 3ds , states of the: (c) BSSO0 and d) BSSO8 samples, after Ar ion sputtering. Red line represents the experimental
data, blue line is total fit, while green and pink lines represent components when more than one pseudo-Voigt profile was used..
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Figure 5. XPS spectra of O 1s core level of the: (a) BSSO0 and (b) BSSO8 samples, after Ar ion sputtering. Red line represents the
experimental data, blue line is total fit, while green and pink lines are deconvoluted components (O*~ and O~ species), respectively.

pure state has two isotopes with mass of 121 and 123 atomic mass units (a.m.u.) [38, 39]. As expected, the SIMS
spectrum of BSSOO0 shows no presence of antimony in the sample (figure 6(a)). The small intensity at mass 121 is
probably due to molecules and/or clusters of residual Silver (109 a.m.u.) whose origin is from the silver paste
used for electrical contacts and adsorbed Carbon (12 a.m.u.). From SIMS spectrum of the BSSO8 sample

(figure 6(b)), we can see a high intensity at masses 121 and 123 which confirms the presence and stability of
antimony in the bulk.
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Figure 7. Temperature dependence of resistivity of the: (a) BSSO0 and (b) BSSO8 ceramic samples.

3.2. Electrical properties

Previously, the temperature dependence of electrical resistivity of BSSO ceramic samples was investigated in the
range 25 °C-150 °Cin the air atmosphere. The undoped sample showed the typical semiconductor behavior,
while the BSSO8 sample showed almost temperature-independent resistivity. Since both BSSO samples revealed
n-type conductivity we could conclude that dominant charge carriers are electrons originating from the
presence of oxygen vacancies and the dopant [25].

This work covers the precise investigation of the electrical properties of BSSO0 and BSSO8 ceramic samples
in a different temperature range, from room temperature to liquid helium temperature, using four-point probe
method to exclude the influence of contacts and wires.

In the case of BSSOO0 sample (figure 7(a)), it can be seen that the electrical resistivity decreases with the
increase of temperature. Taking into account that the oxygen vacancies are the most common intrinsic defects in
perovskites, we could assume that their presence increased electrical conductivity of the undoped BSSO0
sample, resulting in the suppression of standard activated semiconductor behavior while retaining resistivity
which increases with cooling. The experimental results below 50 K are excluded from the plot due to observed
electrical noise and consequently their low reliability.

In polycrystalline semiconductor samples, the conductivity is closely related to the scattering processes at the
grain boundaries, and can be reduced by trapping the charge carriers at the electrostatic barrier [40, 41]. These
processes are temperature dependent. In the case of BSSO0 sample, intrinsically doped by oxygen vacancies, the
shown temperature-dependent resistivity (figure 7(a)) is a result of mentioned scattering process, but primarily
of the enhancement of charge carriers’ concentration with temperature.

In the case of BSSO8 sample, the electrical resistivity (figure 7(b)) is two orders of magnitude lower than in
the BSSOO0 sample. It is almost constant in the examined temperature range, with a distinct plateau from 70 K to
300 K and only a 10% change at temperatures below 70 K. A similar behavior was noticed in the case of heavily-
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doped semiconductors, where the high dopant concentration reduces the electrostatic barriers related to grain
boundaries, allowing unimpeded electron transport [41]. Also, Hossain and coworkers reported that change
from the semiconductor to metallic-like behavior of Sb-doped BSO occurs at dopant concentration higher than
12.5% [42]. The unusual transport properties of BSSO8 are likely the consequence of mixed oxidation states of
Sn**/Sn*", probably mixed states of Sb” " /Sb>", as well as the presence of the high content of the O™ species,
which shift up the Fermi level very close to or into the conduction band. In this sample, all charge carriers
originating from extrinsic ionized defects are apparently excited in the whole measured temperature range,
resulting in an almost temperature-independent resistivity. Further, the excitation of electrons from the deeper
states in the BSSO8 sample does not significantly increase the concentration of charge carriers.

The low value of resistivity is also the result of limited grain boundary scattering since this process is
significantly lowered in BSSO8 sample due to the presence of large fraction of LAGBs, whose formation is
favored by high concentration of charge carriers together with spark plasma sintering conditions [10].
Therefore, alarge fraction of LAGBs formed in BSSO8 sample led to a complete loss of potential barriers, as
described in our previous work [25].

Keeping in mind the linear I-U characteristic of the BSSO8 sample [25] and high concentration of structural
defectsi.e. Sn*"/Sn*", 0~ species, probably Sb>* /Sb>* and LAGBs, as well as the free charge carrier transport
through the grain boundaries, the diverse application of this ceramic material can be expected. Hence, spark
plasma sintering of these heavily-doped semiconductors could be the key to satisfy the growing demand for
moderate or high conductivity resistors with almost constant electrical resistivity in the wide temperature range.
They can be used in cases that especially require non-magnetic, chemically inert and thermally stable resistors,
which have high power density and high conductivity at lower temperatures.

4. Conclusions

This work correlates the type and quantity of defects in spark plasma sintered Sb-doped barium stannate with
the striking change of its electrical properties from semiconductor in BaSnOj3 to metallic-like in
BaSn ¢,Sbg 03Os.

The oxygen deficient sintering conditions caused the reduction of certain amount of Sn** to Sn*" in both
samples, whereby the charge compensation was realized through the formation of structural defects in both
BSSO samples. The oxygen vacancies improved the electrical conductivity of BSSO0 sample, with absence of
standard activated semiconductor behavior, but retaining temperature-dependent resistivity in the examined
range. Doping with antimony increased unit cell parameter and at the same time stabilized the perovskite BSO
crystal structure by reducing the content of Sn*" in BSSO8 sample. The synergetic effect of Sb-doping and
sintering conditions induced the formation of many structural defects, including LAGBs in the BSSO8 sample,
which significantly decreased its electrical resistance and made it behave like a heavily doped semiconductor.
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