The Serbian Society for Ceramic Materials
Institute for Multidisciplinary Research (IMSI), University of Belgrade
Institute of Physics, University of Belgrade

Center of Excellence for the Synthesis, Processing and Characterization of Materials for use in Extreme Conditions "CEXTREME LAB" - Institute of Nuclear Sciences "Vinča", University of Belgrade

Faculty of Mechanical Engineering, University of Belgrade

Center of Excellence for Green Technologies, Institute for Multidisciplinary

Research, University of Belgrade

Faculty of Technology and Metallurgy, University of Belgrade

PROGRAMME and the BOOK of ABSTRACTS

6CSCS-2022

6th Conference of the Serbian Society for Ceramic Materials June 28-29, 2022, Belgrade Serbia

Edited by:

Branko Matović Aleksandra Dapčević Vladimir V. Srdić Programme and Book of Abstracts of The Sixth Conference of The Serbian Society for Ceramic Materilas publishes abstracts from the field of ceramics, which are presented at international Conference.

Editors-in-Chief

Dr Branko Matović Prof. Aleksandra Dapčević Prof. Vladimir V. Srdić

Publisher

Institut za multidisciplinarna istraživanja Kneza Višeslava 1, 11000 Belgrade, Serbia

For Publisher

Dr Dragica Stanković

Printing layout

Vladimir V. Srdić

Press

Faculty of Technology and Metalurgy, Research and Development Centre of Printing Technology, Karnegieva 4, Belgrade, Serbia

The year off issue: 2022.

ISBN 987-86-80109-23-7

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

666.3/.7(048) 66.017/.018(048)

DRUŠTVO za keramičke materijale Srbije. Konferencija (6; 2022; Beograd)

Programme; and the Book of Abstracts / 6th Conference of The Serbian Society for Ceramic Materials, 6CSCS-2022, June 28-29, 2022, Belgrade, Serbia; [organizers] The Serbian Society for Ceramic Materials ... [et al.]; edited by Branko Matović, Aleksandra Dapčević, Vladimir V. Srdić. - Belgrade: Institut za multidisciplinarna istraživanja, 2022 (Belgrade: Faculty of technology and metalurgy, Research and development centre of printing technology). - 91 str.: ilustr.; 25 cm

Tiraž 120. - Str. 7: Welcome message / Branko Matovic. - Registar.

ISBN 978-86-80109-23-7

- а) Керамика -- Апстракти б) Наука о материјалима -- Апстракти
- в) Наноматеријали -- Апстракти

COBISS.SR-ID 69088009

The Serbian Society for Ceramic Materials
Institute for Multidisciplinary Research, University of Belgrade
Institute of Physics, University of Belgrade
Center of Excellence for the Synthesis, Processing and Characterization of
Materials for use in Extreme Conditions "CEXTREME LAB" Institute of Nuclear Sciences "Vinča", University of Belgrade
Faculty of Mechanical Engineering, University of Belgrade

Center of Excellence for Green Technologies, Institute for Multidisciplinary Research,

University of Belgrade Faculty of Technology and Metallurgy, University of Belgrade

PROGRAMME AND THE BOOK OF ABSTRACTS

6th Conference of The Serbian Society for Ceramic Materials

> June 28-29, 2022 Belgrade, Serbia 6CSCS-2022

> Edited by: **Branko Matović Aleksandra Dapčević Vladimir V. Srdić**

M. Jakab, M. Enisz-Bódogh THE PRODUCTION OF BIOMORPHOUS CERAMICS AND GLASS-CERAMICS	116
A. Boros, T. Korim PRODUCTION OF CRACK-FREE CATALYST SUPPORTS FROM METAKAOLIN BASED GEOPOLYMERS	117
A.M. Kazuz, Ž. Radovanović, V. Miletić, M. Ležaja Zebić, Đ. Veljović, R. Petrović, Đ. Janaćković PROMISING DENTAL MATERIALS BASED ON α-TRICALCIUM PHOSPHATE AND FLUORAPATITE	118
D. Milošević, J. Perendija, M. Milošević, N. Tomić, Z. Veličković, A. Marinković REMOVAL OF Pb ²⁺ and Cd ²⁺ FROM AQUEOUS SOLUTION USING AMINO FUNCTIONALIZED THREE-DIMENSIONALLY ORDERED (3DOM) ALUMINA .	119
N. Ilić, M. Mladenović, G. Kaluđerović, N. Knežević MESOPOROUS SILICA-BASED NANOCARRIERS FOR pH-RESPONSIVE DELIVERY OF ANTICANCER METAL COMPLEXES	120
A. Egelja, S. Pašalić, V. Dodevski, M. Kragović, I. Stojković-Simatović, Ž. Radovanović, M. Stojmenović STRUCTURAL, MORPHOLOGICAL AND ELECTRICAL PROPERTIES OF ALUMINA/YAG COMPOSITES AS SOLID ELECTROLYTE FOR IT – SOFC	121
A. Džunuzović, M. Vijatović Petrović, N. Ilić, J. Bobić, B. Stojanović PROPERTIES OF VARIOUS MULTIFERROICS PREPARED BY MIXING METHOD	122
S. Ahmetović, N. Tasić, M. Žunić, A. Dapčević, Z. Branković, G. Branković TITANIA-BASED ELECTROSPUN NANOFIBERS AND THEIR PHOTOCATALYTIC PERFORMANCE	123
N. Tasić, J. Ćirković, M. Žunić, V. Ribić, A. Dapčević, L. Ćurković, G. Branković, Z. Branković Ag/TiO2 NANOCOMPOSITE MATERIALS FOR APPLICATION IN VISIBLE-LIGHT PHOTOCATALYSIS	123
J. Stanojev, B. Bajac, J. Matovic, V.V. Srdic FABRICATION OF CARBON-BASED ELECTRODES TRANSPARENT IN UV/VIS AND IR RANGE	124
J. Jovanović, J. Ćirković, A. Radojković, N. Tasić, G. Branković, Z. Branković INFLUENCE OF ZnO NANOPARTICLES ON SLOW RELEASE OF ESSENTIAL OIL FROM POLYMERIC MATRIX	125
N. Penić, M. Borovina, M. Đaković, D. Pajić MAGNETIC SPIN CHAINS IN COPPER(II) SUPRAMOLECULAR ARCHITECTURES	126

P-11

VISIBLE-LIGHT PHOTOCATALYTIC DEGRADATION OF MORDANT BLUE 9 BY BiVO₄ NANOPOWDER

<u>Jelena Jovanović</u>, Stefan T. Jelić, Jovana Ćirković, Aleksandar Radojković, Goran Branković, Zorica Branković

Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia

The photocatalytic degradation of highly toxic azo dye Mordant Blue 9 (MB 9) was investigated using single-phase monoclinic BiVO₄ nanopowder as a photocatalyst under the simulated solar irradiation. The photodegradation process as a function of different pH values of aqueous dye solution (pH = 1 - 13) and irradiation time was investigated, and the complete degradation mechanism was proposed. MB 9 was resistant to direct photolysis and the BiVO₄ nanoparticles exhibited higher photocatalytic activity in a basic medium than in neutral and acid media. Photodegradation of the dye molecules occurred primarily due to a reaction with the photo-generated holes and OH⁻ anions forming OH radicals. The alkaline pH range favors the formation of more OH radicals through the oxidation of hydroxide ions existing at the BiVO₄ surface, thus the effectiveness of the photocatalytic process significantly increased. BiVO₄ photocatalyst was stable and active under simulated solar irradiation over four consecutive cycles, which confirms its good photocatalytic properties.

P-12

INVESTIGATING SORPTIVE ASPECTS OF C₀M₀O₄ NANOPOWDERS SYNTHESIZED BY SPRT METHOD

Milena Rosić¹, Maria Čebela¹, Dragana Jordanov¹, Nebojša Labus², Marija Vasić Jovev³, Radomir Ljupković³, Aleksandra Zarubica³

¹Laboratory for Material Science, Institute of Nuclear Sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia ²Institute of Technical Sciences of SASA, Beograd, Serbia ³Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Serbia

Nanosized CoMoO₄ solid solution was successfully synthesized at room temperature using simple and fast Self Propagating Room Temperature procedure (SPRT). The structural, textural, morphological and surface characteristics of the nanosized CoMoO₄ were examined in detail by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, Field emission scanning electron microscopy