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Abstract  

Molecular-dynamics simulations of the classic Taylor experiment are performed to investigate some 
general trends of impact fragmentation at ultra-high striking velocities. The striking velocities of flat-ended, 
monocrystalline, nanoscale pillars (nanoprojectiles) range from 0.34 km/s (Mach 1) to 30 km/s to explore 
qualitative effects on the fragment mass distribution. These atomistic simulations offer insight into 
evolution of the fragment distribution and its dependence upon the striking velocity. According to the 
simulation results, distribution of the fragment masses following hypervelocity impacts of energy sufficient 
to ensure that the fragmentation problem is statistically well posed, is well represented by the bilinear 
(bimodal) exponential distribution commonly observed during high-energy homogeneous fragmentation 
events. At more moderate striking velocities, a mixing of fragments from different fragmentation intensity 
events—that is, the more pronounced statistical heterogeneity—results in the distribution of fragment 
masses that appears to follow the trilinear (trimodal) exponential distribution due to the occurrence of a 
large-fragment tail in addition to the bilinear exponential part. The maximum fragment mass is studied 
from the standpoint of the striking velocity as well as a set of state parameters: the instantaneous kinetic 
temperature and the selected stress and strain invariants; corresponding phenomenological relationships 
are suggested for the investigated hypervelocity impact range. 
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1  Introduction 

The high-velocity impact of a projectile onto a target triggers a complex sequence of operating 
deformation and damage mechanisms with different characteristic thresholds and time scales. An 
integration of these operating mechanisms results in the dynamic response of material characterized by 
steep deformation gradients and rapid build-up of stress and temperature, which lead to sequential fracture 
and culminate in energetic expulsion of fragment debris. Importantly, the fragments ejected upon impact 
contain accumulated damage (i.e., incompletely developed internal cracks or voids) that further evolves 
during the debris cloud expansion which, depending on availability of the trapped kinetic energy and 
time, results in the fragmentation process long after the projectile annihilation until the steady-state 
fragment mass distribution is asymptotically reached. The exploration of development of the debris cloud 
is of considerable importance in many engineering fields [1]. Intrinsic instabilities in the 
thermomechanical deformation process at moderate and high strain rates lead to localized deformation 
with profound effects on the dynamic response of materials on the macroscopic scale. On the other hand, 
the increase of loading intensity to the ultra-high strain rates results in a transition of the deformation 
mechanisms from sequential propagation of slips to amorphization [2]. The experimental evidence 
suggests that fragment mass distributions resulting from dynamic fragmentation of polycrystalline 
macroscale ductile samples are often exponential or exponential-like (e.g., Gamma, Weibull, Voronoi-
Dirichlet [3-5]); notable exceptions are the highly-brittle materials whose dynamic fragmentation differ in 
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fundamental ways from the ductile materials [6]. Molecular dynamics (MD) is a useful tool to investigate 
the impact fragmentation under ultra-high loading conditions by the high-resolution virtual testing. One 
of the most advertized advantages of this computational method is the ability to push exploration of 
physical phenomena beyond current experimental limits. 

The ballistic Taylor test [7] is established as a standard procedure to verify dynamic behavior of 
materials. A series of two-dimensional (2D) traditional MD simulations of this experiment is performed 
by using flat-ended nanoprojectiles made of the Lennard-Jones 6-12 (L-J) monocrystalline solid, under a 
tacit assumption that this, admittedly rather simple model is sufficient to capture the salient features of the 
investigated phenomenon. Due to the overall dimensions of the nanoprojectile (15×110 nm), the 
nucleation phase of the operating deformation mechanisms and the inelastic flow phase are completed on 
nanosecond timescale. The set of striking velocities vary within a wide range from 0.34 to 30 km/s with 
the aim to gain insight into evolution of the fragment mass distribution, the maximum fragment mass 
dependence upon various state parameters, and explore the impact fragmentation from the standpoint of 
statistical homogeneity. While the lower end of this range is consistent with existing experimental studies 
the upper end exceeds them by far in the pursuit of limit features characterizing the ultra-high energy 
fragmentation (for example, the linear exponential as opposed to the bilinear exponential fragment 
distribution or the possibility of the terminal fragmentation characterized by the debris cloud consisting 
entirely of monatomic fragments).   

Substantial literature exists in which the fundamental principles of dynamic fragmentation process 
were investigated both experimentally and theoretically. The lists of crucial references are compiled, 
among others, in [3-5]; and experimental and theoretical fragment distributions unique to the dynamically 
loaded brittle solids in [6,8]. The mechanisms, theories and models for dynamic failure and fragmentation 
are recently summarized in [9,10]. The references cited throughout this paper reflect only the limited 
objective of the present investigation without any claim to representativeness; a case in point is the brittle 
fragmentation that is beyond the present scope. Thus, to name but a few milestones, the pioneering work 
of Lineau [11] on the random geometric fragmentation inspired initially the classical fragmentation 
studies by Mott [12]. (For the transcripts of the Mott’s original wartime reports refer to [4].) Grady and 
coworkers developed fragmentation theories from both a mechanistic [13,14] and an energetic viewpoints 
[1,15] focusing principally on the prediction of mean fragment size and some statistical issues of fragment 
size distribution. Holian and Grady [16] were first to use MD to explore the fragmentation phenomena by 
simulating a homogeneous 2D adiabatic expansion of condensed matter (aptly termed the microscopic 
“big bang”). Their results suggested that the cumulative distribution of fragment masses was well 
represented by the bilinear exponential distribution and the average fragment mass could be explained by 
an energy balance between the kinetic energy of expansion and the potential energy of broken surface 
bonds. In addition to MD [16-18], examples of computational techniques recently employed in 
fragmentation investigations include finite element methods [19], meshfree methods [20-22], particle 
models [23,24], and discrete element models [25].  

 

2  Computer simulation technique 

MD is a computer simulation technique frequently used to study evolution of discrete systems at spatial 
and temporal scales that go beyond the current experimental limits. This investigation is limited to the 
traditional MD in which the dynamic state of the atomic system is defined by laws of classical mechanics 
with atomic motions (position vectors ri and momenta pi) being uniquely determined by empirical 
potentials. In the present model, a monatomic system (mimicking a monocrystalline, flat-nosed projectile) 
is comprised of atoms of equal masses mi=m0 that form an ideal triangular lattice and interact with their 
nearest neighbors according to the L-J potential [26]. The three L-J model parameters used to match, as 
close as possible, physical properties of tungsten (74W) are the atomic mass m0 = 3.1×10-25 kg (183.85 u), 
the atomic radius 1.4 Å (≡ r0/2 where r0 is the equilibrium interatomic distance), and the depth of the 
potential well (the strength of attraction) εLJ = 7.5×10-20 J estimated based on the sublimation energy [27]. 
The Cauchy problem is solved numerically by using the Verlet algorithm [26] with the time step of the 
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order of femtoseconds estimated in the present simulations based on the fundamental harmonic frequency 
of the system. The extremely small time step (necessitated by the ultra-high power of the simulated 
events) in conjunction with an imperative to approach asymptotically a steady-state fragment distribution 
make these simulations almost prohibitively time-consuming even for the relatively small length scale.   

Thus, the distribution of fragment masses is studied during the impact of a slender deformable L-J 
projectile with a rigid target. The initial temperature of the cluster of atoms, representing the 
nanoprojectile, is set to zero. (The effect of the initial temperature on the explosive fragmentation of L-J 
systems was discussed by Diehl et al. [17].) For the continuum scale Taylor impact experiments at 
moderate striking velocities (in comparison to the velocity range of this MD study), the anvil surface 
preparation and appropriate lubrication are very important for the damage response of the projectile. The 
rigid anvil in the current model is represented by a set of immovable atoms that exert a compressive 
dynamic load on the impacting projectile without any numerical artifices mimicking lubrication, which 
results in a rough contact surface. Within the present simulation setup, the link between two first-nearest-
neighbors atoms ruptures when their interatomic distance exceeds the predetermined critical value 
R ≈ 1.7 r0. This cut-off interatomic distance is picked to be between the first and second nearest neighbors 
in the reference configuration. The fragment is defined as a collection (cluster) of atoms with interatomic 
distance less that the cut-off distance (rij ≤ R) in a sequential sense (an atom-by-atom search for the 
nearest neighbors). 

The simulations generate information at the nano-scale level: atomic positions and velocities, and 
interatomic forces. The conversion of this information to macroscopic observables such as stress, strain, 
and instantaneous kinetic temperature is performed by well-known MD techniques [29-34]. 

  

3  Observations and discussion 

With reasonable generality it can be asserted that the kinetic energy K0 of the projectile is during the 
impact partitioned among the kinetic energy of expulsion of fragment debris and the energy of dissipation 
absorbed by the projectile through various processes 

    
 

fthp EEEKK  10
 (1) 

 
In Eq. (1), K1 is the kinetic energy of the motion of fragments upon the impact, Ep is the energy of 

plastic dissipation, Eth is the energy of deformation-induced heating (shock-induced, for the most striking 
velocities in this study), and Ef is the fracture energy dissipated through creation of new surfaces in the 
process of damage accumulation and fragmentation.  

 
 

 
Fig. 1. Fragmentation snapshots corresponding to the moment of projectile arrest (a) or full fragmentation (b) for two striking 
velocities: (a) 0.75 km/s and (b) 3 km/s. Note how the nanoprojectile at striking velocity approaching the hypervelocity impact 
threshold dissolves in a cloud of particles as the entire projectile is being shattered. This lateral “splash” of the escaping high-
temperature debris is similar to the breakup of liquid droplets colliding with a wall as discussed in [28] in connection with the 
enhanced ductility of fragmenting plastic materials due to the temperature-driven reduction of the shear resistance.  
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The fragmentation process is statistically well posed if any point of the fragmentation domain is 
equally likely to fracture. The classic example of such tacit assumption of statistical homogeneity is 
inherent in the uniform expansion of a ring studied in the Mott’s seminal compilation paper [12].  But, in 
application, the homogeneous fragmentation is rarely achieved. As put succinctly by Grady [4]: 
“Normally, due to complexity of the device geometry and dynamic loading, the intensity of fracture will 
vary throughout the body and, correspondingly, the average fragment size will also be a function of 
position.” One objective of the present set of simulations is to study fragment distributions in attempt to 
capture a (gradual) transition from statistically heterogeneous to homogeneous impact fragmentation. This 
aim can be achieved by checking to what extent the results of the MD simulations of the homogeneous 
adiabatic expansion of Holian and Grady [16] remain valid for a highly unidirectional fragmentation 
process caused by application of a non-uniform transient strain-rate field, the basic argument being that 
given sufficient energy any point of the fragmentation domain is equally likely to fracture even in the 
latter case. 

Thus, the distribution of fragment masses is evaluated periodically during the impact of the slender L-J 
projectile (15×110 nm, corresponding roughly to the aspect ratio of 7.5) with the rigid target. The 
nanoprojectile is, in the pristine condition, free of defects; it is believed that this does not affect decisively 
the hypervelocity-impact MD results presented herein since during the dynamic loading associated with 
these high and ultra-high strain rates, the evolution of material-texture flaws is, more or less, inhibited by 
inertial effects (e.g, [35,36]). The simulation results, in terms of the frequency of the certain fragment 
sizes within the equally spaced regions in the natural logarithm space, are presented in Table 1. 

 

Table 1.  Frequency distribution of fragment size n (in number of atoms constituting a fragment) for six striking 

velocities with the range of data divided into the class intervals of equal width in the logarithmic space. Note that for the 
hypersonic striking velocities (vi ≥ 3 km/s) the projectiles are completely shattered during impact (Fig. 1b). In the other 
two cases (0.51 and 0.75 m/s), the largest cluster corresponding to the arrested projectile is not included. 

 

  vi [km/s] 

  0.51 0.75 3 5 15 30 

0ln n  1n  611 2311 9608 11035 17680 20843 

1ln0  n  2n  41 212 1094 1510 1637 747 

5.1ln1  n  42  n  11 73 592 754 398 60 

2ln5.1  n  74  n  0 27 219 293 48 0 

5.2ln2  n  127  n  2 7 112 155 2 0 

3ln5.2  n  2012  n  1 5 89 86 0 0 

5.3ln3  n  3320  n  0 3 49 32 0 0 

4ln5.3  n  5433  n  0 3 24 8 0 0 

5.4ln4  n  9054  n  0 1 21 5 0 0 

5ln5.4  n  14890  n  1 1 6 0 0 0 

5.5ln5  n  244148  n  0 1 4 0 0 0 

6ln5.5  n  403244  n  0 1 0 0 0 0 

5.6ln6  n  665403  n  0 0 0 0 0 0 

7ln5.6  n  1096665  n  0 2 0 0 0 0 

5.7ln7  n  18081096  n  0 3 0 0 0 0 

8ln5.7  n  29811808  n  1 0 0 0 0 0 

  



 

 

 

5

The detailed investigation reveals features of the fragment distribution for various striking velocities 
obtained with a single run per each velocity. At striking velocity equal to Mach 1 (0.34 km/s) the 
fragmentation is limited to just a few monatomic fragments. Thus, the nanoprojectile is practically 
arrested in a damaged state without any notable fragmentation. At Mach 1.2 (0.408 km/s), the number of 
monatomic fragments increased to a few dozen in addition to a few biatomic fragments but, altogether, the 
extent of fragmentation is still rather symbolic. The onset of non-negligible fragmentation is identified 
with the damage-fragmentation transition [25,28,37] and—within the framework of the present 
simulations— pinpointed roughly at the neighborhood of Mach 1.5 (0.51 km/s). This subjective, 
qualitative, and, therefore, rather arbitrary initial estimate of the incipient fragmentation velocity 
(v0 ≈ 0.51 km/s) is confirmed by a transparent damage-fragmentation investigation based on the average 
fragment mass [25]. This method identifies the threshold value v0 as the striking velocity that coincides 
with the maximum of  iavav vmm ˆ . The average fragment mass 

avm  is defined as the sample average of 

the ratio of the second and first moments of fragment masses mav = <M2 / M1>, where the kth moment of 

the fragment distribution is defined in a single fragmentation event as Mk   kk mm max
(the summation 

is performed over all fragments m and mmax is the maximum fragment mass whose contribution is 
subtracted from Mk).

1 Thus, the rigid-anvil impacts for all striking velocities below this breakup 

threshold (vi < v0) lead to more or less severe plastic distortion and damage of the nanoprojectile not 
accompanied by fragmentation. At the incipient fragmentation velocity, the projectile is no longer capable 
of completely absorbing its kinetic energy (K0) by plastic distortion and fragmentation takes place. 

Furthermore, for projectiles subjected to the high-velocity impact it is of great importance to identify 
the threshold velocity, vfo, just sufficient to fully fragment the projectile (Fig. 1b). For the present 
combination of the rigid target and the L-J monocrystalline 74W, this fragmentation onset velocity is 
roughly identified to be between 2 and 3 km/s, which agrees rather well with experimental observations 
reported in literature (e.g., [38]). 

Prior to analysis of the simulation results, it is necessary to explain the fragment distribution 
representation used throughout this paper. In that regard, it is convenient to refer to the first two columns 
in Table 1 that define the fragment size (mass) class intervals of equal widths in logarithmic space (the 
natural logarithm is used throughout this article). The notation used henceforth is: n – number of atoms 
constituting a fragment (cluster), m = n · m0 – the corresponding fragment mass, N – number of the n-
atom fragments of mass m, and M = N ·m = N · (n · m0) – total mass of all n-atom fragments. The 
semilogarithmic plots of fragment debris statistics (Figs. 2, 3, and 5) are obtained by presenting on: 

 abscissa - the arithmetic mean fragment mass (in number of atoms) of the particular fragment interval 
(thus, with reference to the second column of Table 2, x-values of data points are equal to 1, 2, 3.5, 6, 
10, etc.); and 

 ordinate – the total mass of all fragments belonging to the same fragment interval divided by the 
number of fragment sizes belonging to the same collection of fragments over which the mass 
accumulation is performed (see caption of Fig. 2 for illustration). 

 
Thus, the ordinate value divided by the corresponding abscissa value represents the number of 

fragments, which is inherently less noisy, even for the relatively small sample size, due to the described 
averaging procedure (Fig. 2b). This approach (rather than resolving to the usual presentation of the 
cumulative number of fragments greater than or equal to a certain fragment mass) has proved beneficial in 
this study for the determination of the large fragment distribution tail under the small-sample constraints, 
which is important for the objective of the present investigation.  

The first observation with regard to the character of the fragment distribution is that the bilinear 
exponential distribution of fragment sizes—observed during the uniform adiabatic expansion—appears to 
hold for the hypervelocity impacts of sufficiently high input energy K0. The fragment distribution for the 
striking velocities below and in the range of the hypersonic impact threshold will be argued throughout 

                                                
1 It has been argued by Kunn and Herrmann [37] that the strength of the largest fragment <mmax / mtot> 
can be considered to be the order parameter of the damage-fragmentation transition.  
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this study to exhibit largely the trilinear-exponential features due to the large fragment tail of the 
distribution (e.g., Fig. 3b and to a certain extent Fig. 2a). 

 

Fig. 2. Semilogarithmic plot of cluster statistics (related to histogram): the number of fragments (N) vs. the fragment mass 
(m=n·m0) corresponding to: (a) vi = v0 = 0.51 km/s (the damage-fragmentation transition velocity), and (b) vi = 2 km/s. To 
clarify further the fragment distribution representation used hereinafter; the first three data points for the former plot are (1, 
6.415), (2, 4.407), and (3.5, 2.833); which results from 611 monatomic fragments, 41 biatomic fragments, 10 three-atom 
fragments, and a single four-atom fragment that yield: 6.415 = ln(611×1), 4.407 = ln(41×2), 2.833 = ln[(10×3+1×4)/2]; note 
that for the latest data point the cumulative interval mass is divided by number of the fragment classes belonging to that interval. 
The number of n-atom fragments, N(m), can be obtained as the ratio of the cumulative mass of all n-atom fragments, M(m), and 
the corresponding fragment mass (m=n·m0). (The mass of the arrested part of the projectile is not considered to be a fragment.) 
 

At the striking velocity of 0.51 km/s (1.5 Mach), corresponding to the incipient fragmentation, the 
fragment distribution is still rather limited to miniscule fragments: overwhelming majority is monatomic 
up to four-atom clusters (Table 1). Due to this limited fragmentation and correspondingly small sample 
size, determination of the fragment distribution is an iffy task but, with respect to Fig. 2a, the fragment 
mass obeys tentatively the bilinear exponential distribution up to the range of 10-15 atoms. The two 
isolated large fragments presented in Table 1 define the large fragment tail typical of striking velocities at 
and below the hypervelocity impact threshold. Occurrence of these large fragments is an outcome of 
dislocation activities along well-defined and favorably oriented planes, which are operable on 
(sub)nanosecond timescale due to the nanoscale size of the projectile. (Note that, in general, defect 
activation, phase transformation, twinning, slip, and dislocation interaction are the operating mechanisms 
with representative time scales at the nanosecond level.) Fortuitously or not, this large end of the 
cumulative distribution is close to horizontal (Fig. 2a). The similar trends are observed for vi = 0.75 km/s. 
It should be emphasized that the fragmentation sample size is relatively small for these, moderate, striking 
velocities, which may affect the “smoothness” of the corresponding fragment distributions. 

The steady-state fragment distributions for a selected set of striking velocities exceeding the 
fragmentation onset velocity (vi > vfo) are presented in Fig. 3. Fig. 3a is focused on a range of smaller 
fragments up to the fragment-size interval    54330.4ln5.3  nn . Fig. 3b presents the entire 

domain of fragment sizes that occur during the Taylor test simulation with the six given striking 
velocities; the largest interval is    2441485.5ln0.5  nn . The simulation results are 

schematically illustrated with the straight lines representing the least-square fit of data points, to facilitate 
discussion. Note that these schematics illustrate the probability density functions (histograms) of the 
respective fragment mass distributions. 

Fig. 3a reveals that the small-size fragment population is well represented by the bilinear exponential 
distribution for all hypersonic striking velocities. At sub-hypersonic striking velocities, the fragment 
distributions, in addition to the bilinear exponential distribution mentioned above, exhibit the large-
fragment tail (the “wide shoulder” of the distribution), which results in the trilinear exponential 
distribution. The fragment mass corresponding to this breakdown of the distribution bilinearity (e.g., 
approximately 10-15 atoms in Fig. 2a) depends on the striking velocity. This is not surprising bearing in 
mind that the bilinear exponential distribution is originally obtained within the MD framework [16] under 
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the uniform conditions of the (statistically homogeneous) adiabatic-expansion simulation that does not 
favor the occurrence of relatively large fragments. 

 

Fig. 3. Semilogarithmic plot of steady-state cluster statistics: the number of fragments (N) vs. the fragment mass (m=n·m0) 
corresponding to six striking velocities in the hypersonic range. (a) The narrow-shoulder detail, (b) the entire distribution set.  
 

The onset of the bilinear exponential distribution breakdown increases with the impact-velocity 
increase since more energy becomes available for creation of new surfaces. For vi = 0.75 km/s the 
fragment mass follows the bilinear exponential distribution up to the range of 25-30 atoms. Simulation 
results (Fig. 3) for the lower hypersonic range (3-4 km/s) indicate the fragment mass corresponding to 
bilinear exponential breakdown further increased to approximately 60–70 atoms; for vi = 5 km/s it reduces 
to 40-50 atoms, while at vi ≥ 7 km/s the breakdown seems to disappear, which reflects the increasingly 
homogeneous fragmentation conditions that finally prevail with further increase of the striking velocity. 
Obviously, the later condition culminates with the projectile’s kinetic energy sufficient to result in the 
shock-induced adiabatic amorphization, similar to the Holian and Grady’s simulations [16]. Actually, 
based on the critical point data for tungsten estimated by Rachel et al. [39] to correspond to 
Pc = (1.1±0.2) GPa and Tc = (16000±1000) K, the present MD simulation results imply that the 
fragmentation process during the hypervelocity Taylor test (vi > 3-4 km/s) represents a transition to a 
homogeneous supercritical fluid since P > Pc and T > Tc  [34]. Be it as it may, if the fragment mass, m, is 
considered a scalar variable, then the random fragmentation is analogous to the 1D Lineau problem 
[4,11]. The introduction of the rule of Poisson mixtures  
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to capture the salient features of the statistically heterogeneous fragmentation is an inherently reasonable 
approach to treat the added complexity. The distribution coefficients i are in the present analysis 
determined as slopes in the semilogarithmic space (e.g., Fig. 3). The Poisson hyper-exponential 
distribution (2) is a special case of the hyper Weibull distribution proposed by Odintsov ([4] and 
references therein). (Recall that a number of fragments is considered throughout this paper rather then the 
cumulative number NC (>m).) The bilinear exponential form of Eq. (2):  
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emerges in the present investigation at vi ≈ 5÷7 km/s (Fig. 3). The cumulative fragment distribution of the 
same form was observed by Holian and Grady [16]. 

With reference to Fig. 3, the increase of the impact energy results in the fragment-distribution 
transformation defined by the following trend 
 
 

123    (4) 

 
Thus, the trilinear (trimodal) exponential fragment distribution transforms, with vi increase, into the 

bilinear (bimodal), which tends to the linear exponential distribution until it, perhaps, reaches the 
complete annihilation threshold at vi = v1 (the terminal fragmentation) characterized by the deterministic 
monatomic fragment distribution (mmax = 1). Note that, according to [16], the linear exponential 
distribution is the signature of the homogeneous fragmentation. 

In the present study, the narrow-shoulder slope μ1 of the fragment distribution, is not, like the other 
two, determined by the least-square fit but is defined by the two data points corresponding to the smallest 
fragments (that is, the monatomic and biatomic). Thus, this distribution parameter is not defined at the 
subcritical striking velocities resulting in the negligible monatomic debris (e.g., vi ≤ 0.34 km/s) and at 
vi ≥ v1 (the perhaps-elusive terminal fragmentation characterized by transformation of the entire projectile 
into the monatomic debris) since the maximum fragment size is 1 atom (Eq. (74)). In between, the change 
of μ1 with striking velocity in semilogarithmic space assumes a characteristic bell shape illustrated in Fig. 
4. Based on the simulation results, the saturation value (the upper horizontal asymptote) is roughly μ1=2/3.  

 

 

Fig. 4. Change of the slope of the bilinear fragment distribution corresponding to the monatomic peak (μ1) with the striking 
velocity. The dashed line corresponds to the third-order polynomial fit of the simulation data.   
 
3.1  Evolution of the fragment mass distribution 

Three types of energy dissipation inherent in the fragmentation process, Eq. (1), are captured by the 
present simulation setup. Notably, the energy expenditure for the new surface creation in the ductile 
materials accounts for only a small fraction of the input energy. Thus, the kinetic energy K0 of the 
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projectile is during the impact partitioned primarily between the kinetic energy of the fragment debris 
expulsion and the energy of plastic distortion absorbed by the projectile; Eq. (1). An important aspect of 
fragmentation is that the fragments flying apart contain the internal damage (the incompletely grown 
internal surfaces) and abundant vibrational energy available for further fragmentation (the trapped kinetic 
energy of the fragment parts with respect to its center of mass). Consequently, until the steady fragment 
configuration is approached asymptotically, the damage accumulation and the resulting fragmentation are 
continuous events and the fragment size distribution is not a complete measure of the damage to the 
projectile.  

Evolution of the cluster statistics presented in Fig. 5 illustrates the continuous change of the fragment 
mass distribution in the post-collision phase. A sufficient energy given, the fragmentation process appears 
to evolve towards the complete (monatomic) annihilation in a cascading manner illustrated in Fig. 5 and 
Table 2 and described by relation (4). (Note that the fragmentation process resulting in the monatomic 
and biatomic fragments only, would, by definition, correspond to the linear exponential fragment mass 
distribution that begins to emerge in Fig. 5.) 

The evolution of the “narrow-shoulder” fragment distribution coefficient suggested by the simulation 
results (Fig. 6) is inversely proportional to time 
 

 1
1

 t  (5) 

 

On the other hand, μ2 values presented in Table 2 assume seemingly well-defined discrete levels, 
which may suggest that the cascading transition (4) is not continuous. Furthermore, fortuitously or not, μ2 
levels apparently reduce by factor of two while approaching μ1. This observation requires more careful 
scrutiny, and perhaps larger-scale simulations, prior to making an attempt to come up with a sensible 
explanation. 

 

 
Fig. 5. Evolution of the cluster statistics (main panel) and the corresponding schematic representation (inset) at six different 
time instances for vi = 30 km/s. Note that the number of fragments approaches the exponential distribution as μ2 → μ1. Also 
note that at 6 ps the nanoprojectile is completely dissolved in the debris cloud implying that this cluster statistics evolution is a 
post-collision process; finally, at 19 ps the steady-state fragment mass distribution is practically reached after 190,000 time 
steps. 

 
 

Table 2.  Evolution of μ-coefficients corresponding to the fragment distributions in the course of 30-km/s impact 

presented in Fig. 5.  
 

t  [ps] μ1 μ 2 μ 3 

6 0.864 2.30 5.10 
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7 0.756 2.26 N/A 

9 0.594 1.14 N/A 

13 0.471 1.13 N/A 

18 0.388 0.580 N/A 

19 0380 0.540 N/A 

Finally, by comparing simulation results presented in Figs. 3 and 5, a similarity of the effects of time 
and the input energy (

0Kvi  ) on the fragment mass distribution becomes strikingly apparent. 

Consequently, the fragmentation evolution could be attributed to the process of distribution of fracture 
energy necessary to create and coalesce internal surfaces. This energy supply is a common denominator of 
the phenomenology illustrated by Figs. 3 and 5, which is schematically depicted by Fig. 7. 
 

 

Fig. 6. Time evolution of the narrow-shoulder slope of the bilinear fragment distribution corresponding to the monatomic peak 
at vi = 30 km/s. The fitted curve is 0.17+4/t (time in picoseconds). 

 

Fig. 7. Schematic representation of the effect of increase of the energy dissipated in a shock-compression process on the 
fragment distribution. The energy increase indicated by the arrow could be either due to the increase of the striking velocity 
(Fig. 3) or the increase in duration of the fragmentation process (given sufficient energy) at the fixed striking velocity (Fig. 5). 

 
3.2 Maximum fragment mass 

The knowledge of the maximum fragment mass (mmax) dependence upon the striking velocity is of obvious 
interest for engineering applications. While the mean fragment mass illustrates the average character of 
the dynamic event, the maximum fragment mass, not frequently encountered in the existing literature, 
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may be of more interest for definition of the design-governing catastrophic event for the structural survival 
analysis from the standpoint of the extreme value theory.  

Fig. 8 suggests that, as a first approximation, beyond the fragmentation onset velocity (vi > vfo) the 
maximum fragment mass is inversely proportional to the kinetics energy of the projectile 
    
 1

0max
2

max
  Kmvm i

 (6) 

 

 

Fig. 8. Logarithmic plot of the maximum fragment mass dependence upon the striking velocity.  

 
With regard to the simulation results presented in Fig. 8, the following expression for the maximum 

fragment mass can be derived for the linear approximation 
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Note that Eq. (74) provides only a lower bound of the terminal velocity stemming from the linear 

approximation, which is yet to be confirmed by actual simulations. By combining Eqs. (73) and (74), it is 
straightforward to relate striking velocities corresponding to the terminal fragmentation, v1, and the 
crossover, v× (Fig. 9): 
 

 

1max

0max
1

m

m
vv  

 (8) 

 
where mmax1 ≡ 1 [atom].  

Furthermore, based on Fig. 8, the following empirical formula relates the crossover striking velocity 

and the fragmentation onset velocity expressed in km/s: 
fovv  , where the fitting parameter 

skm /1 . Therefore, the following empirical estimates follow 
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1max

fomax

fo1

1max

0max
fo1

m

m
vv

m

m
vv   (9) 

 
where the respective units of the striking velocities and the maximum fragment mass are km/s and  
number of atoms. The fragmentation onset data used in Eq. (9) are easy to determine experimentally, 
which enables an estimate of the lower bound of the terminal fragmentation velocity resulting from the 
linear approximation. Since fragmentation onset data are estimated with reasonable accuracy within the 
present MD simulation framework (vfo ≈ 2.5 km/s and mmax fo ≈ 800), the terminal fragmentation lower-
bound velocity is determined to be v1 ≈ 45 km/s based on Eq. (92). It cannot be overstated that, due to the 
fact that only a miniscule part of K0 is spent on the fracture process, it is not obvious that any impact 
velocity in the present simulation setup would actually result in the terminal fragmentation (mmax 
 = 1 ≡ mmax1). In any case, the present simulations do not clarify this issue.  
 
3.3 Correlation between the maximum fragment mass and selected state parameters 

Three macroscopic observables (2D state parameters) presented henceforth are: the average normal 
stress, P = (σx + σy)/2; the instantaneous kinetic temperature, g ; and the effective strain, 

  222
yxeff    based on the natural strain definition. The first mechanical stress invariant, P, is a 

measure of the force interaction between material points inside averaging areas while the instantaneous 
kinetic temperature, g, is a measure of the intensity of vibratory motion. The evolutions of these three 
state parameters are recorded at twelve evaluation areas mimicking the measurement gages (eight of them 
are depicted in Fig. 9). The circular averaging areas designated A-D are spaced equidistantly along the 
projectile’s centerline and have diameter = 12 r0. The twice-larger averaging areas (diameter = 18 r0; 
designated E-H) are positioned off the centerline to explore the effects of lateral position and boundary to 
the state parameters evaluation. The size of evaluation areas are a result of an unavoidable compromise 
between the contradicting requirements for as large as possible size of the statistical sample and as small 
as possible resolution length of the analysis. 

Be it as it may, it has been verified in the present MD simulations that the stress and temperature 
results are objective with respect to the evaluation area size; i.e., the larger averaging area results in a 
somewhat smoother time histories, as expected, but the maximum values are practically the same. 
Furthermore, the off-centerline averaging areas (E-H) record smaller maximum values of the state 
parameters due to the shorter rise time stemming from the earlier release from the rigid-wall contact.2  
 

                                                
2 Importantly, the mechanical stress [32] becomes physically ill-defined as a measure for the mean 
mechanical force between material points when the averaging area, in the course of projectile distortion 
and fragmentation, becomes incompletely occupied by atoms (Fig. 9e). It has been verified by the present 
simulations that the maximum values of the average normal stress (Pmax) reported henceforth were 
achieved much before this took place for every single evaluation area. On the other hand, it should be 
noted that the instantaneous kinetic temperature definition [31,34] is not based intrinsically on the space 

averaging over a certain evaluation area but rather on averaging over all atoms covered by the evaluation 
area; which makes it a state parameter less sensitive to distortion and fragmentation then the mechanical 
stress. 
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Fig. 9. The sequence of the nanoprojectile deformed configurations at vi = 7 km/s indicating positions of the averaging areas 
used for the calculation of state parameters: (a) 0.2 ps, (b) 6 ps, (c) 10 ps, (d) 12 ps, (e) 13 ps. Note that the smaller (red) 
averaging areas designated A-D are located along the centerline while the larger (blue) averaging areas designated E-H are 
slightly off the centerline with exception of G that is centered at the same atom as B to explore the effect of the averaging area 
size.   

 
The logarithmic plots based on the simulation data presented in Fig. 10 indicate that the maximum 

fragment size is inversely proportional to the maximum values of  the pressure and the instantaneous 
kinetic temperature:  
 

 1
maxmax

1
maxmax , -

g 
mPm  (10) 

 
within the explored part of the hypervelocity impact range. The maximum values of the selected state 
parameters represent the arithmetic mean of the values evaluated at the points positioned at the centerline 
of the nanoprojectile. The phenomenological relationships (10) depicted in Fig. 10 reveal indirectly the 
linearity between pressure and temperature in the ejected plasmatic debris in agreement with the classic 
ideal gas law. 

Although the stress time histories indicate that the stress wave attenuation evidently diminishes with 
the striking velocity increase, the mechanical stress and instantaneous kinetic temperature fields vary 
across the fragmentation domain even for the highest impact velocities. Nonetheless, based on the linear 
fragment mass distributions obtained, it seems that at the higher striking velocities every part of the 
nanoprojectile is equally likely to fracture since even the lowest stress magnitudes achieved are sufficient 
to brake atomic bonds, which makes the fragmentation process statistically well posed. 

Finally, the classic Grady model [15] of dynamic fragmentation due to shear banding in the shock-
compressed ductile materials determines the mean spacing of the shear bands to be 
 

 
2

12

 &

E
d  (11) 

 
where E  is the energy dissipated in a steady-wave shock-compression process (approximated by the area 
between the shock Hugoniot and the Rayleigh line), ρ is the mass density, and &  is the strain rate. When 
this approach—based on the premise that the interfacial energy created during fragmentation is balanced 
by the local inertial or kinetic energy of the material—is applied within the present 2D framework, the 
resulting mean fragment mass is inversely proportional to the square of strain rate. The scaling relation of 
the same form 
 
 -2

max &m  (12) 
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is obtained with a reasonable confidence for the maximum fragment mass for the entire hypervelocity 
impact range based on the simulation results presented in Fig. 11. 
 
 

 
 
Fig. 10. Logarithmic plot of the maximum fragment mass vs. the maximum values of the pressure and the instantaneous kinetic 
temperature in the hypervelocity impact range (the data point at the extreme left corresponds to vi = 3 km/s > vfo).  
 

  

 
 
Fig. 11. Logarithmic plot of the maximum fragment mass vs. the maximum strain rate in the hypervelocity impact range (the 
data point at the extreme left corresponds to vi = 3 km/s, which is slightly above the hypervelocity impact threshold).   

 

 

4  Conclusions 

The current study presents MD simulation of high to ultra-high energy impact loading of a 
monocrystalline nano-pillar onto a rigid surface (the Taylor test) with aim to explore some qualitative 
aspects of the fragment mass distribution. The ubiquitous bilinear exponential distribution of fragment 
mass is apparently innate in a fragmentation process of ductile materials not only for the homogeneous 
adiabatic expansion but also for the heterogeneous fragmentation phenomena as long as the corresponding 
sample data set is of a statistically meaningful size. It is, in any case, inherent to the hypervelocity impacts 
characterized by sufficiently high energy levels. The reduction of striking velocity causes the non-uniform 
fragmentation that yields, as expected, more complex fragment distributions in accordance to the 
Poisson’s character of the event. According to the present simulation results, the fragment mass 
distribution, for more moderate striking velocities, is trilinear exponential since, in addition to the 
bilinear-exponential part, it exhibits a large-fragment tail, illustrated vividly in this article. For the 
striking velocities below the hypervelocity threshold, perhaps as a consequence of a relatively small 
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sample size used in the present study, the trilinear character is implied but not as clearly as in the previous 
case. Nonetheless, the bilinear exponential distribution emerges beyond a doubt in the smaller-clusters 
region for every striking velocity. Details of the cumulative fragment distribution, including the onset of 
the bilinear exponential distribution breakdown, are naturally highly dependent upon the impact energy. 
The breakdown threshold increases with increase of the striking velocity until it disappears at the 
hypervelocity level, which first results in the bilinear, and than the linear, exponential distribution of 
fragments of completely comminuted nano-projectiles. With regard to the fragment mass distribution, a 
correspondence is observed between effects of the increase of striking velocity and the increase of 
fragmentation duration.  

The effect of striking velocity on the maximum fragment mass is analyzed resulting in linear empirical 
relations covering the entire velocity range addressed by the study. These results suggest that, for the most 
part, the rigid-anvil hypervelocity impact is characterized by the maximum fragment mass inversely 
proportional to the impact energy of the projectile. This linearity extends to the entire hypervelocity range 
up to the striking velocities for which relativistic effects cannot be disregarded anymore and the classic-
physics billiard-ball approximation of atomic interactions, inherent in the present model, becomes 
increasingly oversimplified.  

The peak values of time histories of the kinematic and thermal parameters of state obtained in the 
simulations (pressures reaching levels of terapascals and instantaneous kinetic temperatures of ~106 K) 
reflect the extreme character of the hypervelocity collisions. The scaling relationships are offered between 
the maximum fragment mass and the selected macroscopic observables, which suggest the pressure-
temperature linearity characteristic of the ideal gas.  
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