
 

This is the accepted version of:  
 

Mastilovic S., Further Remarks on Stochastic Damage Evolution of Brittle Solids 

Under Dynamic Tensile Loading. International Journal of Damage Mechanics 20 

(6): 900-921 (2011). SAGE Publications. 

 

This version of the article has been accepted for publication after peer review. The 
published version is available online at: 

https://journals.sagepub.com/doi/10.1177/1056789510385294 

 

 

 

 

 

 

The copyright owner of this accepted version is the author and it may be posted 

in the author's institutional repository under SAGE's Green Open Access policy:  

URL:   https://journals.sagepub.com/home/ijd 

This work is licensed under the Creative Commons license 

CC BY-NC-ND 

URL:  https://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

 



 

Further Remarks on Stochastic Damage Evolution of Brittle 

Solids under Dynamic Tensile Loading 
 

S. Mastilovic* 
 

Faculty of Construction Management, Union University, 
Cara Dusana 62-64, 11000 Belgrade, Serbia 

 

ABSTRACT: This paper illuminates some general features and provides elementary interpretations of the 
deformation, damage, and failure of brittle solids characterized by very low fracture energy. The dynamic 
response of these materials is determined to a large extent by stochastic and random factors. The 
investigation emphasis is on the moderate-to-extremely high rate range [10 s-1, 1×109 s-1], explored under 
practically identical in-plane stress conditions. The statistical approach is based on repeated particle 
dynamics simulations for different physical realizations of micromechanical disorder of a two-dimensional 
(2D) brittle discrete system. The proposed strategy is computationally intensive, which necessitates 
simplicity of the laws governing the interparticular interaction. Based on the simulation results, an 
expression is proposed to model the mean tensile strength dependence on the strain rate. The linearity of 
the rate dependence of the stress-peak macroscopic response parameters is observed and discussed. 
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INTRODUCTION 

 
Brittle materials (ceramics, rocks, concrete) are often used in civilian and military applications for 

design of structural components exposed to extreme dynamic loads. These applications require a thorough 
knowledge of the physics of high rate deformation of said materials, which is complex and subtle and 
influenced substantially by stochastic and random factors. In addition to being nonstationary, the 
considered phenomena are nonlocal and far from equilibrium, which often makes them too recondite to be 
modeled theoretically. Besides, although damage evolution by its very nature spans spatial scales, the 
recent simulation results (Mastilovic et al., 2008) suggest that the governing spatial scale of damage and 
rupture phenomena in the low-fracture energy materials changes with the loading rate: the high-rate 
damage is governed by events at the submicroscopic scales while the medium-rate damage is governed 
substantially, if not predominantly, by cooperative phenomena at the mesoscopic scale (“the disorder of 
micro-texture controls the macroresponse”; Rinaldi, 2009). Last but not least, the complexity of analytical 
and computational modeling is emphasized by a dearth of detailed test data, especially with respect to 
direct measurements under the high-rate tensile loading.  

The present empirical investigation is the last part of a trilogy (Mastilovic et al., 2008; Mastilovic, 
2010) pertaining to analysis of stochastic damage evolution of the dynamically loaded brittle systems. An 
objective of this study is to provide further insights into some salient features of the deformation dynamics 
of brittle solids, specifically the ceramic materials with the inferior grain boundary strength and low 
fracture energy. With these materials in mind, the strain rate range of these virtual idealized experiments 
[10 s-1, 1×109 s-1]—tentatively labeled medium-to-high—reaches the theoretical limit, 
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000 10  s& ; defined by the assumed limit failure strain, ε0=0.001, and a temporal parameter of 

the order of Debye’s atomic vibration period, τ0 =10-12 s (Qi et al., 2009). The lower and upper ends of the 
range investigated herein are customarily explored by the split Hopkinson bar (below 104 s-1) and the 
planar impact tests (up to 108 s-1), respectively (Field et al., 2004). The former is performed under one-
dimensional stress conditions while the latter is performed under one-dimensional strain conditions, 
which renders the direct comparison of results somewhat tentative (Grady, 1995).  

The lattice simulations, in spite of well documented particularities and limitations (Hansen et al., 
1989; Jagota and Bennison, 1994; Monette and Anderson, 1994; Ostoja-Starzewski, 2002; Van Mier and 
Man, 2009), replicate rather well the most prominent aspects of the sample response including the 
essential features of rate-dependent fracture (microcracking, damage localization, fragmentation, 
comminution) and deterioration of the effective stiffness, and provide an elementary intuition on the 
phenomena (Mastilovic and Krajcinovic, 1999). Additionally, they prove a useful tool for qualitative 
analysis of universal trends of the dynamic behavior of brittle materials for a number of reasons. First, 
they enable the extrapolation of experimental results into the regions that are still beyond capabilities of 
the presently available experimental techniques. Second, the virtually unlimited control over 
computational experiments offers detailed insights in the deformation process. Moreover, an often-
advertised advantage of the discrete system methods in the statistical damage mechanics is that they 
incorporate both aleatory variability and epistemic uncertainty in a straightforward manner. The natural 
randomness of the mesoscale material texture is an example of the aleatory variability. The intrinsic (pre-
existing) disorder is, in the course of deformation, further enhanced by the extrinsic disorder due to the 
damage evolution that is governed (to an extent depending on deformation rate; Mastilovic et al., 2008) by 
the local fluctuations of energy barriers quenched within the material and the local fluctuations of stress. 
The nonlocal and nonlinear character of these far-from-equilibrium processes is such that concepts of 
strain and damage (and temperature, in general) based on spatial and temporal averaging are, at best, 
conditionally acceptable (Mastilovic and Krajcinovic, 1999). Nevertheless, the overall quantities exhibit 
universal trends (Hansen et al., 1989) despite the random character of the local fluctuations of mechanical 
fields. The particle-based methods (e.g., Cundal and Strack, 1979; Jirasek and Bazant, 1995; Mastilovic 
and Krajcinovic, 1999; Liu et al., 2008) require a relatively modest computational effort allowing for 
consideration of a representative sample of physical realizations of a given statistics. This property of 
particle dynamics is crucial for the extraction of universal trends from the data rendered irregular by the 
randomness of the brittle system. 
 

SIMULATION MODEL 

 
The present simulation model was used extensively in the past decade and described fairly well in 

literature (e.g., Mastilovic and Krajcinovic, 1999), thus, only a brief summary is deemed necessary herein. 
The brittle continuum is approximated by a virtual 2D structure (a hexagonal particle network) that is, in 
absence of micromechanical disorder, equivalent to the three-dimensional elastic continuum under the 
plane strain conditions (Monette and Anderson, 1994).1 The discrete system is formed by “continuum 
particles” of mass m (Wiener, 2002) that interact through brittle nonlinear bonds. In the present mesoscale 
model, each particle represents a grain of polycrystalline alumina (Al2O3); consequently, the particle 
network “does not convey explicit information about geometry but about mechanical properties and the 
topology of the microscale of the material” (Rinaldi et al., 2008). Since the microstructural morphology of 
the ceramic material is not perfect, the discrete system is necessarily disordered. 

The system of interconnected particles is a simplical topologically-ordered Delaunay network dual to 
the Voronoi froth of the ceramic grain boundaries (Curtin and Scher, 1990) that are related by a Legendre 
transformation (Zallen, 1983).  

                                                
1 As soon as the randomness is introduced, the behavior of a material could only be approximated by the 
behavior of the 2D lattice, with the degree of accuracy that decreases with the level of disorder 
“quenched” within the system (Mastilovic, 2008). 
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The geometrical disorder is introduced by the normal distribution of stress-free interparticular 
distances λ0 within the range     20

. The geometrical-order parameter , (0 <   1), is 

the model property that defines bandwidth of the material’s geometrical disorder (i.e., it is a measure of 
grain size and shape versatility). The average interparticular distance,  , defines the model resolution 
length, lc. All finer-scale intrinsic defects (“Griffith flaws”: submicroscopic flaws, glassy pockets, 
microcracks or other centers of heterogeneity; Lawn, 1993) have to be taken into account by the stiffness 
and/or failure strain distributions of interparticular bonds.  

The structural disorder, introduced through a distribution of the interparticular bond stiffnesses, is 
related to the effect of randomly distributed residual stresses (Curtin and Scher, 1990; Raiser et al, 1990; 
Krajcinovic, 1996), and various finer-scale defects and heterogeneities (“transitory obstacles”, Lawn, 
1993) that tend to accumulate at grain boundaries of ceramics, which makes these lower-density regions 
structurally inferior in comparison with the bulk material and, consequently, “the most common examples 
of weak interfaces in brittle materials” (Lawn, 1993). The stiffness distribution of interparticular bonds is 
assumed to be uniform within   kkk   2 , where β (0 ≤ β ≤ 1) is the structural-order parameter. 

The mean stiffness of interparticular bonds comprising the discrete network is related to the modulus of 
elasticity of the pristine material, 1538 0Ek  , which provides an important connection between 

mechanical properties of the material and the discrete 2D system. It cannot be overemphasized that this 
stiffness distribution encompasses effects, on damage dynamics, of all structural features smaller than the 
resolution length. Consequently, since the resolution length is equal to the grain facet, the 
activation/nucleation and growth of all finer-scale defects (e.g., Kuksenko et al., 1975) from their initial 
length to the length of the grain boundary facet is necessarily instantaneous.  

It is noteworthy that the only dissipative mechanism in the present model, developed specifically for 
the highly brittle materials, is the bond rupture corresponding to the intergranular microcrack nucleation. 
The bond between mass particles i and j (dual to the corresponding grain boundary facet) ruptures when 
its elongation reaches the critical value εcr = Δλij/λ0ij = 0.1%, which is the model parameter that can be 
determined from the uniaxial strength of the material.  

In hindsight, εcr = 0.1% proves to be somewhat too small in conjunction with α = 0.2, β = 0.9 and free 
lateral boundaries, since it leads to an underestimate of the quasi-static failure strain of the sample. The 
selected value of α ensures, within topological limitations of the model, reasonable resemblance between 
the particle network and the typical grain structures of ceramics (e.g., Lawn, 1993; Sarva and Nemat-
Nasser, 2001; Espinosa and Zavattieri, 2003). The relatively high value of β is, in absence of experimental 
data guidance, adopted from the preceding disorder-effect study (Mastilovic, 2010). The procedures for 
creating a mechanically equivalent lattice capable of matching the physical properties of engineering 
ceramics and, consequently, quantitative estimates of their mechanical response are proposed by Rinaldi 
et al. (2008) with emphasis, among others, on rigorous Voronoi tessellation and “calibration” of the major 
statistics of the given microstructure.   
 

COMPUTER SIMULATIONS OF UNIAXIAL TENSION 

  
The tensile specimen is a ceramic square with L=1.9 mm, modeled by a 192×227 lattice. The mesh 

objectivity of results obtained by using this lattice size is originally investigated by Mastilovic and 
Krajcinovic (1999); an additional illustration of its representativeness is also added in this paper.2 

The problems of the uniform distribution of load within the sample and loading at the extremely high 
rates are solved by imposing an initial velocity field on all mass particles: 
 
   111 0 xtx &&   (1a) 

                                                
2 The rupture and size effects of the quasi-statically loaded brittle central-force lattices were analyzed by 
Hansen et al. (1989) who suggested various scaling relations of physical parameters and a multifractal 
distribution of lattice forces in the softening phase of deformation.  
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    
2102 0 xtx  

&&   (1b) 
 
defined in terms of the prescribed strain rate, LL&& 1 , and the plane-strain Poisson’s ratio,   0

. Holian 

and Grady (1988) used a similar approach to model the adiabatic expansion. 
Subsequently, at t > 0, only velocity of the particles located at the specimen longitudinal boundaries 

(x1 = ±L/2) is controlled 211 Lx &&  , while the motion of all other particles is governed by the Newton’s 
equation of motion. The lateral specimen boundaries (x2 = ±L/2) are free. 

The effects of this loading procedure are demonstrated in literature (as reported by Mastilovic et al., 
2008).  

The parameters recorded continuously throughout the entire simulation—the position and velocity of 
each particle ( xx

r
&

r
, ) and the number of ruptured links (n)—suffice to compute the volume averaged stress 

and stiffness components, scalar damage, and potential, kinetic and damage (released cohesive) energies 
of the discrete system.  

Specifically, the damage energy released by rupture of n links (of stiffness k and initial length λ0) is 
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while the components of the stress tensor are 
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In Equation (2b), Ω is the sample volume, while (λij)α and (λij)β are the α and β components of the distance 
vector λij between particles i and j. This expression is simplified approximating the particle interaction by 
the central force pair-potential  ij ˆ .  

 
SIMULATION RESULTS 

 
Damage Patterns and Stochastic Effects on Damage Growth 

 
The characteristic damage patterns are unambiguous signatures of the loading rate, which result from 

the complex fracture physics on the microscopic and mesoscopic scales driven by interplay of the strain 
rate and the material disorder. The rate-dependent evolution and pattern of damage accumulation are 
closely related to the shape of stress-strain curve and the damage energetics (Mastilovic et al., 2008; 
Mastilovic, 2010). 

The dynamic response of the low fracture energy materials subjected to the extremely high loading rate 
( 16101  s& , Region 3 in Figure 4) is characterized by:  

(i) microscale uniformity (i.e., uniform distribution of microcracks),   
(ii) damage evolution that is not correlated,  
(iii) negligible damage accumulation in the hardening phase of uniaxial tensile deformation,  
(iv) minimum fragment size, and  
(v) negligible stochasticity that reflects diminishing influence of the material disorder (Figure 1a).  
It has been argued (Grady, 1995; Zhou and Molinari, 2004; Qi et al., 2009) that, at these rates, the 

delay due to damage kinetics inhibits the propagation and coalescence of activated microcracks; which, 
consequently, leads to activation or nucleation of other microcracks before the adjacent already-activated 
microcracks have time to extend and unload them. 
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Figure 1. Typical damage patterns at three different loading rates: (a) 1×10
7
 s

-1
,  (b) 5×10

4
 s

-1
, (c) 1×10

4
 s

-1
. The snapshots 

on the left side correspond to the damage pattern at the peak of each stress-strain curve, marking the onset of localization. 

(Dashes represent broken links.) 
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The left snapshot in Figure 1a, corresponding to a damage pattern at the peak of the stress-strain 
curve, reveals negligible uniformly-distributed uncorrelated3 damage growth in the hardening phase, 
followed by an avalanche of micro-failures at the softening phase threshold. Eventually, the overwhelming 
majority of favorably oriented links is broken (Figure 1a), which is reflected by a very high damage 
density. 
 
 

 
 
Figure 2. Typical anisotropic damage pattern by the end of softening phase for 1×10

7
 s

-1
. (The solid and dashed lines 

represent the remaining and broken links, respectively.) 

 
Eventually, by the end of the softening phase (tF),   32limlim 


NnD

FF tttt
, which results not only in 

complete loss of load-carrying capacity in the loading direction but also in failure of practically every link 
that is not predominantly perpendicular to the loading direction (Figure 2). Effectively, in this stage, the 
independent micro-failure events have developed to such extent that the material becomes “structuralized” 
(Wang and Ramesh, 2004), if not comminuted, due to “damage percolation” in the lateral direction 
(Figure 2). The strongly anisotropic damage structure resembles the one-grain wide columns produced by 
the splitting under far-field uniaxial compression that were analyzed by Bhattacharya et al. (1998). The 
related “spectral form” of damage distribution was discussed in detail by Rinaldi (2009) for the statically 
loaded lattice. 

An increasing influence of the microstructural heterogeneity (the original and load-induced one) on 
the macroscopic material response results in a complex damage evolution “involving nucleation and 
propagation of myriad microcracks that finally coalesce” (Drugan, 2001), (Figures 1b and 1c). Thus, the 
dynamic response of highly brittle materials subjected to the high loading rate (tentatively, 

1614 101101   ss & , Region 2 in Figure 4) is characterized by:  
(i) mesoscale uniformity (i.e., uniform distribution of microcrack clusters),  
(ii) damage growth driven by cooperative phenomena,  
(iii) significant damage accumulation in the hardening phase of deformation,  
(iv) mesoscale fragment size defined by the network of microcrack clusters, and  
(v) increased stochasticity that reflects increase of influence of the material disorder.  
At these transitional rates the interplay between athermal fracture and damage kinetics governs the 

brittle response (Qi et al., 2009), which leads to the surge of strength with the strain rate increase 
(Region 1 → Region 2, Figure 4). This rate-driven transition is reminiscent of brittle-ductile transition 
(Grady, 1995). The microcrack clusters, which dominate the damage patterns at the softening-phase end 

                                                
3 The use of the term “uncorrelated” merits a clarification: in the present context it implies independent 
microcrack nucleation or activation events (that take place in absence of significant cooperative 
phenomena). 
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of the 14
1 101  s&  simulation (Figure 1c), comprise a plethora of broken bonds. These microcrack 

clouds constitute a link between the elementary micro-fracture event and the dynamic macro-failure 
phenomenology. They are, also, an example of the effect that external actions can have on the internal 
structure of material reflected by formation of a new structure by the localization process. Mishnaevsky 
(1998) suggested that the damage localization into the high- and low-damage regions is analogous to the 
formation of dissipative structures in nonlinear systems with stochastic effects. The cooperative 
phenomena on both microscopic and mesoscopic scale (signaled by the growth of clusters and their 
interactions) play an essential role in the fracture process and the final sample-destruction mode. This is 
reflected by notably nonlinear character of the hardening phase and the pronounced softening phase of the 
stress-strain curve (Mastilovic et al., 2008). 

It is interesting to note that, fortuitously or not, the typical vertical distance between dominant clusters, 
Dcl, for the transitional rates (Region 2, Figure 4) suggested by snapshots, such as those on right side on 
Figure 1b and 1c, agree well with the fragment size prediction, 32 &fl , based on the Drugan’s (2001) 

model as indicated by Figure 3, which deserves explanation not available at present. The same model also 
predicts that the minimum possible fragment size for the present mesoscale computational model (equal to 
the resolution length, lc ≈ 10 μm) would be achieved at 17101  s& , which corresponds to the 
theoretical strength approach in Figure 4.  

With further decrease of the loading rate, the dynamic response is distinguished by the localization of 
microcracks in only a couple of clusters; in the limit case of quasi-static loading, often into a single 
dominant cluster (Mastilovic and Krajcinovic, 1999).4 The quasi-static tensile strength (σm0) is, thus, 
defined by the critical weak link (microscopic-scale flaw or defect) and thermally-activated subcritical 
growth of a crack (of length a ) governed by Griffith’s formulation:   ,, cGatG   

   ,0,  aGatG c & 0t . The failure strain is significantly smaller than the critical micro-strain 

(Mastilovic et al., 2008). 
 

 
 

                                                
4 Simulations of the low-rate deformation by the dynamic technique were not performed in this analysis 
since they require substantial increase in computational effort (e.g., Liu et al., 2008), which virtually 
precludes statistical analyses of the kind presented herein.  
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Figure 3. Strain rate dependence of typical distance in the loading direction between dominant clusters at the end of softening 

in the transitional range (Region 2 in Figure 4). 

 
Rate Effects on Mean Tensile Strength 

 
The remarkable hardening of the brittle response with the rate increase, discussed previously by 

Mastilovic et al. (2008) and Mastilovic (2010), is illustrated in Figure 4. The solid circle represents the 
mean strength obtained from 30 different statistical realizations at the five selected strain rates. The 
hollow circles depict one single realization at eight additional strain rates. The increase of the loading rate 
results in increase of the mean tensile strength, limited by the two horizontal asymptotes (

0m  and th
m ) 

dependent on the system disorder (Mastilovic, 2010).  The loading rate increase (corresponding to 
increasingly adiabatic deformation and damage) also results in the reduction of response stochasticity 
caused by the averaging effect of collective behavior of microcrack systems that smoothens the 
randomness at the macroscopic scale and by the diminishing flaw-sensitivity of brittle materials with the 
loading-rate increase (Mastilovic et al., 2008).    

 
 

Figure 4. Mean tensile strength vs. strain rate. Solid line represents a fit obtained by using Equation (3) with parameters: 

A=4.7, C=12, and 15101 
  s& . 

 
Based on the simulation results, the following expression  
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is proposed to capture general features of the mean tensile strength dependence on the strain rate. A 
similar expression was subject to a limited discussion by Mastilovic (2010) with regards to the material 
disorder effects on the tensile strength, without going into details of the rate dependence. That is, the 
parameter   0, m

th
mmm SS    is a measure of hardening and A, C, and &  are fitting parameters. 
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As indicated on Figure 4, the crossover strain rate &  corresponds to 2/)( 0m
th
mm   . It should be 

noted that the theoretical strength, associated by Grady (1995) with the Hugeniot elastic limit obtained 
from shock compression experiments, is attained here by the virtual tensile experiments. The 
demonstrated disorder dependence of the hardening parameter Sm (Mastilovic, 2010) suggests that the 
degree of structural heterogeneity of brittle solid governs substantially the process of activation and 
nucleation of micro-defects. 

 The effect of fitting parameters on the character of the strength-rate curve is visualized in Figure 5. 
Roughly, the parameters A and &  define the onset of the strength rapid increase, while C defines 
gradient of that increase.  

It is obvious from Equation (3) that the quasi-static strength (
0m ) is not truly a horizontal asymptote 

but the lower limit that is reached at   A&log . Furthermore, the solid curve in Figure 4 has a 
symmetric negative branch that has no physical meaning in the present context.  Nonetheless, this should 
not be a serious application obstacle not only because it is easily algorithmically resolved but also since the 
negative branch increase remains practically insignificant deep into the quasi-static loading range (for 
example, for the data fit in Figure 4, until   10log & ). 

 

 
 

Figure 5. Effect of strength parameters on the shape of the strength-rate curve. 

    
In summary, at extreme loading powers (Region 3 in Figure 4), the upper-asymptote strength of brittle 

systems is achieved through effective suppression of the cooperative phenomena, which drive the rapid 
strength increase in the transitional range (Region 2). On the other hand, at the low-to-medium loading 
powers (Region 1), the sample strength seems to be determined to a large extent by the stochastic 
distribution of intrinsic defects and more sensitive to boundary conditions, since a few weak links (i.e., the 
microcracks thermally activated at the intrinsic defect locations) govern the catastrophic failure of the 
sample. The simplicity of Equation (3) is, thus, remarkable since it appears that experiments at only a 
couple of carefully selected strain rates (perhaps as little as three) would suffice to define with reasonable 
confidence the strength evolution within the entire strain rate range. 
 
Time to Failure and Damage Dynamics  

 
In the course of rapid energy input (the high loading power, Region 3), the kinetic energy of the 

sample exceeds its potential energy by a few orders of magnitude (Mastilovic et al., 2008) and the 
dominant mechanism of damage growth is the nucleation and activation of microcracks (Figure 1a) as 
already discussed. On the other hand, clustering of microcracks into microcrack clouds, and cooperative 



 10

phenomena on both microscopic and mesoscopic scales, that culminate in failure, are accompanied by a 
relative balance of potential and kinetic energies. For the rates resulting in brittle failure and the strength 
asymptotically approaching the lower strength (quasi-static) plateau, the potential energy exceeds the 
kinetic energy until the sample failure. The damage pattern just before the stress peak (see left-side 
snapshots in Figure 1) and corresponding damage energetics are particularly interesting points that are 
frequently neglected (Van Mier and Man, 2009). Hence, an emphasis of this investigation on the stress-
peak and immediate post-peak behavior of the low fracture energy systems.  

Typically, the stress-peak state of material is, for both the low and the extremely high loading rates, 
characterized by insignificant damage, which is followed by rapid increase of damage (localized in the 
former and uniformly distributed in the later case).  

 

 
 

Figure 6. Typical post-peak time histories of damage energy for three different loading rates: (a) 10 s
-1

,  (b) 3×10
5
 s

-1
, (c) 

1×10
7
 s

-1
. The hollow circles mark the stress-peak values. The damage energy is normalized with the strain energy released 

upon the rupture of one single bond with average properties, 222
0 crk  . 

 
This is illustrated by Figures 6a and 6c that present typical damage energy evolution immediately 

following the stress-peak state for 10 s-1 and 1×107 s-1, respectively. (Note that the hollow circle in each 
graph represents the stress-peak value.) As mentioned before, both of these loading rates are characterized 
by absence of substantial cooperative phenomena: (i) in the low-rate limit, corresponding to the quasi-
static asymptote, the early developed dominant microcrack cluster (macrocrack) governs the response of 
the damaged material, and (ii) in the high-rate limit corresponding to upper-strength plateau, the material 
response is characterized by the abrupt uniform microcrack nucleation. The development of the web of 
cooperating microcrack clouds (Figure 1c), accompanied by the strength surge (Region 2 in Figure 4), 
gradually evens out the difference in damage energy rates at the stress peak (

Dm& ) and immediately after 

(
Df& ) (Figure 6). The strain rate eq& = 3×105 s-1 is characterized by, practically, complete absence of the 

damage energy rate change in the peak neighborhood (
DmDf  && , Figure 6b) and corresponds to the most 

ductile-like stress-strain curve (Mastilovic et al., 2008). 
The rate-driven change of the damage energy rate during softening is summarized in the logarithmic 

plot in Figure 7; the hollow squares represent the mean of 30 statistical realizations while the solid circles 
mark results of one single realization at the given rates. Note that, due to the observed reduction of the 
data scatter with the increase of loading rate, any arbitrarily selected physical realizations at the high rates 
should represent reasonably well the mean value. The dashed line in Figure 7 represents the best fit of the 
simulation data: 
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where H1 and H2 are fitting parameters and eq&  is the strain rate corresponding to the stress-peak damage 

energy rate equilibrium (
DmDf  && ) that marks the minimum of the dashed curve in Figure 7. 

It is obvious that the asymmetric data fit in Figure 7, defined by Equation (4), formally tends to 
infinity for both loading limits (the quasi-static and the “infinite”), but for different reason: 0lim

0



Dm

&
&

 

and 
 Df
&

&
lim , respectively. In reality, the maximum possible strain rate in the material, ε0 

(Introduction), provides the finite limit for 
Df& , while the stress peak is by definition associated by non-

zero 
Dm&  (albeit very small and temporal-resolution dependent for the low rate “limits”). 

 
 

 
 
Figure 7. Change of the ratio of damage energy rates in the post-peak and peak regions of stress-strain curve with the 

loading rate. Dashed line represents the fit obtained by using Equation (4) with fitting parameters H1=-0.76, H2=1.1, and 

  48.5103loglog 5 eq& . 

 
Figure 8 illustrates effect of the loading rate on the damage energy rate (the hollow squares) at the 

stress-peak and the corresponding time, tm, at which it is reached (the solid circles). The stress-peak time 
is tentatively affiliated with time-to-failure in this investigation for two reasons: (1) the sample would fail 
at the stress-peak for the stress-controlled test, and (2) the prevalent opinion, matured over the last two 
decades, is that the softening is not an intrinsic material property (e.g., Krajcinovic, 1996; Van Mier and 
Man, 2009). Time to failure is a highly stochastic variable. All data points in Figure 8 represent mean 
values of 30 statistical realizations per strain rate. 

The linearity of the rate dependence of the peak parameters  
 
 .Consttm &  (5) 
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 .ConstDm 


&

&
 (6) 

 
is evident from Figure 8. Equation (5) is identical to the empirical relationship between creep rate and 
time to rupture for the constant-stress quasi-static loading (Tetelman and McEvily Jr., 1967), and the 
strain-controlled brittle creep fracture by Kachanov (1986).  It also bears similarity with the time to failure 
derived by Mishnaevsky Jr. (1998) by combining the main ideas of continuum damage mechanics and 
statistical and kinetic theories of strength. 
 
 

 

 
Figure 8. Change of the mean stress-peak parameters with the loading rate; hollow squares represent the mean damage 

energy rate and solid circles the mean stress-peak time. 

 
Furthermore, it can be observed that, for the discrete model used in this investigation, the constants in 

Equations (5) and (6) are related to the failure criterion at the microscopic scale: 
 
 1 crmt &  (7) 

 6
1




cr
Dm 
&

&
 (8) 

 
It is noteworthy that Equations (7) and (8) relate the macroscopic response parameters at the stress 

peak (tm, 
Dm& ) to the microscopic failure criterion (εcr) for the dynamic loading within the wide range of 

the strain rates that encompasses variety of damage mechanisms.  
 
Size Sensitivity of Simulation Results 

 
The size sensitivity of the dynamic lattice model used in this study is investigated originally by 

Mastilovic and Krajcinovic (1999). The focus of that early work was on the tensile strength, consequently, 
the mesh objectivity analysis was limited to sample-size strength sensitivity. A notable extension of the 
present study, in addition to repeated simulations for different physical realizations of microstructural 
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statistics, is the analysis of the damage energy density rate and time to failure; accordingly, it is necessary 
to revisit the mesh sensitivity analysis for the entire loading rate range. 

The mesh sensitivity of the simulation results obtained by using 192×227 lattice (43,584 continuum 
particles) is explored by comparison with those obtained with 384×455 (174,720), 576×681 (393,256), 
and 768×909 (698,112) lattices, which correspond to the size increase of 300%, 800% and 1500%, 
respectively. Table 1 presents the difference in tensile strength, time to failure, and damage energy density 
rates for one single realization at the four selected strain rates in the range [1×103 s-1, 1×107 s-1]. For 
example, Dif (σm) = 100×(σmN-σmS)/σmS, is a percentage difference between tensile strength obtained for 
the original lattice, 192×227 (σmS), and one of the other three verification lattices (σmN). 
 

Table 1.  Difference [%] between results of one single realization of 192×227 vs. 384×455 lattices, 
192×227 vs. 576×681 lattices, and 192×227 vs. 768×909 lattices respectively; and between mean 

values of 15 realizations of 192×227 vs. 384×455 lattices at 100 s
-1

. 

 
 

 1s&  

 mDif    mtDif   DmDif &   DfDif &  

192×227 vs. 384×455, 192×227 vs. 576×681, 192×227 vs. 768×909 

1×10
7
 0.13, 0.27, 0.32 -0.030, 0.00, 

0.010 

-1.39, -3.49, 4.42 0.98, 2.93, 3.42 

1×10
5
 -0.41, -0.70, -0.45 -0.45, -0.23, -0.23 -3.38, -2.03, -0.68 -0.92, 0.00, 0.62 

1×10
4
 -1.43, -2.87, -2.22 -2.01, -3.02, -2.35 -1.83, 4.59, -3.67 -3.77, -1.89, -0.94 

1×10
3
 -1.89, -9.05, -8.91 -0.54, -7.93, -7.73 10.0, 2.58, -3.48 14.6, 3.20, -2.46 

100 -4.5 -4.0 1.2 -4.2 

 
The results indicate negligible size sensitivity of the tensile strength and time to failure for the two 

highest rates. The strain energy density release rates are more sensitive, but still with a relatively small 
difference. The decrease in loading rate results in more pronounced size effect, but generally within 
acceptable limits as illustrated graphically for │Dif (σm)│ on Figure 9. 

 

 
 

Figure 9. Illustration of size effect on IDif (σm)I for various strain rates. 
 

It is noteworthy that while the damage energy density values at any particular time can be notably 
different for the four lattice sizes, the damage energy density rates corresponding to stress-peak and 
ultimate failure are relatively insensitive to the lattice size. 
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Figure 9 illustrates observed reduction of size effect on │Dif (σm)│ with increase of loading rate, 
which is consistent with general trend of the reduction of stochasticity with the loading rate increase 
(Mastilovic et al., 2008). It should be noted that Hansen et al. (1989) obtained for the static case the lattice 
size scaling of the peak force in the form LFm   and determined the exponent χ to be 3/4. Although this 

peak force is directly related to the tensile strength, m, no such regularity is observed in the present work. 
It is important to note, on that account, not only a number of differences between the two brittle lattices 
but also that the present size inquiry is limited to one physical realization, while Hansen et al. (1989) 
obtained their results by averaging over a large number of samples, which would be prohibitively time 
consuming in the present case. Since such thorough size-effect analysis is beyond the scope of the present 
investigation, the statistical approach is not used, which makes the comparison of results iffy. 

Nonetheless, since the results suggest that the loading rate reduction leads to increase of dependency 
upon the particular statistical realization, the comparison at 100 s-1 is performed on a randomly selected 
subset of 15 statistical realizations. Consequently, the last row of Table 1 presents the differences in mean 
values at 100 s-1, while a selection of two corresponding histograms is given by Figure 10 (for 
computation economy, the comparison is performed only with 384×455 lattice). Figure 10 demonstrates 
that at the low strain rate results become increasingly both sample-size and realization dependent, 
especially the damage energy density rates. Furthermore, it is observed that while the change in lattice 
size from 192×227 to 384×455, at 100 s-1, results in a relatively small difference in the mean tensile 
strength (-4.5%), the difference in the strength scatter is more pronounced: the standard deviation is 
reduced by 15%. 
 

 
 
Figure 10. Histograms of differences in the maximum stress (tensile strength) and the corresponding damage energy density 

rate between192×227 and 384×455 lattices at 100 s
-1

. 

  
In summary, the results of virtual experiments at the moderate rates (Region 1) presented herein 

could benefit somewhat by increase of both sample size and “ensemble” size. On the other hand, since the 
lattice size in the present model corresponds to the spatial averaging region, it must be, as any 
representative volume element in general, “small enough to avoid smoothening of high gradients but large 
enough to represent an average of the microprocesses” (Lemaitre, 1992). Altogether, keeping in mind the 
relatively modest size sensitivity of results and the primarily qualitative nature of the present study it 
seems justified to assert that the corresponding observations and conclusions are not affected by the lattice 
size and that the 192×227 lattice is fairly representative. 
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SUMMARY 

 
This study elucidates some universal trends that contribute to understanding of basic principles 

governing high-rate mesomechanics of heterogeneous low-fracture-energy solids. An expression proposed 
to model the mean tensile strength dependence on the strain rate for the entire strain rate range is 
discussed. Although the fundamental arguments to support the form of this expression could not be 
provided at present, it appears simple and robust enough to capture reasonably well the entire rate-driven 
strength evolution with only a few experiments. 

The damage dynamics is investigated based on change in the damage energy rate accompanying 
damage evolution in the stress-peak neighborhood. It is noticed that the medium of the transitional range 
rates (Region 2), 

eq& = 3×105 s-1, is characterized by the absence of change of the damage energy rate in 

the peak neighborhood (
DmDf  && ) and corresponds to the most ductile-like stress-strain curve. 

The linearity of the rate dependence of the stress-peak macroscopic response parameters is outlined. 
The simulation results offer connection between the macroscopic response parameters at the stress peak 
(tm, 

Dm& ) and the microscopic failure criterion (εcr) for the dynamic loading within the wide range of the 

strain rates that encompasses variety of damage mechanisms. 
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