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Abstract 18 

The failure in “quasibrittle” microstructural systems, occurring with no early warning, is a 19 

debated problem of great practical importance for the structural engineering community. 20 

Available models do not fully account for typical sample-size effects observed in fracture 21 

initiation and propagation. The Krajcinovic approach (K-approach) proposed here stems from a 22 

posthumous interpretation of Krajcinovic’s orginal ideas and offers a new route to tackle such 23 

effects by means of an advanced fractal scheme, which consists of the sequential application of 24 

the Family-Vicsek scaling laws for the number of damage events n(ε;L) in the fracture 25 

initiation and propagation regimes separately. The procedure is developed and explained in the 26 

context of an established lattice models under static tensile testing. Average simulation data for 27 

any outer-size L – here ranging from 24 to 192 - is shown to scale nicely by this method, 28 

throughout the entire damage process. The proper definition of the damage parameter D allows 29 

deploying the deduced scaling laws to deduce the actual stress vs. strain relationship applicable 30 

in engineering. The discussion extends with no prejudice to data from real experiments, 31 

provided that all necessary information is gathered and all underlying assumptions hold true. 32 

The approach shall appeal per se also to the larger scientific community of physicists and 33 

mathematicians involved in statistical mechanics and random network failure. 34 
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1. INTRODUCTION: QUASI-BRITTLE FAILURE, SIZE EFFECTS AND FRACTALS 35 

Brittle, embrittled, and “quasibrittle” microstructural systems have the tendency to fail 36 

catastrophically with little or no early warning as they reach their strength, as shown in Fig.1. 37 

Besides the case of a structure containing a critical defect, such failures often develop from 38 

diffuse microcracking resulting in fracture initiation and propagation. Modeling and predicting 39 

failure of these systems is of utmost importance and has proven to be a formidable task of 40 

damage mechanics. In fact, a major complication is represented by the sample-size dependence 41 

of both the onset of strain localization and the consequent damage evolution. It is hard to predict 42 

the behavior of large structures based on laboratory tests on similarly shaped samples, unless a 43 

size-effect model (i.e. a scaling law) can be established to obtain analytical estimates. If a scaling 44 

law is available, knowledge of the statistics of a process on one scale allows inferring the 45 

statistics of the same process on any other scale. Materials systems of interest involve, for 46 

example, concrete, composites, rocks and timber, as demonstrated by a massive experimental 47 

evidence reported in literature over the past 40 years 48 

 49 

 50 

Figure 1. Typical tensile response of a sample made of quasi-brittle material such as concrete, 51 

failing from fracture initiation. The softening phase begins with the force peak point and ends 52 

with the structural failure.  The signature feature of this behavior is the progressive loss of 53 

stiffness, as observable from the unloading paths identified solely by the secant slope in each 54 

point with no residual strain. 55 

 56 
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The modeling problem has been under investigation for centuries and many researchers have 57 

attempted a number of different strategies. Some modern approaches to fracture and damage 58 

have originated from fractal theory and lattice models. For instance, Mishnaevsky Jr (1996) 59 

monitored the surface roughness of crack and the specific surface energy needed to form a 60 

crack by the mechanism of microcrack coalescence and concluded that the fractal dimension of 61 

crack may be monitored during the crack formation process to compute the time-to-fracture in 62 

heterogeneous solids. Another group (Cherepanov et al. 1995, Balankin et al. 1996) suggested 63 

that the usual LEFM expressions for stress concentration at the crack tip could be replaced by a 64 

fractal version based on a roughness-related power law exponent α and a fractal stress intensity 65 

factor Kf as 66 
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when crack length l falls between a lower cut-off l0 and a self-affine correlation length ς, 68 

l0 < l < ς. Similar continuum-based approaches have followed (Borodich 1997) with some 69 

noteworthy contributions that include for example the “Quantized Fracture Mechanics for fractal 70 

cracks” (Pugno and Ruoff 2004, Wnuk and Yavari 2008) or the fractional continuum framework 71 

of fracture and damage discussed by Tarassov (2013) and Ostoja-Starzewski et al. (2007,2013).  72 

As far as damage initiation in quasi-brittle materials, Carpinteri and coworkers (e.g., 1994, 2012) 73 

devoted substantial effort to size-effects inherent to fracture in concrete and proposed what they 74 

called multi-fractal scaling laws for the strength PEAK , which we can rewrite here as:  75 

 76 

     *
PEAK PEAK L         (2) 77 

 78 

where *
PEAK is a scale invariant material parameter, β is the fractal exponent ranging from 0  to 79 

½, for the low and high material heterogeneity limits respectively, and  L is the sole significant 80 

geometrical parameter, provided that only self-similar samples are compared. When applied to 81 

experimental data, the authors stated that Eq.(2) provides an empirical method to obtain 82 

reasonable values for the fractal dimension damage domain, barring the existence of excessive 83 

scatter in the experimental data. They also documented a good agreement with the microcracking 84 
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process as measured from the acoustic emission (AE) experiments, recovering the power-law and 85 

intermittency of avalanches of AE events, as well as the fractal distributions of event locations. 86 

 Nonetheless, the multi-scale approach faced also some criticism from exponents of civil 87 

engineering community, primarily by Bazant and co-workers. Following an alternative rationale, 88 

Bazant (1997a, 1997b) first developed an asymptotic argument and proposed a different model 89 

for the fracture initiation problem  90 

 91 
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where A and  B are fitting constants. In subsequent papers (2004,2005), Bazant and co-workers 93 

reported a thorough overview of size effects and scaling laws for many different structural 94 

systems based on their approach, pointing out the affinity with Weibull statistics and strongly 95 

advocating weaknesses of fractal-based models such as (2).  96 

 However, a third-party work by  Karihaloo and co-workers (Ince et al. 2003) found 97 

merits in both approaches when comparing approach (2) vs. (3), one outperforming the other in 98 

different size ranges, which ushers in the possibility for such dispute to live on unsettled. At the 99 

same time there is the general view in the engineering community that modeling size-effects 100 

remains a fertile and urgent research ground for the sake of establishement of reliable models and 101 

improvements of current design codes in structural engineering.  102 

 In this paper we present a different scaling procedure that we will call “Krajcinovic 103 

approach” (K-approach hereafter) as this stems from our posthumous revision of seminal ideas 104 

and prior work headed by Dusan Krajcinovic. The original papers by Krajcinovic and Rinaldi 105 

(2005a, 2005b) and Rinaldi et al. (2006, 2007) laid the foundation of the work presented here 106 

and fostered the usage of fractal theory in connection with lattice model, in a manner very 107 

different from Carpinteri’s. Rather than concentrating on the fracture strength, Krajcinovic’s 108 

initial exploration focused on establishing the connection between a random heterogeneous 109 

microstructured material and the damage parameter D in the constitutive relation throughout 110 

the damage process, from the early stage microcracking to the final crack propagation. 111 

Noteworthy, D enters the constitutive relations of a material but it is not an intrinsic property, 112 

being associated to given boundary conditions and a given loading history. For example, unlike 113 

comminution damage in fragmentation problem where the complete loss of stiffness is not 114 
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achieved at failure (e.g. Mastilovic and Krajcinovic, 1999a, 1999b), the damage parameter for 115 

the tensile test is strictly related to loss of stiffness such as D=∆E/E0 (Rinaldi, 2009). 116 

 Since the damage evolution is a stochastic process that depends on applied load and 117 

microstructural disorder of a given sample (i.e. random texture and imperfections), D is a 118 

random variable and the problem is better stated in terms of representative average D  119 

(Rinaldi, 2009). More precisely, the macroscale stress-strain response of a damaged 120 

heterogeneous quasi-brittle material subject to strain-controlled quasi-static uniaxial test is 121 

customarily expressed by the Kachanov’s relation1  122 

0 0( ) (1 ( ; ) )E D L          (4) 123 

where  is the average stress response associated to the imposed strain level ε, 0E is the 124 

initial Young’s modulus, and the expected value of the damage parameter 0( ; )D L  depends 125 

on the loading history 0 (i.e., in this case, the maximum strain applied) and on the sample size 126 

L. When structural healing is prevented, the damage effect is detected at the macroscale by the 127 

(permanent) loss of secant stiffness 0 0( ) (1 ( ; ) )E E D L   associated with the microcraking 128 

process, ranging from 0( )E E  for 0D  (i.e. no damage) to ( ) 0E   for 1D  at failure.  129 

Krajcinovic’s original intention was to scale the average response of a brittle material in Eq. (4) 130 

by identifying a suitable scaling law for D   131 

     0( ; ) ( )D L f L        (5) 132 

which was sought by means of a fractal-based procedure. However, despite some recognition 133 

(e.g. Carpinteri et al., 2012), his ideas were substantially overlooked by the scientific 134 

community at large, partly because the fundamental concepts were probably reported in 135 

fragmentary and yet incomplete way. The primary objective of this paper is to fill this gap and 136 

describe a new scaling procedure in a unitary and finalized form, linking it to prior attempts 137 

and explaining in practical terms its usage to practitioners. The method will be illustrated on 138 

numerical data from discrete lattice models of different size L. Succinct commentaries of some 139 

                                                
1 Note that a similar (internal variable) constitutive model was applied lately in the context of friction wear by D’Annibale and 

Luongo. 
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percolation and finite-size scaling ideas that immediately relate to the lattice models and to the 140 

K-approach are presented first.  141 

2. HISTORCAL PERSPECTIVE OF STATICAL METHODS FOR LATTICES 142 

Although fracture models are of primary importance to the structural engineering community, the 143 

subject has always appealed significantly to physicists and mathematicians, especially among the 144 

statistical mechanics community, which bred a substantial body of results and ideas that are the 145 

cornerstone of the methods cited above including ours. Noteworthy, these results flourished over 146 

the past 30 years in conjunction with discrete lattice models that provided the possibility to 147 

simulate realistically the microstructural disorder of materials and reproduce structural size-148 

effects in a tractable manner. Let us briefly recall the main statistical methods applied to failure 149 

of quasi-brittle lattice (ref. Krajcinovic 1996).  150 

2.1 Percolation theory of damage in discrete models  151 

Percolation theory is one of the earliest and simplest approaches to investigate phase transitions 152 

in statistical physics (e.g., Stauffer and Aharony, 1994) and has been applied with some success 153 

to geometrical and transport properties of mechanical lattices, along with size effects. A damaged 154 

lattice can be indeed regarded as a random graph of connected clusters and, as such, it can be 155 

studied by means of percolation theory. In that view failure is treated as a phase transition that 156 

occurs at percolation condition, that is when the correlation length ξ, associated to the 157 

connected/interacting clusters of microcracks, spans the entire finite-size lattice L (or diverges 158 

for an infinite lattice as L → ∞). The percolation threshold pc is defined as the occupation 159 

probability p at which an infinite cluster appears in the lattice according to a power-law fractal 160 

exponent ν 161 

  
 ppc

    (6)  162 

For a mechanical network, p roughly corresponds to the density of unbroken springs and pc is 163 

critical point associated to failure. The threshold pc is defined with respect to an infinite lattice 164 

and approached asymptotically in the limit of L → ∞. The application of the results to finite-165 

size systems happens by renormalization group approaches, such as coarse graining techniques 166 

(e.g. Christensen, 2002).  167 
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Similar scaling laws were sought for many other and diverse parameters (e.g., connectivity, 168 

number of microcracks, etc.) and network transport properties (e.g., conductivity, stiffness, 169 

etc.) related to the “failure transition” and thereby exhibiting a singularity. As an example, Sen 170 

et al. (1985) studied the percolation model for the central-force elastic lattice, finding that bulk 171 

modulus (K) and shear modulus (G) scaled as   172 

     cppGK ,       (7) 173 

with the following numerical estimates 0.58, 2.4 0.4cp     for 2D triangular lattices and 174 

0.42, 4.4 0.6cp     for 3D face centered cubic (FCC) lattices. The same group proposed an 175 

effective medium theory of spring-network models, mapping the percolation property of the 176 

central-force lattice to a continuum scale, also exploring importance of the coordination number 177 

of lattice sites on the scaling (Feng et al. 1985). Many authors (Chelidze 1982, Roux and Guyon 178 

1985, Ostoja-Starzewski 1989, etc.) have reported similar results but, despite the apparent 179 

simplicity, the application of percolation ideas to damage has proved to be not straight forward.  180 

Krajcinovic (1996) offered a detailed essay on this subject, stressing the importance of 181 

percolation theory in damage mechanics and its limitations. Percolation theory ought to be 182 

regarded as complementary to mean-field theories of continuum mechanics (e.g. dilute 183 

concentration models of damage), granting a way to approach size-scaling issues by means of 184 

relations that are universal and supposedly independent of microstructural details. Hansen and 185 

Roux (1989), amongst others, investigated the universality problem for central-force lattices. 186 

However, one main problem is the estimation of fractal exponents associated to asymptotic 187 

behaviors, which require large computations. In time, successive reports have modified earlier 188 

accounts and larger simulations have indicated that fracture damage may not comply with basic 189 

(uncorrelated) percolation process (Nukala et al. 2006).  Another drawback inherent to some 190 

percolation studies resides in the preservation of isotropy during the percolation process that 191 

proceeds by random either suppression/strengthening of links (e.g. Garcia-Molina et al. 1988), 192 

which makes them ill posed to study damage induced anisotropy that immediately arise in 193 

quasi-brittle (vectorial) systems (Rinaldi 2009).  A critical review by Guyon et al. (1990) 194 

represents a relevant and insightful reading on the subject. 195 
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2.2 Fractal scaling laws of damage in discrete models  196 

Besides percolation models, lattice models represent a fertile playground for the application of 197 

many other methods of statistical physics. The fuse lattice by De Arcangelis et al. (1985) 198 

illustrated in Fig. 2 is one of the first attempts to depart from percolation ideas and introduce 199 

damage by a more realist mechanism of fuse burn-out caused by quenched or annealed disorder 200 

as opposed to random link suppression (Krajcinovic 1996). 201 

 202 

Fig. 2. Example of fuse lattice at the onset of failure, where the suppression of the last fuse 203 

pointed by the arrow leads to failure (zero conductance) (redrawn from De Arcangelis et al. 204 

1985). 205 

 206 
These fuse models drew immediately a great attention (e.g. Duxbury et al 1986, Alava et al. 207 

2006) as simple scalar models of failure in heterogeneous solids, but were immediately sided 208 

by actual “vectorial” mechanical models such as beam and central–force lattices. The latter are 209 

indeed significantly more complex and realistic, especially as far as the damage-induced elastic 210 

anisotropy and failure patterns are concerned. 211 

The research scope also expanded to consider not just the scaling of one critical point 212 

corresponding to the failure threshold, like in percolation, but the entire response of the system 213 

during the damage process, particularly after strain localization. The objective was to establish 214 

fractal-based transformations that succeed in reconciling the mechanical response of samples 215 

of any size by mapping their mechanical response into one scale invariant curve, thus yielding 216 

a scaling law for the given damage process.  217 
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2.2.1 Family-Vicsek scaling 218 

For our discussion, one specific method called the Family-Vicsek scaling (Family and Vicsek 219 

1991, Barabasi and Stanley 1995) stands prominently above others. It was first used for growth 220 

of advancing solidification fronts at the liquid-solid interface. Let us consider the generic 221 

function y(x, L) as dependent on a variable x defined over a network domain but also on the 222 

size L of the network itself, as depicted in Fig. 3a. The knee-shape typically marks a phase 223 

transition at the critical point location (x*, y*).  224 

If the Family-Vicsek scaling holds, then the data ( , )y x L  shall map onto one universal scale-225 

invariant curve such that ( / , ) /f x L L y L  for any L, as indicated in Fig. 3b, according to the 226 

following scaling relation 227 

       












L

x
fLLxy ,       (8) 228 

Three conditions must be met for this scaling procedure to be feasible: 229 

1. at the transition the y value must be a fractal such that y( x*,L ) L , 230 

2. the location of the transition must be a fractal such that x* L , 231 

3. before the transition the data must follow a power law y( x,L ) x . 232 

Consequently only two out of the three exponents {α, β, γ} are independent due to the 233 

constraint γ = α / β. 234 

 235 

Fig.3. Illustration of the scaling procedure applicable to some non-linear systems that 236 

experience a transition governed by a universal law. The response y depends on the controlled 237 

variable x but also on the system size L, which controls the occurrence of the transition. A 238 

scaling law exists if y(x,L) maps into a scale invariant curve upon normalizing y and x by Lα 239 

and Lβ respectively. 240 
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This empirical scaling procedure, borrowed from phase transitions and clusters theory, has 241 

proved useful to investigate microcracks cooperation and damage localization in multisite 242 

cracking and fracture processes, where lattice models had already revealed the existence of 243 

several fractals quantities. Hermann, Hansen and Roux sought to apply the scaling to data from 244 

numerical experiments on central-force lattice (Hansen et al. 1989) and beam lattice (Hermann 245 

et al. 1989), finding satisfactory results only over certain portions of the damage process. Fig. 4 246 

displays raw force-displacement data F(u) for the beam lattice vs. scaled data F  L f (uL ) 247 

with scaling exponents α = β = 0.75. They also sought a scaling relation for other quantities, 248 

such as the number of broken links n  LY(uL ). The results of the scaling displayed in Fig. 4 249 

exemplifies that the scaling could be used only up to the force peak. 250 

 251 

Fig. 4. Results of Family-Vicsek scaling (data from Hermann et al. 1989).  252 

3. The K-approach 253 

The Family-Vicsek scaling is also the cornerstone of the approach featured here, although 254 

utilized in a much different manner, along the footsteps of Krajcinovic. As opposed to Fig.4 255 

(and to most other scaling in literature), our strategy does not target the force vs. displacement 256 

data directly, but it pursues the nested application of the Family-Vicsek scaling (8) on the 257 

curves n-ε (i.e., number of microcracks vs. strain), which resemble the situation sketched in 258 

Fig.3. Note that it is not possible to scale n-ε with a single application of Eq.(8) because the 259 
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damage process encompass two stages, each governed by different fractal quantities. Let us 260 

first state the principle of our scaling, and then explain the practical application on an example.   261 

 262 

Statement #1. The objective of the K-approach is twofold: (i) the formulation of scaling laws 263 

for the n(ε;L), mapping these data into a scale-invariant function valid for any L , and (ii) the 264 

linking of such scaling function to the damage parameter D . 265 

Statement #2. The practical procedure consists of applying the Family-Vicsek twice in 266 

cascade, according to a two-steps scheme entailing the sequential application of (8) separately 267 

to the microcracks prior and after the stress peak, in recognition of the nature of the fracture 268 

initiation problem consisting of two distinct phases (ref. Fig.6 later). The two steps are: 269 

 Step #1: Application of Eq.(8) to the number of microcracks and, by setting α=d+β (d 270 

is the applicable Euclidean dimension), the identification of the sole independent fractal 271 

exponent β that makes the scaled data ′′  , / dn L L    vs. ε/Lβ ′′  overlap for any L up to the peak 272 

strain εp, thus yielding the scale-invariant function g(ε/L
β
) 273 

      ; dn L L g
L





     

 
      (9) 274 

 Step #2: Nested application of Eq.(8) to the post-peak increment of microcracks ∆n and 275 

identification of the exponent β′ that delivers a scale invariant function g′(∆ε/L
β+β′

) , making the 276 

remaining data of the softening phase overlap for any L up to failure. 277 
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      (10) 278 

3.1 Example: application to lattice data 279 

The procedure is illustrated here with respect to the same simulation data used originally by 280 

Krajcinovic and Rinaldi (2005a, 2005b) for the random lattice of size L x L depicted in Fig.5, 281 

the details of which are recalled in the Appendix. Therein, the average stress responses from 282 

the tensile tests for each L represent the primary output from simulations, clearly 283 

demonstrating the existence of a strengthening effect with the shrinking L, like in real systems. 284 
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    285 

Fig. 5. Irregular triangular lattice of square shape (LxL) subjected to uniaxial tensile load in a 286 

displacement controlled mode. Average stress vs. strain response for L = 24,48,96,192  287 

computed over 10 replicates per size. 288 

 289 

However, the K-scaling requires “tracking” the function of broken links (i.e. the microcracks) 290 

n(ε;L), which is the object of the scaling. The function n(ε;L) is often recognized as the 291 

primary source of information about the damage process and is indeed closely related to the 292 

damage parameter D. In 1-D models, the function n(ε) is actually all that is needed to compute 293 

D, usually through a closed-form solution (Rinaldi 2011). In higher dimensional problems such 294 

as this 2-D lattice lattice, this connection still exists but is more complex, as demonstrated 295 

earlier (Rinaldi, 2009). The sample data plotted in Fig.6 allows grasping such a connection 296 

between the force response and the microcracks evolution. The micro-stress fields are 297 

compared (in absolute value) at four states of the damage process. While the micro-stress 298 

distribution "1" is statistically "invariant" for all replicates with same size L and corresponds to 299 

random damage nucleation, the distributions "2, 3, and 4" all depend on the disorder of the 300 

microstructure and reveal damage localization and propagation. The knee in the n-u curve, 301 

overlaid (out of scale) onto the F-u data, is reminiscent of the scenario in Fig.3 and marks the 302 

occurrence of the transition between this two regimes, from homogeneity to heterogeneity 303 

(equivalently from nucleation to propagation of damage or from hardening to softening). As 304 

discussed elsewhere (Rinaldi, 2007, 2009), damage nucleation is a “diffuse” process with 305 

higher rupturing rate whereas damage propagation is a process highly correlated in space and 306 

with a (apparently) lower microcracking rate.  307 
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 308 
Fig.6. Micro-stress distribution at 4 points of the damage process. Stress (strain) localization is 309 

observed at “2” (peak point) from the loss of statistical homogeneity and formation of energy 310 

(stress) clusters (i.e. hot-spots). 311 

In our case, the average n-ε curves associated to the stress curves in Fig.5 are plotted per each 312 

L in Fig.7a. Remarkably, the proposed scaling procedure can be illustrated on such lattice data 313 

with no loss of generality since it applies seamlessly to real systems, being the needed σ-ε and 314 

n-ε data in Figs. 5 and 7 obtainable also experimentally, e.g. through AE techniques (e.g. 315 

Carpinteri et al. 2012). 316 

 317 

   318 

Fig. 7. Plots of (a) n , (b)   , (c) g . (b) Normalizing n by L2 yields a microcracks density 319 

ρ and produces a first substantial data overlap regardless of L; yet, the marked peak points 320 

depend on L. (c) Scaling data from (b) to (c) causes data collapse up to the peak and renders the 321 

complete Family-Vicsek in Eq.(9) for n(ε;L).  322 
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3.1.1. Step#1: pre-peak region 323 

With regard to the Step#1 of the procedure, the best results shown in Fig.7c are obtained for 324 

the exponent β=-0.06 in the scaling Eq.(9), which specializes as  325 

        1.94
0.06

,n L L g
L


 

   
 

       (11) 326 

A substantial overlap is achieved from (11) among all transformed datasets, with near-327 

clustering of all peak points. Accuracy of this deduction is always limited in reality by the 328 

finiteness of the simulation/experimental sample, which is used to infer an asymptotic 329 

property, i.e. the scale invariant transformation g(ε/L
β
). 330 

 Apart from practical usage, a few observations help gaining a better insight of Eq.(9) 331 

and about the rationale underlying step#1. Let us note first that the intermediate normalization 332 

of n by L
d=2 in Fig.7b renders an “average microcracks density” 2/n L  and produces a 333 

substantial data collapse and causes all transformed curves to exhibit equal slope. This 334 

intermediate result had been observed phenomenologically (e.g. Hansen et al., 1989) and has 335 

been demonstrated to be necessary on a theoretical ground by Rinaldi (2007). However, this 336 

does not suffice to deliver a scale invariant, because the peak strains are still different. Then, a 337 

subsequent Family-Vicsek transformation bring us from Fig.7b to Fig.7c by using the 338 

constraint α=β=-0.06 in Eq.(8) to map the peak points into one while preserving the slope 339 

agreement. Such a logical construction is evidently reflected in Eq.(9). 340 

 In agreement with the fundamental hypotheses of the Family-Vicsek scaling enlisted in 341 

Section 2.2.1, the successful scaling in Fig.7c implies that that the number of microcracks at 342 

the peak pN and peak strain are both fractal quantities that scale as d

pN L  and p L   343 

respectively. In support of this view, in Fig.8 we can check that the microcracks scale as 344 

  2;n L L   before the peak and as   1.94;p pn L N L    at the peak, in agreement with 345 

Fig.7c. 346 
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         347 

Fig.8. Comparison of fractal behavior of n(ε;L) at 0.001  vs. peak strain (Np), demonstrated 348 

by the linearity of log(n) vs. log(L). In the former case the exponent is ~2 and lowers to ~1.94 349 

at the peak, matching Fig.7c. For convenience-sake, the power law of Np is expressed also in 350 

base e such that Np =e
-1.36

L
1.94.    351 

 352 

Next, we need to determine the damage parameter D valid up the strain peak for the system 353 

under consideration. Based on the results from Krajcinovic and Rinaldi (2005a), our lattice is 354 

known to behave in a manner identical to the corresponding “fiber bundle model” (see 355 

Appendix) and we can adopt the following definition,  356 

        ;
;

2 p

n L
D L

N



           (12) 357 

To conclude our task, by virtue of Eq.(11) and because Np =e
-1.36

L
1.94 from Fig.8, we can rewrite 358 

it in scale-invariant form as 359 

     
 

0.06

1.36

( / )

2

g L
D

e









     (13) 360 

An analytical form can be obtained by replacing g with an approximating function fitted to the 361 

data in Fig.7c in different ways, e.g. via regression methods. In this case, we can for example 362 

assume the linearity 1.94 0.06/ /n L L  throughout the range and perform a first order Taylor 363 

expansion around ε=0 such that ′′ 1.94 1.94 0.06 0.06

0
/ ( / ) / ( / ) /n L n L L L 


   


  ′′ , which leads to  364 

    0.06
0.060

( / ) /g L
L




  



        (14) 365 



   16/31

with 
0

/


 


  being evaluated numerically as the initial slope either in Fig.7b or Fig.7c. The 366 

damage parameter is estimated as  367 

    
  0

1.36 0.06

/

2
D

e L


 

 
 

  


      (15) 368 

For this specific example the value of the damage parameter at the peak is invariably Dp=0.5. 369 

The corresponding peak strain, marking the range of validity of Eq.(13), is  370 

    
1.36

0.06

0
/p

e
L







 




 

      (16) 371 

and Eq.(12) can be back-computed in terms of strain as  372 

      ;
2 p

D L 





       (17) 373 

The results of the Eq.(18) vs. simulation data provide the validation of the formulated model.  374 

 375 
Fig.9. Mean response from simulation data (solid line) plotted .vs  constitutive model Eq. (4) 376 

(dotted line) from the damage definition Eq.(12) for L =24,96. The model appears accurate up 377 

to the peak and, expectedly, deviates from simulations afterwards. 378 

 379 
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3.1.2. Step#2: post-peak region 380 

The step#2 of the K-approach proceeds in an analogous manner but focuses exclusively on the 381 

post-peak data ∆n vs. ∆ε, with ∆n =n -np and ∆ε = ε - ε p.  The best results are displayed in 382 

Fig.10 and are obtained for β′=-0.54, such that Eq.(10) can be rewritten as  383 

     1.40
0.60

, 'n L L g
L





 

   
 

       (18) 384 

 385 

 386 
Fig.10. (a) Post-peak data after the transformation Eq.(9) and (b) results from step#2 of the K-387 

approach bringing all datasets fall into one scale invariant function g′(∆ε/L
β+β′

) for β′=-0.54 in 388 

Eq.(10).   389 

 390 

The scaling function g′(∆ε/L
β+β′

) is well approximated by the following analytical function 391 

(Fig. 10b - solid line) 392 

    1 1 11'

' '
g'( / L ) a b exp c

L L


 

          
  

 
   

 
      (19)  393 

where the fitting parameters are ( 1 1 16 1 25 75 2a , b . , c .   ) for our data.  The latter  ones  are  not  394 

independent  and  the two following conditions  395 

 396 

     1 1 1
p

a b c n /   


      (20) 397 

      1a n /


           (21)  398 

 399 

can be imposed onto the scaled n /    in order to: 400 
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1. to maintain a C1 continuity with data pre-peak data from Eq.(14) and  401 

2. to insure the correct asymptotic failure rate. 402 

The terms on the right-hand side in Eqs.(20,21) are measurable from Fig.10b. Thus, since 1a is 403 

imposed, only one free parameter is left and the pair { 1 1b ,c } is selected to optimize the data fit 404 

of Eq.(19). Combining Eqs.(18) and (19) yields the desired scaling law for the microcracks ∆n 405 

in the propagation regime 406 

    1 1 11d d '

'
n( ,L ) L a L b exp c

L

 


          
  

 
 


     (22)  407 

Next, the determination of the damage parameter for the softening phase requires a 408 

model, similarly to Eq.(12) for step#1. Because damage is additive, the softening damage 409 

simply sums up to the amount previously cumulated up to the peak strain with the new 410 

increment 411 

        ; ;pD D DL L       (23) 412 

 413 

where pD DD  and
 

0.5pD  from Eq.(17). To this purpose, we can recall and use the model 414 

developed by Rinaldi et al (2006) by seeking to identify the damage increment D from 415 

normalizing ∆n by an appropriate factor ( )X L  416 

      ,
( )
n

D L
X L




      (24) 417 

The determination of  X L is pursued through statistical methods to reach a "data driven" 418 

decision. According to standard ordinary least square (OLS) regression methods, the stress 419 

estimate i) in correspondence to i and in at the generic i-th point of the stress response Eq.(4) 420 

was expressed as 421 

    0( , , ) 0.5 /i i i i in X E n X    
)  

  
,         (25) 422 

where X  is the target parameter to be estimated. Since this model is linear in 1/ X , the OLS 423 

method can be used to compute a minimum unbiased estimator X
)

 the minimization of the error 424 

function  2

1

ˆ(1/ )
Q

i i

i

Err X



 
)

   over Q simulation points by setting / 0Err X  
)

 leads to  425 
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    (26) 426 

 427 

The estimates from Eq.(26) are displayed in Fig.11 with circles (note that extra data for 428 

L={72,120} are also used for validation purposes) and reveals that the function  ( )X L  is well 429 

approximated by regression line  430 

     2 2( )X L a L b  ,      (27) 431 

with 2 65a  and 2 1038b   , and a coefficient of determination 2 0.997R  ). Such a result fully 432 

solves our problem, with Eqs.(24) and (27) delivering the desired scaling relations for the 433 

average constitutive model in the softening regime, which for very large L (such that 1038 65L ) 434 

can be reasonably approximated as 435 

  436 

     
2

( , )
( , )

n L
D L

a L


 


               (28) 437 

which intuitively means that the number of microcracks roughly scales with the size of the lattice 438 

in the fracture propagation regime. By substituting Eq.(22), we finally obtain the analytical 439 

expression  440 

   
2

'
1 1 1 '

1 exp

( , )

d dL a L b c
L

D L
a L

 

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    (29) 441 
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 443 

Fig.11. Comparison of X(L) estimated from Eq.(26) vs Eq. (27) from average data ∆n (circles). 444 

 445 

The application of Eq.(29) is shown in Fig.12a, where the model (4) now matches simulation  446 

for most of the damage process. The scaling law (29) provides a convenient smooth analytical 447 

relation for ( , )n L   but is clearly a trade-off between the need of having an average estimate of 448 

the microcracks number valid for any lattice size and the inevitable loss of "details" 449 

characterizing each individual curve, as made evident in Fig.12b when actual numerical data 450 

for n , NP, and n  are used directly in Eq.(28).Yet, the difference between the estimate of n  451 

from scaling (118) and the real value from simulations never exceeded 10% for any lattice size, 452 

which confirms the robustness of the K-approach.  453 

 454 
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 455 

Fig.12. Complete model fit to average data for N =96 from (A) analytical expression (29) vs. 456 

and (A) scaling model (28), where actual numerical data for n , pN , and n  are used directly. 457 

 458 

Also the parameter X(L) contributes to the accuracy of the model. In fact, as shown by the four 459 

randomly picked replicates of L = { 24,48,96,192 } in Fig.13, the model (28) dramatically 460 

improves and captures the damage response from individual simulations by using the exact 461 

value for X(L) (“o” marks in Fig.11), thus further confirming the choice of damage parameter 462 

and scaling laws. 463 

 464 

 465 
Fig. 13. Responses of scaling model Eq.(17) and (28) from the “K-approach” (dotted line) vs. 466 

original simulation data (solid line) for 4 random replicates for L = {24, 48, 96, 192} . 467 

 468 
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 469 

3.1.3. Summary of the procedure 470 

In summary the “Krajcinovic approach” proposed herein consists of a two-steps scaling 471 

procedure encompassing the following: 472 

1. Collection/simulation of σ-ε and n-ε for several samples and over a sufficiently large L 473 

range (recommended 2 orders of magnitude) ; 474 

2. Compute averages curves per each L; 475 

3. Subdivide the datasets in pre-peak and post-peak data; 476 

4. Apply scaling Eq.(9) to the all data for the sake of scaling peak points into one; 477 

 I check point: IF NOT POSSIBLE, THEN STOP 478 

5. Compute approximate relations for n(ε;L), εp and Dp (the later one being scale-479 

invariant); 480 

6. Identify a suitable model/definition for the damage parameter in the fracture initiation 481 

regime; 482 

7. Apply scaling Eq.(10) to the softening data seeking to transform the remaining of the 483 

data; 484 

 II check point: IF NOT POSSIBLE, THEN STOP 485 

8. Compute approximate relations for ∆n(ε;L) and ∆Dp; 486 

9. Identify a suitable model/definition for the damage parameter in the fracture 487 

propagation regime; 488 

10. Validate the results of the scaling law and of the choice of D by comparing Eq.(4) vs. 489 

the initial datasets of simulations or experiments 490 

4. CONCLUSIONS 491 

For quite a few decades, lattice models have been focused on the investigation of finite-size 492 

scaling and on the formulation of physical/rational models of damage. They have appealed 493 
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specially to the community of physicists and mathematicians active in statistical physics who 494 

have seized the opportunity to investigate failure in heterogeneous systems by the same 495 

approaches developed for phase transitions and chaos. However, the K-approach developed 496 

here from lattice data is an heuristic scaling procedure bears the potential to evolve from 497 

science to a practical tool for the engineering community, being (i) based on the physics of the 498 

fracture initiation process underlying the damage in quasi-brittle-system and (ii) being 499 

transferable in principle also to experimental data, provided that the number of microcracking 500 

events is tracked along with the stress response. Approximate analytical expressions are readily 501 

deduced from scaled data and shown to yield robust stress vs. strain constitutive relations. Yet, 502 

this method has to be benchmarked against the current mainstream approached described in the 503 

introduction, contributing to the ongoing debate about size-effects modeling and control in 504 

quasi-brittle system.   505 

 506 

 507 

 508 

 509 

5. APPENDIX: LATTICE MODEL 510 

Fracture initiation in quasi-brittle materials has proved to be an elusive subject that has been 511 

approached by a continuum and discrete angle for over 20 years now. By a continuum 512 

standpoint, a substantial amount of work has been produced. The consideration of at least two 513 

length scales (see Fig. 14) poses an intrinsic difficulty for first displacement gradient 514 

continuum damage model (CDM), more suited to capture macroscopic effects (e.g. Chambolle 515 

et al, 2009, 2010; Contrafatto and Cuomo, 2002, 2005, 2006; Del Piero and Truskinovsky, 516 

2009; Rinaldi and Placidi 2013), and micropolar elasticity (e.g. Altenbach et al. 2010;  Diebels 517 

and Geringer, 2013;  Diebels and Scharding 2011; Eremeyev, 2005; Forest et al. 2001; Forest, 518 

2009) or higher displacement gradients (e.g. Diebels and Ebinger, 2005; Ebinger,  Steeb, 519 

Diebels, 2005; Alibert, Seppecher and dell’Isola, 2003; Seppecher, Alibert, Dell’Isola, 2011) 520 

are required to capture damage localization (e.g. Sunyk and Steinmann, 2003;  Yang and 521 

Misra, 2010).  522 
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 Conversely, the problem can be approached from the bottom length scale using discrete 523 

microstructural models. These are a convenient and increasingly popular alternative pursued by 524 

many research groups besides those already cited (e.g. Curtin and Scher, 1990; Jagota and 525 

Bennison, 1995; Van Mier et al. 2002; Mastilovic, 2008, Rinaldi et al. 2008; Miguel et al. 526 

2010) for they are well suited for multiscale problems. They can incorporate several 527 

microstructural features into the model by using statistical information that can be measured 528 

directly and, without making extensive assumptions, are capable of scaling the material 529 

response to the macro level. In this class, considerable attention has been drawn by lattice 530 

models, which provide simple representations of complex systems, such as the disordered 531 

microstructures of ceramics, concrete and other quasi-brittle polycrystalline materials. 532 

Contrarily to a classical CDM, lattice models resolve individual grain boundaries and are 533 

convenient for study of brittle damage by intergranular cracking. Van Mier and coworkers 534 

(2002), for example, showed the agreement between simulated tensile tests and actual tests for 535 

concrete using lattice models of the microstructure. Some effort has been progressively 536 

devoted to bridge across discrete and continuum approaches, in the attempt to reconcile the 537 

two. For example, Rinaldi and Placidi (2013) established the connection between the present 538 

lattice models and 2nd gradient CDM by analyzing a case study that reveals such a consistency. 539 

The present paper is the complement to the latter work, addressing size effects and providing 540 

the continuum scaling laws discussed in the body text. 541 

 The details of the specific 2-D lattice model used in our discussion and presented in 542 

prior work (Rinaldi and Krajcinovic, 2007, Mastilovic and Krajcinovic, 1999) are briefly 543 

recalled here for convenience. The lattice is made of a disordered network of springs with finite 544 

strength, providing a first order approximation for the materials microtexture, the morphology 545 

of which can be represented by a random Voronoi froth and its dual Delaunay lattice. A 546 

Voronoi polygon represents a grain of ceramic, a concrete aggregate or a granule of clastic 547 

rock whereas a bond in the Delaunay lattices is representative of corresponding interface 548 

cohesion.  549 

The lattice encapsulates both morphological and mechanical types of information at lower 550 

computational expense. Each grain of the polycrystalline material maps into a node in the 551 

lattice, while each lattice link marks a grain boundary and is a linear spring of stiffness and 552 
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finite tensile strength (or positive elongation ) that transmits the force between 553 

adjacent i-th and j-th generic grains  (i,j = 1..N0, such that i ≠ j and N0 = # nodes) 2 554 

(30) 555 

(not a  tensor)
2
 556 

The springs behave as decohesive elements that break under tensile load when a “random 557 

critical strain” is reached previously at any time point  between 0 and the current time t, thus 558 

reproducing the intergranular cracking process of brittle materials such as concrete or ceramics.  559 

For the data in this paper the following assumptions apply: 560 

- the links have equal stiffness kij = k  (=100) and equal length  (=1) breaking at a 561 

tensile strain  , 562 

- no healing is allowed, 563 

- the (mechanical) disorder is inserted in this lattice by sampling the failure tensile strains 564 

from a uniform distribution pf(ε) in the interval 20,  10   .  565 

Damage is introduced in the network by the rupturing of the links, which are removed 566 

progressively from the system. Broken links remain active in compression if load reversal 567 

occurs in the course of deformation to account for crack closure. The lattice is geometrically 568 

distorted since the equilibrium link lengths are normally distributed within the range 569 

  ll 2   with 0 1l .   (if 1l   all grains are perfect hexagons). 570 

Quasi-static displacement-controlled uniaxial tensile tests are simulated on different lattice 571 

sizes L by means of a molecular dynamics solver based upon the Verlet's algorithm. Each 572 

simulation is carried on incrementally up to the threshold of failure by applying small 573 

displacement steps and by computing the equilibrium configuration at each step.  574 

For the sake of the advocated similarity between the lattice and the fiber bundle model (FBM), 575 

the latter one consists of an ensemble of parallel and non-interacting links of equal stiffness k 576 

connected by rigid bus bars at the ends, the damage parameter of which is D=∫ pf(ε)dε (Rinaldi 577 

2011). Under the conditions of uniform sampling distribution in our simulations, it is readily 578 

                                                
2  The index notation ij refers to the ij-th link has end nodes i and j, not to be confused with second order tensors, as 

customarily reserved in solid mechanics.  
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obtained D= ε/0.01, according to which the stress response (4) is a parabola and Dp=0.5, as 579 

stated in Eq(16).  580 
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