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ABSTRACT 20 

Background: Food safety and food security remain the major concern of consumers and the 21 

food industry. Bacterial contamination continues to be a crucial food safety issue. Smart 22 

packaging incorporates both active and intelligent components. Intrinsic antibacterial activity, 23 

oxygen and ethylene scavenging (active) and the sensing (intelligent) properties of metal oxide 24 

nanoparticles are in research focus for application in smart food packaging, especially bio-25 

nanocomposite films.  26 

Scope and approach: Metal oxide nanoparticle properties are closely linked to their morphology 27 

resulting from the synthesis process. In this review, we cover current innovative synthesis 28 

methods for obtaining metal oxide nanoparticles and current incorporation techniques used to 29 

obtain smart (active and/or intelligent) packaging, focusing on bio-nanocomposites, commonly 30 

used metal oxides and future mixed metal or doped metal oxides. Taking into account safety, 31 

we focus on current legislation, and methods for risk assessment due to particle release from 32 

the packaging material and a summary of cytotoxic studies of metal oxide nanoparticles on 33 

human cells and the gut microbiota.   34 

Key findings and conclusions: Antimicrobial effectiveness of metal oxide nanoparticles is 35 

highly dependent on morphology as a result of the synthesis method. Solution casting and 36 

electrospinning are innovative methods applied to synthesize metal oxide incorporated 37 

biopolymer films for active packaging with improved mechanical and barrier properties 38 

combined with active components (antimicrobial, ethylene scavenging). Metal oxides show 39 

sensitivity and selectivity to most gases produced during food spoilage. In selection of metal 40 

oxide for smart packaging, particle migration and cytotoxic activity are key issues requiring 41 

careful and detailed characterization. 42 
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1. Introduction 60 

The food industry is under constant and crucial pressure to provide appetizing and safe 61 

food products. To satisfy these consumer demands, the food industry regularly improves both 62 

the food quality and packaging technology. Food packaging is essential in maintaining the 63 

safety and quality of products from processing and manufacturing, through handling and 64 

storage until it reaches the consumers. Petroleum-based plastic materials (like polyethylene 65 

terephthalate, polypropylene, polystyrene) are usually used to envelop food in order to protect 66 

its content from contamination and spoilage and to facilitate its transport and storage. However, 67 

plastic materials cannot fully protect food from the environment and, thus, cannot completely 68 

ensure product quality and safety. In addition, plastic undergoes continuous fragmentation, and 69 

may create micro- and nano-plastics that have potential toxic impacts on human health. Plastic 70 

pollution has increased due to the COVID-19 pandemic (Silva, et al., 2020). To improve plastic 71 

inability to stop light, oxygen and other gases from penetrating and reaching the consumables 72 
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and causing their degradation, as well as to prolong shelf-life of food and protect human health, 73 

novel materials are employed to envelop food products.  74 

Starting from the beginning of the twentieth century, three main approaches have been 75 

applied to improve food packaging.  The first approach consists in improving plastic polymers 76 

by mixing them with other materials. Doping or formation of nanoparticle-polymer composites 77 

improves mechanical properties of the packaging material, which can enforce the temperature 78 

and humidity resistance properties or improve oxygen barriers (Khajavi, et al., 2020). 79 

Biopolymers, as ecologically sound “green” materials often suffer from degradation and 80 

mechanical issues so application of these materials in food packaging can be accomplished in 81 

the form of nanocomposites. The second approach aims to develop “active packaging” in which 82 

particles added to the packaging material interact directly with food and protect it from UV, 83 

oxygen, ethylene or microbiological contamination (Rai, et al., 2019; Vilela, et al., 2018). 84 

Active packaging systems can be classified as active scavenging systems (absorbers) that 85 

remove undesired elements from the product, such as moisture, carbon dioxide oxygen, 86 

ethylene and odour and active releasing systems (emitters) that release into the packaging in 87 

the form of antioxidants, carbon dioxide or antimicrobial compounds (Yildirim, et al., 2018). 88 

Finally, the third approach develops “intelligent packaging”, which allows real-time monitoring 89 

of food safety (Müller & Schmid, 2019; Rai, et al., 2019). For this, sensing elements are 90 

combined with the packaging material to transform the food envelope into a miniaturized device 91 

for tracking. Intelligent packaging may provide monitoring of food freshness and quality, its 92 

storage condition, and, in that way, improve safety and convenience, and help to extend food 93 

shelf-life. Thus, enhanced functionality of food packaging is obtained by smart packaging that 94 

includes both active and intelligent components, as shown in Fig. 1. 95 
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Nanomaterials and nanoparticles are used in the development of all three advanced 96 

packaging approaches. Adding nanomaterials including nano-metal oxides to different 97 

polymers to form nanocomposites can make packaging lighter, stronger and less permeable (Y. 98 

Huang, Mei, Chen, & Wang, 2018). Nanomaterials with an intrinsic antimicrobial activity 99 

incorporated in active and intelligent packaging contribute to extending the shelf-life of 100 

products by keeping food safe from harmful and spoilage bacteria, fungi and viruses, and by 101 

providing freshness during longer storage time. Metal oxide nanoparticles (NPs) have unique 102 

properties and morphology and a great potential for application in food industry NPs in 103 

nanocomposite packaging can perform oxygen and ethylene scavenging and UV- blocking as 104 

part of active packaging functions contributing to extending the product shelf life (Gaikwad, 105 

Singh, & Lee, 2018; Gaikwad, Singh, & Negi, 2020).  106 

The objective of this review is to provide an overview of the methodologies and 107 

procedures carried out in earlier literature on the development of active and intelligent 108 

packaging utilizing metal oxide nanoparticles. As the physicochemical properties of 109 

nanoparticles and their stability in nanobiocomposites are essential for the development of 110 

packaging films we describe the state-of-the art techniques for nanoparticle synthesis, 111 

characterization and incorporation in polymers. Antibacterial properties of active packaging 112 

containing metal oxides and current available data on the antiviral aspect is presented. 113 

Antifungal and antiviral activities, also significant for food protection, are briefly mentioned. 114 

To point out that the cytotoxicity of nanoparticles is the main barrier for their applications in 115 

food packaging, we provide a condensed assessment of toxicity of metal oxide nanoparticles at 116 

the level of cells, mucus and microbiota. It is noteworthy that new regulations, consumer 117 

attitudes and acceptability, the societal involvement and impact, have been comprehensively 118 

described in some recent reviews (Garcia, Shin, & Kim, 2018; Omerović, et al., 2021). Finally, 119 

an overview of the current research covering the potential for utilizing metal oxide 120 
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nanoparticles in smart packaging for oxygen and ethylene scavenging, moisture control and in 121 

food safety sensors is also given.   122 

2. Legislation  123 

The active packaging technology is defined in the European regulations as “new types 124 

of materials and articles designed to actively maintain or improve the condition of the food” 125 

(1935/2004/EC) and as “deliberately incorporate components that would release or absorb 126 

substances into or from the packaged food or the environment surrounding the food” 127 

(450/2009/EC). The intelligent packaging technology is “designed to monitor the condition of 128 

the food“ (1935/2004/EC). Both technologies are closely linked to the development and 129 

research in nanotechnology. Although the European Food Safety Authority’s (EFSA) estimates 130 

that the most common agri-food applications of nanomaterials are in active packaging (as 131 

nanofillers to endow composite films) and as additives, the approval procedures for particular 132 

nanoparticles are long and on a case-by-case basis. This arises mainly from the lack of validated 133 

risk assessment protocols for food packaging. In other countries, especially in North America 134 

and Asia Pacific, that dominate the field, the legislation bodies have provided a set of legal 135 

frames for food sector applications of nanomaterial based active and intelligent packaging. The 136 

commercialization of active and intelligent packaging in Europe is far behind markets in Japan, 137 

USA and Australia, where these products are treated within conventional legislation for food 138 

contact materials. The increasing demand of the food industry and the rise in acceptance among 139 

consumers for packaging solutions based on emerging nanotechnologies is reflected by the 140 

predicted revenue of about $15 billion in 2020.  141 

The ongoing global spread of a pandemic caused by SARS-CoV-2 has enhanced 142 

development of active packaging that aims to prevent the transmission of the virus in order to 143 

protect consumers. For this, packaging film is covered with an external active coating layer 144 
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based on nanoparticles or nanoparticles embedded in a polymer matrix (Imani, et al., 2020; 145 

Mizielińska, Nawrotek, Stachurska, Ordon, & Bartkowiak, 2021).  146 

3. Synthesis and antimicrobial properties of metal oxide NPs 147 

Incorporation of metal oxide NPs in food packaging leads to improved mechanical, 148 

thermal and barrier properties combined with excellent antimicrobial activity.  The synthesis 149 

method greatly influences properties of NPs including their antimicrobial and cytotoxic effects 150 

(Y. Huang, et al., 2018; Stankic, Suman, Haque, & Vidic, 2016).  NPs due to their small size 151 

have a larger surface area per mass, thus a larger number of active surface states available for 152 

reaction with foodborne pathogens. These interactions are greatly affected by the size, shape 153 

and crystal structure of the NPs. Zinc oxide (ZnO) and titanium dioxide (TiO2) are metal oxides 154 

most commonly used as antimicrobial agents especially in active food packaging, but other 155 

metal oxides have shown increased potential as antibacterial agents too.  156 

 157 

3.1. ZnO nanoparticles 158 

ZnO NPs display a large surface to volume ratio, highly crystalline structure, improved 159 

mechanical properties, high thermal conductivity, and high optical absorption in the UV region 160 

beneficial for interactions with bacteria. ZnO is generally recognized as a safe (GRAS) material 161 

by the FDA that can be applied in the field of food and drug industry, particularly as an 162 

antibacterial and antifungal agent. A broad spectrum of bacteria are sensitive to ZnO NPs (da 163 

Silva, et al., 2020; Tam, et al., 2008; Vidic, et al., 2013; Zanet, et al., 2019). 164 

Various methods have been used to synthesize ZnO NPs by controlling synthesis 165 

parameters resulting in different ZnO particle morphologies (Fig. 2). Some examples include 166 

the sol-gel method used to synthesize ZnO and Ag doped ZnO nanoparticles (Karunakaran, 167 

Rajeswari, & Gomathisankar, 2011), ZnO nanorods focusing on the influence of calcination 168 

temperature on structure, morphology and antimicrobial activity (Ismail, Menazea, Kabary, El-169 
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Sherbiny, & Samy, 2019), co-precipitation used to obtain a flower-like morphology with high 170 

antibacterial activity against Enterococcus faecalis and Micrococcus luteus in the presence of 171 

visible light irradiation (Quek, Lam, Sin, & Mohamed, 2018), the ultrasonic method used to 172 

synthesize ZnO NPs and investigate antibacterial activity and effect of particle size of ZnO 173 

against Escherichia coli and Staphylococcus aureus (Applerot, et al., 2009), and the chemical 174 

vapour based method used to synthesize ZnO, MgO and mixed ZnO-MgO NPs and investigate 175 

their antibacterial efficiency to E. coli and Bacillus subtilis (Vidic, et al., 2013). Cluster-like 176 

ZnO NPs were synthesized by the hydrothermal method and grown on PDA-PET substrate. 177 

Growth of Gluconobacter cerinus was inhibited by destroying the membrane of bacterial cells, 178 

while the UV protection capacity increased up to 500 fold (Cheng, et al., 2019). This method 179 

was also used to prepare ZnO nanorods. Antibacterial activity against E. coli and Bacillus 180 

atrophaeus on different substrates was investigated (Tam, et al., 2008). The hydrothermal 181 

method using different stabilizing agents - polyvinyl pyrrolidone (PVP), polyvinyl alcohol 182 

(PVA) and poly (α,γ, l-glutamic acid) (PGA) was used to synthesize ZnO NPs with different 183 

shape and morphology (Stanković, Dimitrijević, & Uskoković, 2013). Hexagonal prismatic 184 

rods (PVP), spherical (PVA) and ellipsoid (PGA) shaped particles with different sizes were 185 

obtained. The highest antibacterial activity against E. coli and S. aureus was achieved 186 

nanospherical ZnO particles with an average diameter around 30 nm and the largest specific 187 

surface area – 25.70 m2g−1. Different ZnO NP morphologies were also obtained using the 188 

solvothermal method. Antibacterial activity against E. coli and S. aureus was tested showing 189 

that flower-like ZnO NPs had higher efficiency than rod and sphere-like shaped NPs (Talebian, 190 

Amininezhad, & Doudi, 2013).  ZnO has also shown exceptional antifungal properties (Q. Sun, 191 

Li, & Le, 2018). 192 

   193 

3.2. TiO2 nanoparticles 194 

 195 
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TiO2 is a well-known low cost metal oxide with high chemical stability widely used in 196 

photocatalysis. As one of the most versatile compounds, TiO2 is used in extraordinarily diverse 197 

food products and technologies. However, in 2016 the EFSA highlighted the need for more 198 

research on TiO2 safety. Since this year, the EFSA no longer considers TiO2 safe when used as 199 

a food additive because they cannot rule out the genotoxicity concerns of TiO2, nor the 200 

possibility that TiO2 after ingestion can accumulate in the body. However, TiO2 NPs are not 201 

banned from applications in the food industry. Sol-gel processing is the most common synthesis 202 

method for TiO2. TiO2 colloids obtained using the sol-gel method combined with pectin to form 203 

aerogels, have shown potential for application in food packaging (Nešić, et al., 2018). Recent 204 

synthesis methods  include biosynthesis (a “green” synthesis method), where TiO2 NPs are 205 

synthesized using plant extracts, showing good antibacterial activity against (Subhapriya & 206 

Gomathipriya, 2018).    207 

Antimicrobial performance of TiO2 was first investigated by Matsunaga et al., 208 

(Matsunaga, Tomoda, Nakajima, & Wake, 1985).  Growth of Lactobacillus acidophilus, 209 

Saccharomyces cerevisiae and E. coli was completely inhibited when incubated with TiO2/Pt 210 

particles during photoelectrochemical oxidation. However, TiO2 is thermodynamically 211 

unstable, tends to agglomerate and is difficult to remove from a treated solution. Since TiO2 212 

photocatalyst is only active under UV irradiation at levels dangerous for human cells, irradiation 213 

in the visible regime could overcome this problem. One way is doping TiO2 or forming 214 

nanocomposites. Thus, antibacterial activity of visible-light-irradiated nitrogen- and carbon-215 

doped TiO2 against several microbials such as Shigella flexneri, Listeria monocytogenes, Vibrio 216 

parahaemolyticus, Streptococcus pyogenes, S. aureus, and Acinetobacter baumannii, was 217 

investigated, with nitrogen doping showing better bactericidal activity against microbials 218 

(Wong, et al., 2006). Nitrogen-doped mesoporous titania thin films prepared by the sol–gel 219 

method using Pluronic P123 as the template resulted in a reduced band gap and improved 220 
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visible light induced antibacterial activity against Bacillus amyloliquifacience (Soni, Dave, 221 

Henderson, & Gibaud, 2013).   222 

3.3. Other metal oxide nanoparticles  223 

 224 

Other metal oxides have shown increased potential for application as antimicrobial 225 

agents in food packaging, such as Cu2O NPs, MgO NPs, Fe3O4 NPs, FeMnO3 and -Fe2O3 NPs 226 

alone or in the form of nanocomposites. Some recent examples are shown in Table 1.  227 

Nanocomposites composed of metal doped metal oxides and mixed metal oxides, such as for 228 

example Ag/ZnO/CuO as small amounts have achieved high antimicrobial activity (Dehghani, 229 

Peighambardoust, Peighambardoust, Hosseini, & Regenstein, 2019) or CuO/montmorillonite 230 

nanocomposite incorporated in chitosan film (Nouri, Yaraki, Ghorbanpour, Agarwal, & Gupta, 231 

2018).  232 

Table 2 presents some successful examples of active packaging systems improved with 233 

various metal oxide NPs.  234 

4. Nanoparticle-biopolymer composites for active packaging 235 

 236 

Classical food protecting films are made from polymers such as polyamide (PA), 237 

polystyrene (PS), polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), and 238 

polyethylene terephalate (PET) as raw materials. These plastics have been widely used because 239 

of their high accessibility, low cost and good mechanical properties (Omerović, et al., 2021). 240 

However, they cannot be recycled and are not completely biodegradable. Efforts have been 241 

made to replace petroleum plastics with bio-based degradable materials including 242 

polysaccharides (chitosan, zein, alginate, starch, carboxymethyl cellulose), poly(α-243 

hydroxyester)s, polyhydroxybutyrates (PHB), poly(glycolic acid) (PGA), polylactic acid 244 

(PLA), their co-polymers poly(lactide-co-glycolide) (PLGA), poly caprolactone (PCL), and 245 
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polyvinyl alcohol (PVA). However, biopolymers have drawbacks as they provide poor 246 

mechanical, thermal, and barrier properties.  247 

Conjugation of metal oxide NPs with biopolymers in the form of nanoparticle-248 

biopolymer composites improves the mechanical and barrier properties of biopolymers and 249 

provides antimicrobial properties (Fig. 3). One form is coating the packaging film with 250 

antimicrobial NPs, such as TiO2 or ZnO coated PE films (Othman, Abd Salam, Zainal, Kadir 251 

Basha, & Talib, 2014; Tankhiwale & Bajpai, 2012). PE films coated with a chitosan-ZnO 252 

nanocomposite achieved a high antimicrobial activity to Salmonella enterica, E. coli and S. 253 

aureus (Al-Naamani, Dobretsov, & Dutta, 2016). Metal oxide NPs can also be incorporated in 254 

the polymer film. Enhanced mechanical and oxygen barrier properties were achieved with ZnO 255 

incorporated in PP films that depended on the concentration and shape of ZnO NPs (Lepot, et 256 

al., 2011). Low density polyethylene (LDPE) films containing ZnO NPs showed high 257 

antibacterial activity to B. subtilis (Esmailzadeh, Sangpour, Shahraz, Hejazi, & Khaksar, 2016).  258 

Some examples of active packaging with quantitatively improved mechanical and 259 

barrier properties are given in Table 3.  260 

 261 

4.1. Incorporation of metal oxide NPs in packaging films 262 

 263 

Although the number of biodegradable materials for food packaging continuously 264 

increases, there is still a lack of eco-friendly packaging biocomposite with good mechanical, 265 

thermal and physical properties that can be used industrially. Methods commonly used to 266 

incorporate metal oxide NPs into biocomposites include solvent casting and electrospinning.  267 

The solvent (solution) casting method is a well-known technique for the preparation of 268 

polymer nanocomposites.  Metal oxides as nanofillers and the polymer are firstly solved in a 269 

solvent (Fig. 4). The metal oxide and polymer solution is mixed to achieve homogeneous 270 

dispersion. This is followed by solvent evaporation and casting resulting in the formation of a 271 
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metal oxide polymer nanocomposite. TiO2 NPs incorporated in a gellan gum (biopolymer) film 272 

showed good antibacterial activity against S. aureus, Streptococcus, E. coli and Pseudomonas 273 

aeruginosa (Razali, Ismail, & Amin, 2019). Zinc oxide NPs incorporated using this technique 274 

into a chitosan/carboxymethyl cellulose blend (Youssef, El-Sayed, El-Sayed, Salama, & 275 

Dufresne, 2016) displayed improved mechanical and thermal properties and good antibacterial 276 

activity against S. aureus, P. aeruginosa, E. coli and Candida albicans, thus increasing the shelf 277 

life of the tested soft white cheese. Mixed Zn-MgO NPs incorporated in alginate film prevented 278 

proliferation of L. monocytogenes in cold smoked salmon meat (Vizzini, Beltrame, Zanet, 279 

Vidic, & Manzano, 2020). Bionanocomposite films using konjac glucomannan/chitosan (KGC) 280 

with nano-ZnO and mulberry anthocyanin extract (MAE) by a modified casting method (J. Sun, 281 

et al., 2020a) exhibited beside improved mechanical and thermal properties of films, good UV–282 

Vis light barrier properties and relatively high pH-sensitive properties, strong antioxidant 283 

activity and good antibacterial activity against E. coli and S. aureus. ZnO NPs have also been 284 

utilized in soy protein isolate films together with cinnamaldehyde showing improved oxygen 285 

barrier and antifungal properties (Wu, et al., 2019). ZnO-SiO2 infused in PVA/chitosan films 286 

exhibited exceptional antimicrobial properties and extending the shelf-life of bread (Al-Tayyar, 287 

Youssef, & Al-Hindi, 2020) 288 

Compared to other techniques used for the preparation of polymer matrices for food 289 

packaging, electrospinning is a versatile technique for fabrication of nanofibers with different 290 

morphologies and structures improving mechanical and thermal but also barrier properties of 291 

significance for food packaging. In this process (Fig. 4) a mixture of metal oxide and polymer 292 

solution is first placed into a syringe (plastic or glass) lying horizontally or vertically on a 293 

pressure and solution-flow rate controlled pump. The solution is pumped through a syringe, to 294 

a metallic needle connected to the electric power supply and a droplet is formed. The 295 

electrospinning process starts at a critical high voltage (10-25 kV) when the formed droplet 296 
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changes shape to a Taylor cone and ejects an electrically charged jet. The jet within the electric 297 

field is directed toward the collector with opposite charge, leading to solvent evaporation and 298 

fibre formation. Although, more complex than the solvent casting method, electrospinning is a 299 

well-adapted method for industrial scale applications.  300 

Different metal oxides have been incorporated into biodegradable polymer matrices, 301 

though most often ZnO or TiO2. ZnO dispersed in cellulose acetate (CA) fibrous membrane 302 

was prepared by the electrospinning process and showed improved water repellent properties 303 

compared to pure CA membrane and a strong antibacterial activity against S. aureus, E. 304 

coli and Citrobacter (Anitha, Brabu, Thiruvadigal, Gopalakrishnan, & Natarajan, 2012). 305 

Nanoparticle agglomeration was suppressed and the contact area between fibres and microbes 306 

was increased. ZnO NPs incorporated into ethylcellulose/gelatin nanofibers obtained by 307 

electrospinning also showed excellent surface hydrophobicity, water stability and antimicrobial 308 

activity against S. aureus and E.coli  (Liu, et al., 2018). Hybrid electrospun nanofibers 309 

composed of ZnO NPs and rosemary essential oil incorporated zein/κ-carrageenan showed 310 

good biocompatibility, and high antibacterial and antioxidant activity (Amjadi, Almasi, 311 

Ghorbani, & Ramazani, 2020b). ZnO/GO nanocomposites  incorporated into gelatin fibres by 312 

a side-by-side electrospinning technique showed high antibacterial activity and complete 313 

degradation within 7 days  (H. Li, et al., 2020). High surface area electrospun zein-TiO2 314 

nanofibers improved the storage life of cherry tomatoes by absorbing ethylene (Böhmer-Maas, 315 

Fonseca, Otero, da Rosa Zavareze, & Zambiazi, 2020) Electrospun zein/sodium alginate 316 

nanofibers loaded with TiO2 NPs and betanin showed good antioxidant and antibacterial 317 

activity against E. coli and S. aureus (Amjadi, Almasi, Ghorbani, & Ramazani, 2020a).   318 
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5. Nanoparticle migration from nanocomposites and food stimulants  319 

The antibacterial efficiency of NPs imbedded into a packaging film is usually inferior 320 

of that used for film production. Cierech et al., have shown that the concentration of released 321 

ZnO NPs from a nanocomposite was several times lower than the concentration of the 322 

nanoparticle in the film (Cierech, et al., 2019). This parameter has to be evaluated for packaging 323 

films. Migration of nanoparticles into enveloped food is a diffusion process when low molecular 324 

mass particles initially incorporated in the package are released into the contained product or 325 

into the space around. The release is usually experimentally measured using food stimulants 326 

instead of particular food matrices. In 1985, the EC promulgated a list of food simulants that 327 

can be used to test migration of constituents of plastic materials and particles intended to come 328 

into contact with foodstuffs  (EC, 1985). Among food simulants 95% (v/v) aqueous ethanol and 329 

3% (w/v) aqueous acetic acid are frequently used. To estimate release, packaging films are cut 330 

into pieces, weighed and immersed in a simulant solution. The solution is kept at a given 331 

temperature (for instance, room or refrigerated temperatures) and the amount of released NPs 332 

is measured regularly during the defined period of time. Such studies enable correlation of the 333 

migration kinetics of NPs or their ions from the film and their antibacterial, oxygen and ethylene 334 

scavenging and moisture absorption activities.  335 

The migration of metal oxide NPs to food simulants takes several steps. For instance, in 336 

the case of ZnO, the first step was shown to be Zn2+ dissociation from ZnO and diffusion 337 

through the film (Espitia, et al., 2012; Petchwattana, Covavisaruch, Wibooranawong, & 338 

Naknaen, 2016). Zn2+ ions then leave the film surface and enter into the food simulant. This 339 

process of mass transferring from the film surface to the food continues until the 340 

thermodynamic equilibrium is reached. Practical application of active packaging depends 341 

strongly on the possibility to achieve the release of active compounds in a controlled manner. 342 

Controlled release can be obtained through the design of nanoparticle-biopolymer composites, 343 
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method of NPs incorporation, choice of NPs shape, size, polarity, and weight, utilization of two 344 

or more active compounds in the same packaging film or addition of cross-linking agents into 345 

the film (Appendini & Hotchkiss, 2002). The main challenge in designing the nanobiopolymer 346 

system is slowing the migration rate of active compounds to obtain prolonged activity of the 347 

packaging film. Techniques utilized for the design of controlled release in active food 348 

packaging have been review recently (Almasi, Jahanbakhsh Oskouie, & Saleh, 2020). 349 

6. Oxygen and ethylene scavenging and moisture absorption in active packaging 350 

 351 

In many cases food deterioration is caused by oxygen, ethylene or excess of moisture. 352 

Active packaging systems incorporating metal oxide nanoparticles offer an advantage of 353 

actively contributing to reducing food waste, by scavenging oxygen and ethylene and/or by 354 

moisture absorption.  355 

The presence of oxygen in packaging has a detrimental influence on shelf-life and 356 

quality of packaged food, as it leads to oxidation of the product and proliferation of bacteria, 357 

moulds and insects (Yildirim, et al., 2018). Iron based scavengers are most common where the 358 

oxygen scavenging mechanism is triggered by moisture resulting in irreversible oxidation of 359 

iron into a stable ferric oxide trihydrate complex (Gaikwad, et al., 2018). Sachets have been 360 

proved effective, but the future lies in incorporation of the oxygen scavenging component into 361 

packaging films, such as coated LDPE/PET films modified with FeO(OH)xH2O, Fe2O3 and 362 

ascorbic acid (Wołosiak‐ Hnat, et al., 2019) or moisture-activated nanostructures with a 363 

Zn/ZnO core-shell structure (Gomes, Ferreira, & Carvalho, 2017) or  a nanocomposite based 364 

on ethylene acetate containing ZnO/Fe+montmorillonite nanoparticles  (Eskandarabadi, et al., 365 

2019). Another way for oxygen scavenging is UV light activation, with research focusing on 366 

TiO2 bionanocomposite films (Fathi, Almasi, & Pirouzifard, 2019).  367 

Ethylene (C2H4) is a plant growth regulator that influences/accelerates ripening and 368 

senescence (Gaikwad, et al., 2020; Wei, Seidi, Zhang, Jin, & Xiao, 2020; Yildirim, et al., 2018).  369 
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In packed food ethylene accelerates chlorophyll degradation rates especially in leafy products 370 

and causes excessive softening of fruit leading to shortening of product shelf life (Yildirim, et 371 

al., 2018). In active packaging scavengers with catalytic roles are incorporated in 372 

bionanocomposite films (Wei, et al., 2020). When exposed to UV or visible light the 373 

photocatalytic component in the active packaging degrades ethylene to H2O and CO2. 374 

Application of metal oxides, as photocatalytic ethylene scavengers in bionanocomposite films 375 

has included TiO2 with chitosan (Kaewklin, Siripatrawan, Suwanagul, & Lee, 2018) and TiO2- 376 

zein nanofibers (Böhmer-Maas, et al., 2020) both used to preserve and prolong the shelf-life of 377 

tomatoes. Nanocomposites with TiO2 such as Bi2WO6-TiO2 incorporated into starch films can 378 

perform catalytic degradation of ethylene in the visible light region (Wang, Wang, Ye, & Song, 379 

2019). A degradation rate of 12.47% achieved for a film containing 4 wt.% BT. Another 380 

approach is to focus on other metal oxides with photocatalytic properties in the visible light 381 

region. Graphene oxide (GO)  added to Bi2WO6 (GBW)  reduced the band gap of Bi2WO6 and 382 

was combined with starch in a nanocomposite film (J. Xie, Huang, Wang, Ye, & Song, 2020). 383 

The highest reaction rate constant (9.91×10-4) was achieved with 0.5% GO addition. 384 

Nanocomposites of monoclinic WO3 (band gap between 2.5 and 2.8 eV) enhanced with Pt 385 

loaded on zeolite (ZSM-5) have shown good potential for ethylene removal (Kim, Jeong, & 386 

Kim, 2019). The catalytic mechanism of these granules on ethylene was adsorption, migration 387 

and decomposition with hydroxyl radicals due to WO3-Pt migrating into the micropores of the 388 

ZSM-5 matrix. 389 

 Excess moisture is not good in high water activity food such as meat and poultry 390 

(Gaikwad, Singh, & Ajji, 2019). Physical absorption is the working mechanism of moisture 391 

absorbers that are mostly applied in the form of sachets and pads. Calcium oxide is the only 392 

metal oxide used for these applications (Gaikwad, et al., 2019). Metal oxide NPs in active 393 

packaging can prevent moisture or other gases entering the packed food acting as a  packaging 394 
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barrier against water and increasing the film tensile strength (Khajavi, et al., 2020). Addition of 395 

Mg doped ZnO quantum dots to zein films achieved a better barrier with a more cohesive 396 

polymer network and reduced intermolecular space between chains (Schmitz, de Albuquerque, 397 

Alberton, Riegel-Vidotti, & Zimmermann, 2020). 398 

 399 

7. Antimicrobial mechanisms of metal oxide nanoparticles 400 

Prior to their integration into a packaging film, nanoscaled engineering materials and 401 

particles are tested for their ability to inhibit proliferation of microorganisms in pure cultures. 402 

The methods used to estimate antimicrobial efficiency include disk diffusion, broth dilution, 403 

agar dilution, and the microtiter plate-based method (Auger, et al., 2019; Auger, et al., 2018; 404 

Stankic, et al., 2016; Vasiljevic, et al., 2020; Vidic, et al., 2013). The broth dilution method is 405 

most commonly used as it enables determination of the minimum inhibitory concentration 406 

(MIC) through culture turbidity and the minimum bactericidal concentration (MBC) through 407 

plating of serial dilutions and viable colony counts. The microtiter plate-based method 408 

performed on a 96-well plate is a modification of the broth dilution method. Multiple tests are 409 

easily performed due to miniaturization. The agar diffusion method has been standardized as 410 

an official method for detecting bacteriostatic activity in an indirect way. Monitoring of the 411 

optical density at the wavelength of 600 nm of the bacterial culture in the presence and absence 412 

of NPs enables determination of growth curves and estimation of the growth inhibition. Other 413 

methods including modified standard procedures methods are also used such as the 414 

conductometric assay, SEM, urease inhibition assay, flow cytometry viability assay 415 

(Sirelkhatim, et al., 2015). Finally, molecular methods like those based on polymer chain 416 

reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) can be used to determine the 417 

antibacterial effect of NPs (Manzano, Viezzi, Mazerat, Marks, & Vidic, 2018; Vidic, Manzano, 418 

Chang, & Jaffrezic-Renault, 2017; Vidic, et al., 2019; Vizzini, et al., 2020).  419 
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Application of nanomaterials showing good antibacterial efficiency in vitro in food 420 

packaging needs additional validation because the food structure and composition may 421 

influence NP antibacterial activity. Although inorganic NPs are less sensitive to temperature 422 

and pH variations than organic bactericidal compounds, the molecules and ions in the food 423 

matrices and the food microbial flora may inhibit their activity. The exact mechanism how 424 

metal oxide NPs prevent bacterial proliferation in foods is still under investigation. However, 425 

several mechanisms have been suggested including the generation of reactive oxidative species 426 

(ROS), with or without light radiation, release of antimicrobial metal ions, and mechanical 427 

damaging upon NPs binding to microorganisms (Stankic, et al., 2016). In addition, small NPs 428 

(< 10 nm diameter) penetrate bacterial cells, and subsequently may release toxic ions or 429 

generate ROS intracellularly. Fig. 2 illustrates some of the described antimicrobial mechanisms. 430 

Some authors described that multiple mechanisms took place. ZnO NPs were shown to directly 431 

interact with Campylobacter jejuni cells, destabilize the membrane and penetrate the bacterial 432 

cell where they induced oxidative stress (Y. Xie, He, Irwin, Jin, & Shi, 2011). 433 

ZnO and TiO2 NPs have been shown to produce a large quantity of ROS upon UV 434 

radiation. For instance, one hour illumination of TiO2 NPs completely irradiated E. coli due to 435 

the formation of H2O2. During photocatalysis, electron-hole pairs are formed on TiO2 after 436 

nanoparticle absorbed energy larger than their energy band gap. Holes react with water 437 

molecules on the surface of TiO2 and generate surface active oxygen species, such as hydroxyl 438 

radicals (OH), superoxide radicals (O2
·-) or hydrogen peroxide (H2O2). These active species 439 

react with a microbial, destroy its structure and at the end kill it (Stankic, et al., 2016). Similarly, 440 

nano-ZnO upon radiation forms ROS due to positively charged holes and defects at the surface 441 

that react with surrounding water molecules. The holes separate H2O2 in OH- and H+ and form 442 

O2
.- from dissolved oxygen, which in turn can react with H+ and form a hydroperoxyl radical 443 

(HO2
*). It produces hydrogen peroxide anions, which subsequently react with H+ and produce 444 
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H2O2. All mentioned ROS can damage and eradicate bacterial cells. A higher concentration and 445 

smaller size of NPs provide higher production of ROS and, thus, increased antibacterial 446 

efficiency.  447 

 A moderate release of metal ions from CuO, FeMnO3, ZnO, or TiO2 NPs was shown to 448 

be tolerated by a variety of microorganisms (Auger, et al., 2019; Stankic, et al., 2016; 449 

Vasiljevic, et al., 2020). Bacterial cells can finely tune import and efflux of metal ions,  450 

maintaining metal homeostasis (Randazzo, et al., 2020). However, tuning is possible to some 451 

extent and high concentrations of metal ions released from NPs cause bacterial death. The 452 

tolerance of various microorganisms to particular NPs can be explained by their capacity for 453 

metal ion homeostasis. The solubility of metal and metal oxide particles, and the release of ions 454 

into solution depend on particle concentration, time and medium (Vasiljevic, et al., 2020; Vidic, 455 

et al., 2014).  456 

Other modes of action of metal and metal oxide particles on bacterial cells have been 457 

proposed because transcriptomic and proteomic analyses have indicated that nanoparticles 458 

inhibit enzymes, inactivate proteins and perturb the bacterial metabolism and bioenergetics. 459 

Moreover, metal oxide NPs modify the expression of proteins involved in bacterial information 460 

processing, protection from oxidative stress, cell envelope dynamics and cell division (Auger, 461 

et al., 2019; Auger, et al., 2018; Zanet, et al., 2019).  462 

Finally the activity of incorporated NPs in packaging films is determined using a 463 

standard ASTM E2180-01 method designed for evaluation of antimicrobial agents in polymeric 464 

materials.  The method can indicate the antimicrobial activity of polymer films containing NPs 465 

in a plastic matrix or in a coating layer by quantifying differences in antimicrobial activity 466 

between untreated plastics or polymers and those with bound or incorporated antimicrobial 467 

agents. It can be also applied to compare the numbers of pathogen survivors on NP-treated and 468 
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control hydrophobic surfaces. The official ISO method 22196:2011 is used for measurements 469 

of antibacterial activity on plastics and other non-porous surfaces. Such measurements are 470 

needed because active NPs in the polymer matrix are only those that migrate from film to 471 

products or those on the film surface that are in contact with the food product, as explained 472 

above. 473 

8. Antiviral activity of metal oxide nanoparticles 474 

Transmission of viruses via contaminated surfaces is one of the important routes for 475 

their spreading. The antiviral activity of some metal oxide NPs has motivated research into the 476 

development of consumer protective packaging. For instance, CuO, ZnO, TiO2 and LaxMnO3 477 

have shown a virucidal activity towards enveloped viruses, such as Influenza A virus, yellow 478 

fever virus, respiratory virus, and non-enveloped viruses, such as rhinovirus-2 (Imani, et al., 479 

2020). Since surfaces coated with NPs showed higher virucidal effectiveness against enveloped 480 

viruses than non-enveloped it was suggested that the main mechanism involved ROS 481 

generation. ROS efficiently damaged the outer lipid envelope but has a lesser effect on protein 482 

capsid (Imani, et al., 2020).  483 

Another proposed mechanism is that metal oxide NPs prevent virus entry into the human 484 

cells (El-Megharbel, Alsawat, Al-Salmi, & Hamza, 2021). Recently, ZnO NPs were shown to 485 

target the ACE2 receptor of SARS-CoV-2 which is a key protein enabling virus entry into host 486 

cells (Hamdi, et al., 2021).  487 

9. Toxicity of metal oxide nanoparticles  488 

Humans may be exposed to nanoparticle dissolute from food packaging films either 489 

directly through food or indirectly by ingestion of inhaled particles. It is, thus, very important 490 

to test potential cytotoxicity of nano-enforcers used in active packaging. Cytotoxicity of NPs 491 
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has most commonly been evaluated by measuring cell viability after cell exposure to 492 

nanoparticles in a buffer or in a cell culture medium. Metal oxide NPs have been shown to 493 

reduce cell viability, induce membrane lipid peroxidation and damage DNA in various 494 

mammalian cell lines (Sahu & Hayes, 2017; Vidic, et al., 2013). The cytotoxic pattern varies 495 

for different metal oxides and cell types and is dose- and time-dependent. In general, smaller 496 

nanoparticles are more active and can be internalized by cells faster than larger ones. 497 

Cytotoxicity is also dependent on the medium used to suspend them. Thus, cytotoxicity 498 

drastically decreases in a cell medium supplemented with serum compared to buffer or serum-499 

free medium (Vidic, et al., 2014). Small NPs may aggregate into entities of different sizes and 500 

shapes, depending on the medium, resulting in a modified surface and reactivity (Stankic, et al., 501 

2016). Biocompatibility of NPs is largely determined by their surface. Ingested nanoparticles 502 

could both stimulate and/or suppress immune responses depending on their surface chemistry 503 

(Dobrovolskaia, Germolec, & Weaver, 2009).  504 

The cytotoxicity of ZnO NPs on human immune cells was correlated with the 505 

intracellular solubility of nanoparticles into Zn2+-ions. Different anions significantly affect 506 

nanoparticle suspension stability, and release of metal ions from NPs. The pro-oxidative and 507 

pro-inflammatory effects of TiO2 and ZnO NPs were lowered using a medium containing some 508 

anions such as chloride and phosphate (Ng, et al., 2013). When exposed to Mg doped ZnO (Mg-509 

nZnO) NPs murine macrophages mainly rested unchanged but some cells indicated signs of 510 

necrosis as observed using electron microscopy (Fig. 5A).  Healthy macrophages displayed 511 

pseudopodia to cell debris suggesting phagocytosis of damaged cells. Cytotoxicity was shown 512 

to be concentration-dependent, because macrophages were able to neutralize the toxic effect of 513 

Mg-nZnO NPs at concentrations lower than 1 mg/ml while higher concentrations disturbed 514 

membranes in macrophages and induced cell death (Auger, et al., 2019).  515 
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The importance of considering the interrelationship between NPs, mucus and the gut 516 

microbiota was recently underlined by EFSA’s report on the assessment of risks associated with 517 

human exposure to nanoparticles used in the food industry (Hardy, et al., 2018). Exposure to 518 

large numbers of ingested NPs, persistent enough to survive gastrointestinal processing, has 519 

become regular for many populations. The surface area of the gastrointestinal tract (GIT) 520 

provides a large zone for interaction with ingested NPs. NPs can move through the intestinal 521 

barrier in a multistep route involving diffusion through the mucus layer, contact with 522 

enterocytes or Microfold cells, and via paracellular transport or cellular entry (da Silva, et al., 523 

2020). It is likely that NPs accumulate in specialized intestinal cells at the base of large 524 

lymphoid follicles (Peyer’s patches) and that a degree of absorption goes beyond this, from 525 

lymphatics to blood circulation to tissues. Gene-sequencing analysis of the 16S rRNA of the 526 

gut bacteria showed that NPs can readily influenced the composition and richness of the 527 

bacterial community. In a healthy human gut, most commensal bacteria belong to phyla 528 

Firmicutes and Bacteroides playing critical roles in digestion, immunological functions of the 529 

GIT including immune system maturation, maintaining intestinal permeability, and protection 530 

against pathogens. Alteration of the intestinal microbiota (called dysbiosis) (Fig. 5B), in its 531 

ecology (microbial population) and/or metabolic functions (production of bacterial metabolites) 532 

is known to promote a number of chronic digestive and metabolic disorders. Several studies 533 

suggest that NPs, including Ag, TiO2, and ZnO impact the microbiota, characterized by an 534 

alteration of the Firmicutes/Bacteroidetes ratio, depletion of Lactobacillus strains and an 535 

increase in the abundance of Proteobacteria (Lamas, Breyner, & Houdeau, 2020). Indeed, NPs 536 

detrimental effects may resemble the microbiome shifts in inflammatory bowel disease, 537 

colorectal cancer or obesity where gut dysbiosis play a key pathogenic role. Moreover, recent 538 

evidence indicates that disturbance of the microbiota-gut-brain axis induced by ZnO NPs may 539 

result in neurobehavioral impairment by affecting gut microbiota (Chen, et al., 2020).  540 
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Published studies on cytotoxicity of metal oxide NPs are limited. Moreover, these 541 

studies have used different cell models, various media, cells, applied different methods for 542 

nanomaterial characterization, and different experimental conditions for cytotoxicity testing. 543 

Therefore, data from these studies is difficult to interpret and the mechanism of toxicity of metal 544 

oxide NPs is currently unknown. Extensive development of active packaging indicates that the 545 

test methods need to be standardized and validated, positive and negative controls need to be 546 

identified and cytotoxicity data need to be harmonized. Indeed, insufficient information is 547 

available concerning the safety risk of NPs present in consumer products. 548 

10. Intelligent packaging – application of metal oxide NPs in food safety sensors  549 

The food industry regularly performs microbiological and chemical tests of the products 550 

during production and before distribution. However, in most cases, there is no such control 551 

when food items arrive to the market. Intelligent packaging does not interact with food, but 552 

monitors the condition of the packaged product and informs on food quality degradation using 553 

indicators (labels) and sensors, and enables traceability with unique codes and tags such as bar 554 

codes, RFID tags, smart tags or NFC codes (Müller & Schmid, 2019; Rai, et al., 2019). 555 

Environmental conditions monitored inside or outside the packaging include time temperature, 556 

freshness and gas leakage indicators and relative humidity sensors. Freshness indicators, 557 

usually colour changing labels on the container/package, show the change in pH or 558 

characteristic gases released during food spoilage monitored by sensors inside the packaging 559 

(Fuertes, et al., 2016). Recent research has also focused on multifunctional pH dependent colour 560 

changing intelligent packaging composed of a biodegradeable polymer (chitosan, starch etc.), 561 

metal oxide (ZnO, TiO2) and pH sensitive component (phenolic compounds such as 562 

anthocyanin extracted from apple pomace, black plum peel or butterfly pea flowers (Lan, et al., 563 

2021; Mary, et al., 2020; Zhang, et al., 2019). UV activated oxygen indicators commonly use 564 

TiO2 nanoparticles (Wen, et al., 2019).  Progress in affordable printed and flexible electronics 565 
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and the development of advanced bionanocomposite materials has resulted in many advances 566 

in intelligent packaging. Wireless passive RFID tags can monitor different food spoilage 567 

indicators (Raju, Bridges, & Bhadra, 2020), Metal oxides have been extensively investigated 568 

and applied as sensing materials for a wide range of different gases including CO2, NH3, H2S, 569 

H2O and also dimethylamine and trimethylamine released during food spoilage. Recent 570 

research includes development of a Ni-SnO2 sensor using a simple sol-gel spin coating method 571 

for the detection of ethylene in apple fruit quality monitoring (Beniwal, 2019). Manganese 572 

oxide nanoarchitectures with Au/Ag NPs also showed ethylene sensing potential (Bigiani, et 573 

al., 2020). Niobium doping of TiO2 nanotubes resulted in good selectivity and ability to detect 574 

low concentrations (5-50 ppm) of dimethylamine (Galstyan, et al., 2020). Gelatin based 575 

nanocomposite films incorporating ZnO NPs showed good potential as a relative humidity 576 

sensing layer at room temperature in food packaging (Pereira, Picciani, Calado, & Tonon, 577 

2020). Table 4 shows some recent examples of intelligent food packaging utilizing metal oxide 578 

NPs.  579 

11. Conclusions 580 

Effective utilization of metal oxide nanoparticles in smart packaging using biopolymers 581 

has been demonstrated through a review of recent research.  Besides improving film properties, 582 

such as tensile strength and water barrier, packaging with metal oxides has shown improved 583 

antimicrobial (antibacterial, antifungal and antiviral), barrier, UV blocking, oxygen and 584 

ethylene scavenging and moisture absorption potential. An added benefit of using metal oxides 585 

in smart packaging is incorporation in food safety sensors as part of the intelligent packaging 586 

component for providing information on the product to consumers and promotion of consumer 587 

confidence in consumer safety, while to the distributors it could bring increased sales and waste 588 

reduction.  589 
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The food industry is constantly developing new packaging films, and smart packaging 590 

based on nanoparticles has been gaining in popularity over the last years due to multiple benefits 591 

as illustrated in Fig. 6. The possibility to efficiently disperse and incorporate metal oxide NPs 592 

within a packaging substrate provides active packaging film with increased efficacy. Currently, 593 

the most commercially important categories of active packaging are oxygen scavengers and 594 

moisture absorbers, followed by ethylene scavengers, CO2 emitters and scavengers, and 595 

temperature control packaging. All of them are expected to be used more in the future because 596 

they enable shelf life extension, prevention of recalls costs, and brand reputation damage.  597 

The most prevalent nano-sized antimicrobial metal oxides in active packaging are ZnO 598 

and TiO2 NPs. One of the main concerns regarding use of metal oxide NPs in smart packaging 599 

is their safety, so migration from the packaging and cytotoxicity present key issues for their 600 

future utilization in smart packaging. A recent safety assessment of titanium dioxide as a food 601 

additive has deemed it unsafe emphasizing the significance of this aspect when evaluating the 602 

application of any metal oxide in the food industry thus opening the door to further research of 603 

the suitability other metal oxide NPs for this purpose. In addition, the green synthesis route 604 

represents a potential solution to improve metal oxide NPs’ safety and biocompatibility.  605 

Finally, the migration tests of NPs from packaging to food or simulants have to be involved in 606 

safety assessment. By adapting parameters such as type and composition of film or coating 607 

material, pH, and film/coating thickness, the migration of NPs can be controlled to minimize 608 

the risk of nanoparticle toxicity. 609 
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Table 1 616 

Some examples of synthesis and antibacterial application of other metal oxides 617 

Nanoparticle Size 

(nm) 

Synthesis method Pathogen Reference 

Cu2O 400 One-step 

reduction 

S. aureus, E. coli (Yan, et al., 2021)   

Cu2O 150 Sol-gel E. coli (Ma, Guo, Guo, & Ge, 2015) 

Cu2O 36-

450 

In-situ mediated 

solution 

E. coli (Deng, et al., 2014) 

Fe2O3 45, 70 Green 

hydrothermal 

E. coli, S. aureus, Vibrio fisheri (Vihodceva, et al., 2021) 

Fe3O4 5-20 Modified co-

precipitation 

E. coli (Gabrielyan, Hakobyan, 

Hovhannisyan, & 

Trchounian, 2019)   

Fe3O4 6-9 Low temperature 

solution route 

E. coli, P. aureuginosa, L. 

monocytogenes 

(Al-Shabib, et al., 2018) 

MgO 50 Green synthesis E. coli (Khan, et al., 2020)   

MgO 50 Combustion E. coli, B. subtilis (Vidic, et al., 2013) 

Zn-MgO 5-100 Chemical vapour   B. subtilis, S. aureus, Salmonella 

enterica, E. coli, Saccharomyces 

cerevisiae 

(Zanet, et al., 2019) 

FeMnO3 200-

1000 

Sol gel B. subtilis (Vasiljevic, et al., 2020) 

 618 
Table 2. 619 

Some recent examples of antibacterial packaging films containing metal oxide NPs 620 

Nanoparticle Size Food Film Pathogen method reference 

SiO2 15 nm Soybean 

oil 

Chitosin E. coli, S. 

typhimurium, S. 

aureus, L. 

monocytogenes 

Disk (Bi, et al., 2020) 

ZnO 10-30 nm White 

brined 

chees 

Chitosan E. coli 

O157:H7 

plating (Al-Nabulsi, et 

al., 2020) 

ZnO 50  RTE 

poultry 

meat 

Alginate S. typhimurium, 

S. aureus 

plate count (Akbar & Anal, 

2014) 

ZnO 23–62 Chicken 

fillet;  
cheese 

Chitosan E. coli, S. 

aureus,  P. 

aeruginosa 

disk  (Amjadi, et al., 

2019) 

ZnO <25 nm Bread Chitosan, 

cellulose 

yeasts/fungi/ 

molds 

culturing (Noshirvani, 

Ghanbarzadeh, 

Mokarram, & 

Hashemi, 2017) 

ZnO  Chicken 

meat 

Cellulose, 

polypyrrole 

E. coli culturing (Pirsa & 

Shamusi, 2019) 

ZnO  Chicken 

meat 

Cellulose Campylobacter Culturing, 

sequencing 

(Hakeem, et al., 

2020) 

Ag/ZnO  Chicken 

meat 

LDPE1 E. coli, P. 

aeruginosa, L. 

monocytogenes 

plate count (Panea, Ripoll, 

González, 

Fernández-

Cuello, & 

Albertí, 2014) 
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Zn-MgO 5-10 nm Smoke 

salmon 

meat 

Alginate L.  

monocytogenes 

qPCR, 

plate count 

(Vizzini, et al., 

2020) 

ZnO/TiO2   Shrimp PVA5/gelatin S. aureus, E. 

coli O157H7, 

L. 

monocytogenes 

count (Azizi-Lalabadi, 

Ehsani, 

Ghanbarzadeh, 

& Divband, 

2020) 

ZnO 10-30 nm Chicken 

meat 

Gelatin S. aureus, 

Pseudomonas 

fluorescens 

Disk (Ahmadi, 

Ahmadi, & 

Ehsani, 2020) 

ZnO 130-200 

nm 

Food 

stimuli 

SCP4 E. coli Zone 

inhibition 

(Tankhiwale & 

Bajpai, 2012)  

ZnO 35-45 nm Food 

stimuli 

Chitosan+PE E.coli, S. 

enterica, S. 

aureus 

culturing (Al-Naamani, et 

al., 2016) 

ZnO 50 nm Food 

stimuli 

LDPE1 B.subtilis, E. 

aerogenes 

Plate count (Esmailzadeh, et 

al., 2016) 

ZnO 8 nm Soft white 

cheese 

Chitosan + 

CMP4 

S. aureus, E. 

coli, P. 

aueruginosa 

Plate count (Youssef, et al., 

2016) 

ZnO 30 nm Food 

stimuli 

Chitosan S. auereus, 

E.coli 

Disk (J. Sun, et al., 

2020a) 

ZnO 30 nm Food 

stimuli 

Ethyl cellulose S. aureus, E. 

coli 

culturing (Liu, et al., 

2018) 

ZnO 30 nm Food 

stimuli 

Zein S. aureus, E. 

coli 

Disk (Amjadi, et al., 

2020b) 

ZnO <20 nm Spinach Olive flounder 

bone gelatin 

L. 

monocytogenes 

Disk (Beak, Kim, & 

Song, 2017) 

TiO2  fresh pear LDPE1 P. aeruginosa, 

R. 

mucilaginosa 

plate count (Bodaghi, et al., 

2013) 

TiO2 <100 nm food 

stimuli 

PLA3 E. coli, L.  

monocytogenes 

 (W. Li, et al., 

2017) 

TiO2 25 nm Lettuce LDPE1 E. coli Plate count  (Othman, et al., 

2014) 

TiO2  Lamb 

meat 

Whey protein 

isolate 

/cellulose 

nanofibre /  
rosemary 

essential oil   

L. 

monocytogenes, 

E. coli 

O157:H7, S. 

aureus 

Micro 

dilution 

method 

(Sani, Ehsani, & 

Hashemi, 2017) 

CuO 191 nm Food 

stimuli 

PHBV5 S. enteria, L. 

monocytogenes 

Plate count (Castro 

Mayorga, Fabra 

Rovira, Cabedo 

Mas, Sánchez 

Moragas, & 

Lagarón 

Cabello, 2018) 

CuO <50 nm Pepper Microcrystalline 

cellulose, 

sodium alginate 

Salmonella 

spp., Listeria 

spp. 

Plating (Saravanakumar, 

Sathiyaseelan, 

Mariadoss, 

Xiaowen, & 

Wang, 2020) 

ZnO-SiO2 25-100 

nm 

Bread PVA/Chitosan S. aureus, E. 

coli 

Plate count (Al-Tayyar, et 

al., 2020) 

Cu2O 400 nm Cherry 

tomato 

PVA-chitosan S. aureus, E. 

coli 

Plate count (Yan, et al., 

2021) 
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1LPDE, Low-Density Polyethylene; LLDPE, linear low density polyethylene; 2SEM, scanning electron 621 
microscopy; 3PLA, poly(lactic acid); 4Carboxymethyl cellulose; 5PVA, polyvinyl alcohol. 622 

 623 

Table 3. 624 

Some examples of packaging films containing metal oxide NPs with quantitatively improved 625 

mechanical and barrier properties.  626 

 627 

Nanoparticles Biopolymer Barrier properties Mechanical properties References 

ZnO-SiO2 Chitosan-PVA With increased content 

of metal oxide NPs, 

WVTR1 decreased 

from 980.86 to 500.60 

g/(m2 day)  

With increased content of 

metal oxide NPs, TS2 

increased from 7.45 MPa 

up to 37.5 MPa 

(Al-Tayyar, et al., 

2020) 

ZnO Soy protein OP3 values were 

decreased by 33.8 %, 

with addition of NPs   

TS2 and EAB4 were raised 

up to 2.11 MPa and 

164.0%, with addition of 

NPs, respectively   

(Wu, et al., 2019) 

CuO 

 

 

 

Montmorillonite 

 

WVP5 was 

significantly reduced 

after incorporation of 

nanocomposite  

TS2 was improved 59% 

after incorporation of NPs  

(Nouri, et al., 

2018) 

TiO2 Chitosan WVTR1 was decreased 

from 26 to 19 g m−2 d−1 

with addition of NPs  

An increase of TS2 from 

10 to 16 MPa and decrease 

od EAB4 from 57 to 53 %, 

after addition of NPs to 

biopolymer 

(Kaewklin, et al., 

2018) 

ZnO Chitosan/ 

Carboxymethyl 

cellulose 

Final contact 

angle values increased 

after addition of NPs 

At higher level of NPs, 

TS2 was increased from 

6.8 to 12.6 MPa   

(Youssef, et al., 

2016) 

GO-Bi2WO6 Starch WPR6 was improved 

(4.98 × 10–7 g/ 

(m2·h·Pa) after addition 

of Bi2WO6  

TS2 gradually increased 

with higher content of NPs 

from 11.06 to 23.19 MPa 

(J. Xie, et al., 

2020) 

Bi2WO6-TiO2 Starch  With increased NPs, TS2 

increased while EAB4 

decreased 

(Wang, et al., 

2019)  

ZnO Glucomannan/ 

Chitosan 

 

WVP5 reduced from 

2.61 (g mm/m2 

.day.kPa) to 1.82 (g 

mm/m2.day.kPa)  

Optimum concentration of 

NPs improved TS2 and 

EAB4 (52 MPa and 

12.81 ± 0.42%, 

respectively) 

(J. Sun, et al., 

2020b) 

ZnO Alginate  At lower level of ZnO 

NPs, TS2 increased from 

2.35 to 4.75 MPa, while 

EAB4 decreased from 602 

to 131 % 

(Akbar & Anal, 

2014)  

ZnO Ethyl 

cellulose/Gelatine 

WCA7 was increased 

with higher levels of 

ZnO NPs 

Optimum concentration of 

NPs improved values of 

TS2 and EAB4 

(Liu, et al., 2018) 

ZnO Starch WCA7 exhibited higher 

value with the addition 

of ZnO NPs 

Optimum concentration of 

NPs improved values of 

TS2 from 5.65 MPa to 

10.29 MPa, and decreased 

(Abdullah, et al., 

2020) 
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EAB4 from 43.71% to 

16.84%  

ZnO Gelatin/starch The WVP5 values 

decreased and melting 

temperature increased 

after addition of NPs 

At higher level of NPs, 

TS2 was increased from 23 

to 50 MPa, while EAB4 

decreased 

(Lee, Said, & 

Sarbon, 2020) 

ZnO Gelatin/chitosan Addition of NPs 

increased WVP5 values  

The incorporation of NPs 

increased TS2 from 0.20 to 

0.22 MPa and decreased 

the EAB4  

(Ahmad & 

Sarbon, 2021) 

1WVTR, water vapor transmission rate; 2TS, ensile strength; 3OP, oxygen permeability; 4EAB, elongation 628 
at break; 5WVP, water vapor permeability; 6WVR, water vapour resistance; 7WCA, water contact angle. 629 

Table 4. 630 

Some examples of intelligent packaging films utilizing metal oxide NPs.  631 

Nanoparticle Intelligent packaging function Reference 

TiO2 UV activated visible colorimetric oxygen indicator 

using Ag-loaded TiO2 nanotubes/methylene blue 

and hydroxyethylcellulose and glycerol  

 

(Wen, et al., 2019) 

Graphene oxide 

-TiO2 

Self-adhesive UV activated colorimetric oxygen 

detection using graphene oxide TiO2 and methylene 

blue 

(Son, et al., 2015) 

TiO2 UV activated water based colorimetric oxygen 

indicator comprising a redox dye (methylene blue), 

colloidal semiconductor (TiO2) and a sacrificial 

electron donor (tartaric acid) ink-jet printed on 

polyester film  

(Lawrie, Mills, & Hazafy, 2013) 

IrOx Wireless pH sensor for monitoring pH level 

changes in fish meat using an IrOx sensing 

electrode, sensitivity -49.7 mV/pH 

(W.-D. Huang, et al., 2011) 

ZnO Starch-PVA composite films with incorporated 

ZnO nanoparticles, capable of color change in 

response to pH variation (acidic, neutral, alkaline) 

(Jayakumar, et al., 2019) 

TiO2 Starch films incorporating anthocyanins from 

butterfly pea flowers and TiO2 nanoparticles, 

showed noticeable color change in the pH range 1-

12, tested on prawn storage 

(Mary, et al., 2020) 

TiO2 Chitosan films incorporating apple polyphenols and 

TiO2 nanoparticles, showed noticeable pH 

responsive color changing properties in the pH 

range 3-13, tested on monitoring salmon meat 

(Lan, et al., 2021)  

TiO2 Chitosan films incorporating anthocyanin from 

black plum peel extract and TiO2 nanoparticles, pH 

sensitive in the pH range 2-13 

(Zhang, et al., 2019) 

ZnO Bacterial-cellulose-polypyrrole-ZnO nanoparticle 

films used for monitoring chicken thigh meat, 

change of electrical resistance can be linked with 

storage time and temperature, rate of microbial 

growth, sensory properties and pH 

(Pirsa & Shamusi, 2019) 

ZnO Gelatin films incorporating ZnO nanoparticles and 

glycerol used for monitoring relative humidity 

change at room temperature through change in 

electrical impedance 

(Pereira, et al., 2020) 

MnO2 Chemical vapor deposition of MnO2 co-sputtered 

with Ag and Au, used  for monitoring fruit ripening 

(Bigiani, et al., 2020) 
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through  detection of change in ethylene 

concentration 

Ni-SnO2 Thin film Ni-SnO2 sensor used for ethylene 

detection in apple fruit 

(Beniwal, 2019) 

Nb-TiO2 Radio-frequency deposited niobium doped titanium 

dioxide nanotubes were used for dimethylamine 

detection and monitoring seafood quality 

(Galstyan, et al., 2020)  

 632 
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Figure legends: 635 

Figure 1.  636 

Classification of smart packaging and its functions in the improvement of food quality. 637 

Figure 2. 638 

Schematic presentation of antibacterial mechanisms of ZnO NPs with different morphology: 639 

(a) terapod NPs, that mainly generate H2O2 and release Zn2+-ions in aqueous solution, adapted 640 

with permission from (Xu, et al., 2013);  (b) flower NPs, shown to generate various ROS upon 641 

visible light illumination, that injure bacterial cells by causing an oxidative stress, cell content 642 

leakage or by damaging nucleic acid and proteins, adapted with permission from (Quek, et al., 643 

2018); (c) ZnO nanoparticle assembly were shown to be highly efficient antimicrobial agent 644 

towards Gram-positive and Gram-negative bacteria, under different conditions. Adapted with 645 

permission from (Joe, et al., 2017). 646 

Figure 3.  647 

Schematic representation of the preparation of smart food packaging using metal oxide NPs as 648 

coating or incorporated in a biodegradable polymer and its application in the inhibition of 649 

microorganisms, UV light protection, barrier, oxygen and ethylene scavenging and sensing. 650 

Figure 4.  651 

Schematic representation of biopolymer – metal oxide film synthesis using solvent casting (a) 652 

and electrospinning (b) methods.  Adapted in part with permission from (Liu, et al., 2018; 653 

Razali, et al., 2019). 654 

Figure 5.  655 
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(A) Representative thin section electron micrographs of macrophage cells incubated with 656 

0.1 mg/ml Mg-nZnO for 24 h m, mitochondria; er, endoplasmic reticulum; mv, microvilli; 657 

MVB, Multi Vesicular Body; red rectangle points autophagy. Adapted with permission from 658 

(Auger, et al., 2019). (B) Potential impact of NP ingestion on the crosstalk between the 659 

microbiota and the immune system. Adapted with permission from (Lamas, et al., 2020). 660 

Figure 6. 661 

List of improved packaging functions obtained utilizing metal oxide NPs.  662 
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