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SOME SIGMOID AND REVERSE-SIGMOID
RESPONSE PATTERNS EMERGING FROM
HIGH-POWER LOADING OF SOLIDS

Sreten Mastilovié

ABsTrRACT. The objective of the present review is twofold. First, it aims at
highlighting some sigmoid and reverse-sigmoid response patterns observed re-
cently in the course of simulations of the high-strain-rate loading of (mostly,
quasibrittle) solids. Second, it aims at reviewing various properties of two
models used frequently as curve fitting tools for nonlinear and saturable phe-
nomena. These two models-inspired by the Hill and the Weibull cumula-
tive distribution functions-are bounded by two horizontal asymptotes with a
smooth transition between the baseline and the final saturation state, char-
acterized by a non-negative (a non-positive) derivative at each point for the
sigmoid (the reverse-sigmoid) shape. Although they were used primarily for
data fitting because of their flexibility and effectiveness, these nonlinear mod-
els possess other properties useful for the analysis of the irreversible, nonlinear
and far-from-equilibrium phenomena. The main features of these two models
are systematically examined in this review. In spite of the fact that satis-
factory curve-fitting of data could not be considered a proof of causality it
could underline a pattern of behavior and, perhaps, provide an investigation
guidance.

1. Introduction

The deformation and failure of materials subjected to extreme loading powers
are of increasing interest in physics and engineering. The experience suggest that
the heterogeneous material texture usually exerts a strong influence on the perfor-
mance of materials subjected to such loading conditions, which is especially true in
the case of quasibrittle materials characterized additionally by an inferior cohesive
strength. Research efforts towards modeling of materials prone to microcracking,
spanning most of the last century, suggest that a rational model should be based
on the statistics of the weak links and hot spots. This invokes readily the Weibull
distribution, a prominent member of the family of extreme value distributions [1].
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On the other hand, recent numerical simulations (e.g., [2,3]) indicate that the ef-
fect of sample size on strength eventually decreases with increasing strain rate and
becomes practically negligible at ultrahigh strain rates as the dynamic response of
a solid becomes more deterministic and less affected by stochasticity of its texture.

Despite ever-increasing capabilities of experimental-mechanics techniques, the
range of strain rates and shear strains achievable in high-strain-rate experiments
(most notably, the impact experiments) leaves a lot to be desired. As an example,
the experimental data recorded during ballistic tests is more often than not limited
to the projectile velocity, penetration depth, debris cloud shape, and a posteriori
observation of projectile fragments and the crater. On the contrary, the com-
puter experiments, such as the pair presented in this review, offer almost unlimited
control over the “virtual testing”. Their often-advertised ability to probe regions
beyond current experimental limits and offer insights into otherwise inaccessible
details seems limited only by quality of the physical model, computer capabilities
(remarkably growing though never sufficient), corresponding advance of numerical
algorithms, and ingenuity of researchers.

The sigmoid and reverse-sigmoid patterns of the dynamic-response data pre-
sented herein are examples of the simulation results obtained by two prominent
techniques of computational mechanics of discontinua: molecular dynamics and
lattice method. The common features of these neat and complex data patterns are
their nonlinear and saturable character that appears to arise quite naturally from
the high-strain-rate loading of the disordered material with random microstructure.
Consequently, two different deterministic models are examined in this article

(1.1a) ¥ =190+ (i —ﬂo)m, > A
(1.1b) ?]=§0+(?§1—§0){1—6XP[—(x;A)aH, z>A

and referred to as the Hill model and the Weibull model, respectively. They share
the same advantages of being flexible and effective in fitting the simulation data
characterized by a smooth transition with a single-sign gradient (either non-negative
or non-positive) between two horizontal asymptotes (7o and g;) corresponding to
the lower and upper domain boundaries of the independent variable. The bar above
symbols is used to emphasize the normalized variables (0 < § = ¥/Ymax < 1) used
throughout this article. Admittedly, a variety of relationships can be found that
provide similarly effective data fit. Although the satisfactory curve-fitting of data
cannot be considered a proof of causality it is hoped that it might underline a pat-
tern of behavior and that a repeated occurrence of the same pattern may provide
some investigation guidance. Thus, the model parameter values are often formally
informative although without providing insights into the mechanisms involved in
any specific case to be discussed. Specifically, two parameters designated by lower-
case Greek letters (o, ), which may reflect heterogeneity in the response, are com-
monly referred to as the shape (or sigmoidicity) coefficients; H, which may indicate
the affinity or sensitivity of the system or both, is called the location parameter;
and A and B are the translation parameter and the scale parameter, respectively.
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2. Some descriptive and probabilistic properties
of the selected curve-fitting models

Equations (1.1) belong to the category of deterministic or pseudo-deterministic
models because-assuming they correctly describe a particular response feature-once
the model parameters are estimated, they are able to predict the system behavior
outside the domain used for the parameter estimation; or, it is hoped, the system
behavior under similar conditions. The effect of the modeling can, depending on
a particular observed pattern of behavior, capture either monotonically increasing
(sigmoid) or decreasing (reverse-sigmoid) dependent variable with increasing inde-
pendent variable. Thus, the descriptive properties of equations (1.1) have been used
extensively for curve-fitting of experimental and simulation data that exhibit such
nonlinear and saturable character. It is important to note that equation (1.1b) is
inspired by the translated (three-point) Weibull cumulative distribution function:

(2.1) F(xlﬂ,mv)zlfeXp[*(xgv)q; >y, yER, B,neRt

that exhibits the desired sigmoid shape with v, 7 and 8 being the location, scale,
and shape parameters, respectively, such that (—oco < v < 00), n > 0, and 8 > 0.
The related probability density function is

B rx—y\A-1L T —v\?

The Weibull distribution is widely applied to many random phenomena due
to its extreme value behavior (e.g., [4])!. The appropriate selection of distribution
parameters allows close approximation of many observational phenomena. The
median, one of commonly used measures of central tendency of the data sample, in

the case of the translated (3-point) Weibull distribution has the form:
(2.3) M =~ +n(ln2)"/5.

The two-parameter Weibull distribution, commonly used in reliability engineer-
ing, is a special case of the translated Weibull distribution (2.1) with v = 0. It
corresponds to the generalized extreme value distribution when the shape param-
eter is replaced: —f — (3 (the Frechet distribution). Equation (1.1a), extensively
used in various branches of biosciences [6], corresponds to the translated Hill cu-
mulative distribution function

(x = )"

24 F(z =—"
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Equation (2.4) has been applied in many forms to describe probabilistic aspects of
various nonlinear and saturable relationships [7].

The corresponding probability density function is

_ aca(x _ g)afl

(2.5) f($|57c,§)—m; r>2¢ cER, a,( €RT,

r>¢, ¢ER, o, €RT.

LThe Weibull-type distribution was, apparently, first applied in engineering practice by Rosin
and Rammler [5] to describe particle size distribution.
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while the median of the translated Hill distribution has the form:
(2.6) M=(+c.
Consequently, in view of equations (2.1) through (2.6), it is sometimes conve-
nient to rewrite equations (1.1) in the forms
(z — A)"

b > 'A7
Zo5 — A)o 1 (z — A)* v

(2.7a) =1%o+ (11 — go)(
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that emphasize the central tendency by the parameters xg 5 which represent the
value of the independent variable corresponding to the value of dependent variable
Jo.5 = (Yo + 91)/2 (the fifth quantile).

The effect of these parameters is illustrated in Figure 1 for sigmoid-type curves;
the extension to reverse-sigmoid curves is straightforward. Because of their flexi-
bility, these models were used primarily as curve fitting tools and their many other
interesting aspects and properties were, if not overlooked than, not systematically
examined.
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FIGURE 1. Examples of sigmoid type of the Hill (a) and Weibull
(b) models normalized to §; = 1 and with the same baseline value
Jo = 0.2 but different translation parameter values A = 0 and
A = —7, respectively. The remaining parameter values are given
in the figure inset tables. Note that the negative values of the
shape parameter « directly yield the reverse-sigmoid shape.

First, with regards to the mathematical and graphical properties, the plots in
Figure 1 corresponding to equations (2.7)

_ 1/a
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calculated in usual manner by using the condition that the second derivative has
an isolated zero and a sign change.
The slope of the sigmoid curve at the inflection point

o? — a— 1\ 1/« —1
081 7=de=2="[(2) s -] @ -w
(2.8b) ¢ =y (x =17) = [ln(2)]1/ﬂ5ww exp(—w)(zo5 —A) " 1 —Fo), w= %

is an informative parameter defined as the maximum gradient of the dependent
variable change.

Second, with regards to the probabilistic aspects, equations (2.7) may be used
as probabilistic expressions in light of expressions (2.1)—(2.6). An immediate benefit
of that analogy is to use quantiles for the fitting purpose. The calculation of
different quantiles is straightforward knowing a cumulative distribution function,
F(x). A quantile z, of the distribution function F'(z) is the solution of the equation
F(z4) = g with 0 < ¢ < 1. In case of monotonically increasing functions, such as
the sigmoid functions defined by (1.1), the quantiles are singles

(2.92) Tg= A+ (L)WH

(2.9b) vy =A+ [m (%q)} g

With regards to equations (2.9), for the symmetric quantiles z, and x1_g, it is
straightforward to derive the ratios

Ty — A B q 2/a

(2.10a) T4 — A - (1 — q)
rg—A  (In[1/(1—q)\V/P

(2.10b) T, A { In(1/q) }

which for the particular choice of quantiles, depend only on the shape and transla-
tion model parameters. Thus, based on equations (2.10), it is a simple exercise to
derive the general relationships

. In (1—3(1)
ln( zq—4 )
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between the sigmoidicity (shape) coefficients o and S of the Hill equation and
the Weibull equation, respectively, and the corresponding symmetric quantiles z,
and z1_4. Equations (2.11) permit calculation of the parameters o and f if the
quantiles can be estimated based on available data. This is especially convenient
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if the observed process is not fully developed and/or the asymptotic approach to
final saturation state is not reached.

Finally, with symmetric quantiles known and sigmoidicity coefficients deter-
mined (2.11), simple expressions

(2.12a) H =g~ A)1-g — 4)

_ [ wg=A) (g = A)
(2.12b) B= \/[1n(1/q)]1/5 [In(1/(1 — q))]/#

permit calculations of the parameters H and B of the Hill model (1.1a) and the
Weibull model (1.1b), respectively.

3. Computer Simulation Methods

The simulation techniques used to obtain results presented in this review article
are only succinctly summarized for the sake of completeness. These methods of
computational mechanics of discontinua were, among others, recently discussed
in references [8] and [9]. The dynamic response patterns reviewed herein were
obtained by use of physical models that were, admittedly, rather rudimentary. This
was necessitated, if not fully justified, by a number of reasons. First, the limited
objective to capture qualitatively the salient features of the investigated phenomena.
Second, these phenomena are inherently extremely demanding computationally.
Last but not least, the capabilities of hardware available to the author leave a lot
to be desired.

3.1. Molecular Dynamics. MD is a convenient tool to investigate dynamic
response of solids under extreme loading conditions by high-resolution virtual test-
ing. Therefore, it frequently assumes a role of a “computational microscope” to ex-
plore evolution of discrete systems at spatial and temporal scales that go beyond the
current experimental limits (e.g., [3,10-12]). The present approach is limited to the
classic MD simulation technique in which the dynamic state of an atomic system is
defined by laws of Newtonian mechanics with atomic motions being uniquely deter-
mined by empirical potentials. Thus, a monatomic system (mimicking a monocrys-
talline sample) is comprised of atoms of equal masses m; = mo (I = 1, Ng¢) that
form an ideal triangular lattice and interact with their nearest neighbors according
to the L-J (Lennard—Jones) potential. The Cauchy problem is solved numerically
by using the Verlet algorithm and the neighbor-list method [9,13,14] with the time
step as low as a fraction of femtosecond [11,12]. The extremely small time step,
necessitated by the ultrahigh power of the simulated events, makes the simulations
painstakingly time-consuming even for the relatively small model size. The simula-
tions generate information at the nanoscale level: atomic positions and velocities,
and interatomic forces. The conversion of these information to macroscopic ob-
servables such as temperature, stress and strain requires theories developed in the
realm of statistical mechanics (e.g., [15,17] and references therein). Succinctly,
the components of the mechanical stress tensor and effective stiffness tensor at the
scale of small sets of atoms are
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(rr.)i(rrs); de(rry)
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where ¢(ryy) is L-J 6-12 pairwise interatomic potential, (r7s); is the i -component
of the vector 777, and §2 the “volume” of evaluation (averaging) regions®. Zhou [15]
demonstrated that the stress expression based on interatomic force term alone
(3.1a) is a valid mechanical stress measure identifiable with the Cauchy stress. It
should be noted that the mechanical stress and effective stiffness, defined by in-
teratomic forces and atomic positions (3.1), become physically ill-defined when the
averaging area, in the course of severe distortion or fragmentation, becomes incom-
pletely occupied by atoms. Finally, two-dimensional triangular lattice is equivalent
to three-dimensional continuum under plane-strain conditions [16]. Thus, expres-
sion for the modulus of elasticity and Poisson’s ratio
C1212(3C1111 — 4C1212) o — Cr111 — 2C1212

Ci111 — Cha12 ’ 2(Cr111 — Ci212)
of isotropic material in terms of two arbitrary stiffness components follow from the
plane strain relations. The strain components can be calculated straightforwardly

by comparing lattice configurations in the current and initial (reference) states.
The components of the left Cauchy-Green strain tensor (notation and terminology

(3.2) E=

adopted from Buehler [17]) of atom I in two-dimensional systems are commonly
defined by

e (reg)i(reg);
(3.3) bij = Z,: BT

where summation is performed over J nearest neighbors, and ry denotes the equi-
librium interatomic distance. The other strain measures can be obtained from
equation (3.3) (e.g., [17]). It cannot be overemphasized that, unlike the stress coun-
terpart (3.1a), the virial strain (3.3) is valid instantaneously in time and space [3].
After protracted period of reflections upon the physical meaning of thermo-
dynamic temperature under the extreme loading conditions, the consensus was
reached within the research community that the appropriate measure should be
based on the Gibbs’ temperature definition, familiar from the kinetic theory

1 I
ZmJ(UgJJrsz)a I=1,...,Ny

3.4 T, =
(3.4) I~ 9Nkg ot

where kp is the Boltzmann’s constant, v, and v, are the vibrational velocity com-
ponents for two-dimensional problems, and averaging is performed over N; atoms
belonging to an averaging area centered at atom I [18]|. The instantaneous kinetic

2Note that the capital alphabetic indices refer to particular atom, while the small alphabetic
indices are reserved for tensor components.
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temperature (3.4), related to the point of space centered at atom I, is averaged
in both space and time (in accordance with the ergodic hypothesis). The averag-
ing area is commonly assumed to be either the whole sample or the local regions

mimicking the measurement gages [11]. Note that:
i) the total velocity follows directly from the solution of Newton’s equations
of motion,
ii) the velocity of correlative motion (“systematic” in Fung’s [19] terminol-

ogy) is obtained as the spatial average of total velocities of all atoms
belonging to an averaging area, while

iii) the vibrational (“random”, [19, p.4]) velocity components used in (3.4)
are obtained by subtracting the velocity of correlative motion from the
total particle velocity [11].

The temperature definition (3.4) has the firm statistical-mechanics foundations
since it follows from the canonical ensemble maximum-probability distribution.
It was verified by the statistical hypothesis testing that the vibrational velocities
obtained from these MD simulations represent a random sample corresponding to
the Maxwell-Boltzmann distribution [12]. The temperature evolution in time and
space can be vividly presented with a very high-resolution [11].

3.2. Lattice model. The lattice (spring network) method is an engineering
offshoot of MD born of the current computational limitation of MD systems to en-
sembles of ~ 102 atoms. This method of computational mechanics of discontinua
appears custom made for brittle multiphase materials that contain hard interior
domains (aggregates, grains, granules, etc.) embedded within an inferior-stiffness
matrix. It was used extensively in the past to investigate stochastic damage evo-
lution in low-fracture energy systems (e.g., |2, 3,20]). Computational domain is
defined as a collection of “continuum particles” [21, p.4]. These microphysical
objects are envisioned as conglomerates of atoms small enough to consider macro-
scopic tractions on its external boundaries to be uniform, and large enough to be
statistically homogeneous. In short, the mesoscale sample is approximated by an
idealized two-dimensional structure: a Delaunay simplical graph dual to a Voronoi
froth representing, for example, abovementioned hard interior domains. In gen-
eral, the identification of the microconstituent that dominates the macroresponse
is a problem-specific task. As an example, if the considered quasibrittle material
is a polycrystalline ceramics, it is often justified to assume, within this simulation
framework, that investigation objectives are met by the following model features:

i) the direct first-order effects on the overall dynamic response are provided
by the glassy grain boundaries (“the most common examples of weak in-
terfaces in brittle materials” [22]);

ii) the model resolution length, [, is defined by the average grain facet size;

iii) the stiffness and strength distributions account for other mesoscale het-
erogeneities and defects, such as pores or poorly bound interfaces, which
result in local stress and strain fluctuations [1].

Thus, the two-dimensional microstructural texture is represented by a net-

work of one-dimensional elements mimicking inferior-strength grain boundaries (or
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interfaces) and, consequently, the dominant damage mechanism is intergranular
cracking.

The particles located in lattice nodes interact with their nearest neighbors
through the nonlinear central-force links. In the studies whose results are presented
henceforth, the interparticular forces stem from a hybrid potential consisting of
the Hook potential in tension and the Born—Meyer potential in compression. The
simulation model incorporates both aleatory variability and epistemic uncertainty
in a straightforward manner. The randomness of the lattice morphology is defined
by the coordination number z and link length A (the counterpart of the interatomic
distance r in MD). The lattice is geometrically and structurally disordered since the
equilibrium distances between particles and their mutual link stiffness are sampled
from their respective distributions within the range (ax\) < A < [(2 — aa))] and
(Bak) < k < [(2 — Ba)k]. The order parameters, ay and 35 define bandwidth of
the geometrical disorder and stiffness distribution, respectively [20]. This inherent
randomness of the material texture is further enhanced by the nucleation-dominated
damage evolution governed by the local fluctuations of stress and energy quenched
barriers. The rupture criterion of the link between bulk particles I and J is in the
present simulation set defined in terms of the critical elongation 7y = AXr;/Aorg =
Eer = const.

The disordered-lattice simulations replicate rather well the underlining phe-
nomenology of the sample response including the essential features of rate-depen-
dent fracture and deterioration of the effective stiffness, and provide an elementary
intuition on the phenomena [23]. Consequently, in spite of the recognized limita-
tions and drawbacks of this rudimentary physical model (examined, for example,
in [3] and references therein), these simulations prove a useful tool for qualitative
analysis of universal trends of the dynamic behavior of quasibrittle materials and
provide a priceless guide for derivation of rational models (e.g., [8,31]).

4. Simulation Setups and Observations

Two curve-fitting expressions (2.7) are used in this section to describe various
response parameters in three different experimental settings. These dynamic tests
were simulated by MD and lattice techniques briefly summarized in the preceding
section. The sigmoid and reverse-sigmoid response patterns were observed in widely
different macroscopic observables and state variables. In this section three different
simulation setups of:

(i) the dynamic uniaxial tension,
(ii) the dynamic hole expansion, and
(iii) the ballistic Taylor test are presented.

The display focus is on their nonlinear and saturable response patterns, which are
than discussed in view of the two phenomenological models presented in Section 2.

4.1. Dynamic Uniaxial Tension. The uniaxial tension test is the most fre-
quently used experiment in the characterization of engineering materials primarily
due to the relatively simple apparatus and rapid execution. It has been suggested
repeatedly, though, that the interpretation of its results may not be as simple as it
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might appear at first sight, as vividly argued by the Orowan’s memorable pocket-
watch analogy [24, p.70]. In the present lattice simulation setup, a square notch-
free sample of size L was loaded by uniformly distributed tensile load of strain rate,
¢ (see Inset (A) of Figure 2). The problem of the uniform load distribution under
the extremely high loading rates was resolved by imposing an instantaneous initial
velocity field to the lattice in the loading direction, &;(t = 0) = £x1, and perpen-
dicular to it, Zo(t = 0) = —U(()E)éxg (defined in terms of the prescribed strain rate
€= L/ L). This modeling approach was inspired by the Holian and Grady’s adia-
batic expansion setup [25] widely used subsequently in dynamic simulations. The
details of the loading procedure and corresponding effects of the model response
were described in [20]. The tensile-test simulations were performed at 13 different
strain rates. The maximum stress achieved in the loading direction was identified
with the tensile strength and depicted by circles in Figure 2 versus the strain rate.
Notably, the solid symbols represent the mean strength obtained from 30 different
statistical realizations at the five selected strain rates. On the other hand, the eight
hollow circles mark the results of only a single realization per strain rate. This work-
load reduction was necessitated by the demands of computational economy. For
the same reason, only a single realization was performed for eight different lattice
sizes, selected over the wide range from L/I. =9 to L/l. = 765. Notably, this selec-
tion fulfilled the requirement that “the RVE (representative volume element) must
be several orders of magnitude larger than the size of its microconstituents” [26].
The used reduced-units geometric and structural lattice parameters were: the bulk
coordination number z = 6, the average equilibrium distance between particle sites
X = I, = 1, the average link stiffness & = 50, the geometrical-order parameter
ap = 1/5, the structural-order parameter Sy, = 2/3 and the rupture strain of the
links e, = 0.35% [3].

4.1.1. Tensile strength dependence on the strain rate. As previously noted, the
tensile strength is identified herein with the maximum stress value corresponding to
the critical point — the peak of the stress-strain curve that separates the hardening
from the softening response. (All properties corresponding to this critical point are
marked henceforth with the subscript “m”.) It is well established nowadays that
the ultimate tensile strength of quasibrittle materials is a rate-dependent stochastic
property (e.g., [27]), which, as a rule, exhibits a remarkable extrinsic size effect.
Figure 2 illustrates the rapid hardening of the brittle response with the rate increase,
various aspects of which were discussed in detail in [2,3,20,27]. A remarkable
feature of this virtual testing was that it was performed under the identical loading
conditions for a broad strain-rate range. In actual physical experiments, this range
is commonly covered by widely different test setups starting from the conventional
cross head devices (the quasistatic loading with practically negligible inertia; & <
10s~1) to the plate impact devices (dominated by inertia to the extent that 1D
stress is impossible; € < 1 - 108 S_l)

The lattice simulations indicate that the increase of the loading rate results in
increase of the mean tensile strength, limited by the two horizontal asymptotes (om0
and o'l) that are, respectively, strongly and negligibly dependent on the system
disorder [3]. This loading rate increase has trends towards:



REGION 1 REGION 2 REGION 3

On

log (€o5)
1 1 1 1 1 1 1
1 3 5 7 9

log (£)

FIGURE 2. Mean tensile strength vs. strain rate. The solid circle
represents the mean strength obtained from 30 different statistical
realizations at the five selected strain rates while the hollow circles
depict one single realization at eight additional strain rates [2].
The dashed (gray) line and the solid (red) line represent data fits
obtained by using Equations (2.7a) and (2.7b)) with sigmoidicity
coefficients « = 17 and 8 = C = 12, respectively, the common
slope (the strength gradient) at the inflection point and the same
model parameters: 7,0 = 0.24, A= —4.7 and €95 = 1 x 105571,

(i) increasingly adiabatic deformation,
(ii) the resulting damage accumulation dominated by microcrack nucleation
(as illustrated by Inset B of Figure 2), and
(iii) the reduction of aleatory variability of the system response.
This reduction of stochasticity is caused by the averaging effect of collective behav-
ior of microcrack systems that smoothens the randomness at the macroscopic scale
and by the diminishing flaw-sensitivity of brittle materials with the loading-rate in-

crease [20]. Based on the results presented in Figure 2, the sigmoid tensile-strength
model
B Om _ log(e) — A \¢
L) o= T et ()1 —exp [ () (LB AN
) e o om0+ (1= Fmo) P n(2) log(¢o.5) — A
log(¢) 2 A

has been proposed in a normalized form to capture the mean tensile strength de-
pendence on the strain rate [3,27]. This phenomenological model is based on
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the Weibull equation (2.7b) in conjunction with the translated Weibull cumulative
distribution (2.1), which defines the fitting parameter

B = (log£os — A)(In(2)) /¢

in terms of the strain rate € 5 by analogy with the median of the Weibull cumulative
distribution (2.2). The independent variable (the strain rate) is, for convenience,
presented in the format of the logarithm of base 10. The demonstrated disorder
dependence of the strength increase [20] suggested that the process of activation and
nucleation of micro-defects was governed substantially by the degree of structural
heterogeneity of the quasibrittle system. The solid red curve in Figure 2 illustrates
the effects of strain rate on the tensile strength of the quasi-brittle solids captured
by the sigmoid transition (4.1) between the two limits

(4.2) lim(G,,) = Omo, lim (G,,) = 1.

e—=0 E—00

Both strain rate limits indicated in equation (4.2) deserve a careful scrutiny:
(i) the upper strain rate bound is in reality finite and governed by Debye’s atomic
vibration period [28]; (ii) the lower strain rate bound (corresponding to the qua-
sistatic loading) is, in terms of equation (4.2), identified with the translation (shift)
parameter A. It is obvious from the standpoint of equation (4.1) that the quasistatic
strength (o,,0) is not truly a horizontal asymptote but rather the lower limit that
is actually reached at log(¢) = —A. As suggested in [3], the notable advantage
of equation (4.1) over the power-law empirical expression o, = 0,,0€™ (typically
used in the phenomenological constitutive laws that include rate dependency) is
that it captures the high-strain-rate plateau (o,,) inferred by the shock experi-
ments. The translation parameter, A = —4.7, and the sigmoidicity coefficient (the
shape parameter), § = 12, of the Weibull model data fit (delineated in Figure 2
with the solid red line) are calculated iteratively by using equations (2.11b) and
(2.12b) with values of the median, log(ép.5) ~ 5.0, and two symmetric quantiles,
log(é,) = log(€0.4) =~ 4.775 and log(é1_,) = log(éo.6) ~ 5.225, estimated from the
data plot (the full and open circles). In this case, the Weibull model fit is clearly
superior to the Hill model fit (the dashed gray line) determined based on the same
quantiles with the identical slope &7, &~ 0.33 calculated from equations (2.8).

The simplicity of equation (4.1) is remarkable. Experiments at only a few
carefully selected strain rates may suffice to define, with reasonable confidence, the
strength evolution within the entire strain rate range. At extreme loading powers
(Region 3 in Figure 2), the upper-asymptote strength of quasibrittle systems is
achieved through effective suppression of the cooperative phenomena, which drive
the rapid strength increase in the transitional range (Region 2). Thus, the attain-
ment of nearly theoretical strength (after practically linear stress-strain relationship
up to catastrophic failure) and the disappearance of both intrinsic and extrinsic
size effects at the extremely high loading rates are attributable to the strain rate-
driven stochastic-to-deterministic transition of brittle response resulting from the
diminishing role of microstructural disorder [3,27]. On the other hand, at the
low-to-medium loading powers (Region 1), the sample strength seems to be deter-
mined to a large extent by the stochastic distribution of intrinsic defects and more
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sensitive to boundary conditions, since a few weak links (i.e., the microcracks ther-
mally activated at the intrinsic defect locations) govern the catastrophic failure of
the sample. These lattice-simulation observations are in agreement with the strain-
rate sensitivity of small-scale metallic systems that is emerging recently. As an
example, Greer and coworkers [29] reported that, at the relatively low strain rates
(less than 0.1s7!), the strength size dependence deviates from the ubiquitously
observed power law.

4.1.2. Dependence of the damage evolution and the representative sample size
on the strain rate. The monotonically increasing strength, captured by equation
(4.1), has a typical sigmoid shape whose signatures are:

(i) relatively weak strain rate dependence at the two tail regions correspond-
ing to the low-to-modest (Region 1 in Figure 2) and the ultra-high (Re-
gion 3) strain rates, and

(ii) strength surge, extremely steep and highly non-uniformly distributed over
the strain-rate range.

This behavior is reflected qualitatively by the damage scaling exponent (§) at the
critical point, which is an informative damage parameter.

With reference to [3], the number of broken bonds that corresponds to the
apex of the stress-strain curve (n,,) is determined for eight different lattice sizes
(L) at seven different strain rates. The selected results presented in Figure 3 clearly
indicate the gradual change of slope in the logarithmic (n,, vs. L) space. This
observation suggests that a continuos spectrum of rate-dependent scaling exponents

(4.3) N X L%, 80 =1<86=0(¢) < b =2, Ve

is necessary for the complete description of the two-dimensional system. Note that
the critical value of the scalar damage parametar achieved at t = t,,, o (g0,.6) 71 [27]
is defined by D,, = n,,/N o L°, where N designates the total number of bonds.
The continuous spectrum of scaling exponents is, according to Figure 3, bounded
by the inequality (4.3)s.

The theoretical justification for the power-law behavior (4.3); is not available
at present. Nonetheless, it can be observed that in the dynamically-loaded brittle
system, the § value reflects the predominant distribution arrangement of the accu-
mulated damage as depicted by the insets in Figures 2 and 4 illustrating the typical
two-dimentional damage patterns. In fact, at smaller strain rates, as the failure pat-
tern tends to a localized nearly-straight fracture, the exponent approaches the lower
asymptote (69 = 1), whereas it increases progressively towards the upper asymptote
(0o = 2) as damaging becomes a more uniform process of microcrack nucleation
extending over the entire lattice area for very high strain rates (Figure 3). The
scaling exponent crossover

log(¢) — A
log(éo.5) — A

from the lower to the upper horizontal asymptote takes place primarily in the
transitory region (Region 2) as indicated by Figure 4. The strain-rate sentitivity

(4.4) 5Qexp{ln(2)~< )] logé > A
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FI1GURE 3. The change of the number of broken bonds correspond-
ing to the critical point with the size of square sample (L x L) for
various strain rates. The straight lines represent the least-squares
data fit.

of the scaling exponent ¢ is closely related to that of the representative volume
element (RVE, see below).

The lattice size at which values of the stress-peak variables becomes size in-
dependent is defined herein as the representative sample and identified tentatively
with the RVE with respect to the tensile strength. The strain-rate governed de-
crease of the RVE, schematically depicted in Figure 4, appears qualitatively as a
mirror image, with respect to the abscissa, of the corresponsing strength increase
(Figure 2). The typical features include, once more, two regions of relatively mod-
est rate-sensitivity corresponding to loadings at the low and the very high strain
rates with a rapid decline towards the lower asymptote in the transitory region.
This pattern is represented qualitatively by the Weibull function:

(@5) L, = Lo = 1+(Em—1)-{1—exp [— (M)Q}}, log(&) > P
Lo R

where the RVE corresponding to quasistatic loading is designated as Lo, and the

three uppercase alphabetic letters (P, @), R) designate fitting parameters. Note the

transformation, L, /Lo, which leads to normalization of the ordinate on the plot

L, = f(é) illustrated in Figure 4.

The lower RVE asymptote (Lo, < Lyg), corresponding to the ordered ho-
mogeneous mesoscale damage patterns [16] at the theoretically maximum strain
rate [28], depends on the resolution length of the model [.. It is defined at the
response-governing spatial scale that is individual for each material texture. Phys-
ically, it appears reasonable to suppose that for the high-quality ceramics, for
example titanium diboride or titanium carbide, L,., may be on submicrometer
scale. The typical damage patterns, associated in Figure 2 with the medium,
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FIGURE 4. Sigmoid dependence of the damage scaling exponent
(6) at the critical point on the strain rate with square sym-
bols depicting the simulation results and the solid blue curve the
Weibull equation (4.4) fit with parameters A = —10, C' = 12,and
log(£0.5) = 3.7. The dashed red curve illustrates schematically the
strain rate effect on the representative sample size (L;).

transitory and extreme loading-rate ranges, provide graphical illustrations of the
representative sample size rapid decline illustrated shematically in Figure 4 and
captured qualitatively by equation (4.5). Since the present model cannot capture
many significant physicochemical changes in material associated with high strain
rates, these damage patterns are, necessarily, purely mechanical manifestations
of the rate change reflected by the number and dynamic arrangements of broken
bonds. Nonetheless, the reduction of L, is physically sound bearing in mind the
previosly-noted diminishing role of microstructural disorder.

4.2. High-Velocity Expansion of a Cylindrical Cavity. Dynamic expan-
sion of a cylindrical cavity is a problem important to several fields of engineer-
ing [30]. The study presented herein was motivated by the high-velocity penetra-
tion of rigid projectiles through materials with inferior cohesive strength [23,31].
The simulation setup was simple. The cavity was nucleated by removal of a single
particle from the middle of the random particle network of circular shape. The
nearest neighbors of the removed particle defined the cavity rim, which was driven
radially outward in a displacement-controlled manner at a desired constant ex-
pansion rate a (the inset in Figure 5a). The computation domain representing a
plane with an expanding cavity in its center was divided into five annular regions
of equal width over which the macroscopic field observables were averaged by using
equations (3.1) and (3.2). The averaging regions were marked with five upper case
Gothic letters (2A-¢) starting from the one closest to the expanding cavity rim as
indicated in the inset of Figure 5a. The scalar damage parameter was again de-
fined as the ratio of the number of broken bonds with the total number of bonds
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(D = n/N). Additionally, the effect of damage accumulation was quantified by
calculation of the effective stiffness components that took into account material
degradation.

4.2.1. Damage accumulation and degradation of the effective material prop-
erties. The selected simulation data obtained for the high cavity expansion rate
a = 0.135 C are presented in Figure 5 by the hollow squares and circles correspond-
ing, respectively, to the two averaging regions 2 and 8 closest to the expanding
cavity rim. The history of the scalar damage parameter D is of the typical sigmoid
shape bracketed by two horizontal asymptotes depicting the initially undamaged
(pristine) state and the final damage (completely pulverized) state of the sample,
respectively. As discussed in [23], the effective circumferential stiffness degrades
more rapidly than the radial stiffness since initially most of the damage in the pro-
cess zone is attributable to the radial microcracks. Also, the degradation rate of
the effective radial stiffness depends on the radial distance from the cavity, while
the degradation rate of its circumferential counterpart is insensitive appearently to
the radial coordinate. Since initially most of the damage in the process zone (the
one closest to the expanding cavity rim) is attributable to the radial microcracks,
the circumferential stiffness degrades much more rapidly then the radial stiffness.
These effects are obliterated in the damage evolution plots presented in Figure ba
due to the spherical (non-directional) character of the scalar damage parameter.

The sigmoid character of the damage evolution depicted by the simulation data
points is represented by the Hill model (2.7a) as follows

(t—1)"
(4.6) D= (Gos—T)" 1 (t—T)> a>0t>1T.

By analogy with the original Hill model, minimum (Dy = 0) and maximum
effects (D = 1) appear implicitely in equation (4.6), to 5 is the time corresponding
to D = 0.5, while the shape parameter « represent the coefficient of sigmoidicity.

The damage evolution expression (4.6) can be linearized by using logarithmic
transformations

In (%) =aln(t—T)—aln(tes — T)

log (L) =alog(t —T) — alog(tes — T)
1-D
with two different logarithm bases. Equation (4.7), known as the median-effect
equation, permits estimation of the median (¢o5) and the slope («) of simulation
data by one of the regression methods. Interestingly, this equation is mathemati-
cally identical to the logit transformation, logit(p) = In(p/1 — p) [6]>
Importantly, the final saturation state of the scalar (spherical) damage param-
eter is known by definition (D7 = 1). Thus, it is especially convenient to use the
quantiles for the estimation of the shape (2.11a) and location (2.12a) parametes

(4.7)

3The logit of the probability p = P {X < =z} of the event {X < z} is defined as the
logarithm of the corresponding odds p/(1 — p), which yields the Hill equation (2.7a) in a linear
form logit(p) = aln[(z — A)] — aln(zo.5 — A).



SOME SIGMOID AND REVERSE-SIGMOID RESPONSE PATTERNS... 111

1 - _ g
D P =
) Fq
/'/O
0.75 ;0 0.75
/. AN
/0 W
./ -
0.50 o 0.50
;
P
{
025 / 025
’ ad
!
@/
0 & L . b 0 .
0 05 10 1.5 0 05 1.0 15
(a) t[nsf t [ns] (b)

FIGURE 5. Time history of: (a) scalar damage parameter, and (b)
effective modulus of elasticity in annular regions A and B, which
illustrate the material degradation in the process zone due to mi-
crocrack nucleation for the high cavity expansion rate 0.135 Cy.
The data fitting curves are plotted, for the two annular regions in-
dicated in the inset, by using the equations (4.6) and (4.8) with the
coefficients of sigmoidicity being, respectively: (a) a = (2.9, 2.7)
and (b) a = (—2.4; —2.2), while the parameters T' = (0, 0.2) and
to.s = (0.26, 0.59) are common for both macroscopic observables
and F; = (0.20, 0.35).

if the damage evolution process has not approached the saturation level. Thus,
the two data fitting curves illustrated by the solid and dash-dotted lines in the
main pannel of Figure 5a are plotted by using equation (4.6) with the parame-
ters a = (2.9,2.7), T = (0, 0.2) and t9.5 = (0.26, 0.59) corresponding to the two
averaging regions (2, 9B), respectively.

These model parameters are calculated based on the medium and two symmet-
ric quantile values estimated from the simulation data to be tg5 = (0.26, 0.56),
ty =to.a = (0.22, 0.51), and t1_4 = to.¢ = (0.29, 0.62) for the two averaging regions
(2, B), respectively.

The simulation data points in Figure 5b suggest that the damage-induced re-
duction of the effective modulus of elasticity (3.2) follows a reverse-sigmoid shape.
Therefore, a descriptive model

_F _ _ (t—T)~
(48) E = EO _E1+(1 El)(toﬁ*T)a‘F(t*T)O"
based on the Hill equation (2.7a) with a negative coefficient of sigmoidicity « is
used herein to capture the characteristic monotonic decline depicted in Figure 5b
by squares and circles referring to the pair of circular averaging regions (2, B).
It should be noted that the final saturation level (corresponding to the damage
parameter approaching D; = 1) is not zero due the fact that the lattice model
used, in addition to a chemical, recognizes also a purely mechanical interaction

a<0,t>T
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between particles. The former is inherently both compressive and tensile while the
later is strictly compressive (but with unlimitted number of particles potentially
involved). Namely, the mechanical interaction can be established between two
particles that were not initially connected or re-established between particles that
were previously separated by the (chemical) bond rupture. This interaction feature
is essential for modeling of the flow of the comminuted phase in the process zone
during cavity expansion. Thus, the non-zero modulus of elasticity corresponding to
the comminuted material (D; = 1) is apparent since the tension carying capacity
is reduced to zero.

4.3. Impact Fragmentation of a Slender Nanoprojectile. The Weibull
probability distribution (2.1) is used extensively to describe particle size distribu-
tion in comminution process (e.g., [5]). Thus, the extension to the description of
the maximum fragment mass of a projectile colliding with a rigid wall is natural
and straightforward. This, so called, ballistic Taylor experiment, is a standard
procedure for verification of constitutive behavior of materials [32]. In the studies
reviewed herein, the slender L-J nanoprojectile (the aspect ratio of ~ 7.3) impacted
a rough rigid target represented by a line of immovable atoms. Depending of the
striking velocity, the collision resulted in more or less severe plastic distortion of
the projectile until the impact energy exceeded the absorption capacity of the ma-
terial, which resulted in creation and energetic evacuation of fragments. These MD
simulations generated information at the atomic level which could be converted
into macroscopic observables (temperature, T; pressure, P; and strain, €) by well-
known techniques presented in an abbreviated form in Section 3.1 of this review
article. The distribution of fragment masses was also evaluated periodically dur-
ing the impact as the surviving interatomic links defined self-bounding clusters of
atoms with interatomic distance less that a predetermined cut-off limit (7 < Ryim)-

4.3.1. Dependence on the maximum fragment mass on the selected macroscopic
observables. With impact energy, K = mwv?/2, as a control parameter, the reverse-
sigmoid dependence of the maximum fragment mass (mmax) upon a set of macro-
scopic observables denoted by a generic state variable Z € {K, Pmax, Tmax, Emax } for
the entire fragmentation range is schematically depicted by the following expression

In=— Z\X
Inmpmax = My - exp [f (ni) }, (22 Ep)
1.9) Y
4. Y 1
M:—~eXp(1——)~£
T X X
and illustrated by Figure 6 [12]. The phenomenological model (4.9) is developed

based on the reverse-sigmoid form of the Weibull equation (1.1b), where the three
uppercase alphabetic letters (X,Y, Z), as in the preceding cases, designate the fit-
ting parameters (for example, in Figure 6a, X =4, Y =7, Z = 2.2). The parame-
ters (2o, Mmax o), designated by subscript “0”, refer to the threshold of the damage-
fragmentation transition as illustrated in Figure 6. The damage-fragmentation
transition is a continuous phase transition discussed extensively over the last 15
years (e.g., [33] and references therein). For a slender projectile of any given as-
pect ratio, the onset of the damage-fragmentation transition is dependent upon
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its cross sectional dimension. The nonlinear empirical formula (4.9) neglects the
minuscule fragmentation below the onset of the damage-fragmentation transition
(v < vo; E < Ep; Figure 6). (The impact fragmentation in confined spatial di-
mensions is expected to result in increased fragmentation thresholds due to the
small-scale hardening of the material as indicated, for example, by Rinaldi [34].)
It should be obvious from expression (4.9) and upon a closer inspection of
Figure 6 that the three fitting parameters (X,Y, Z) are not mutually independent
but need to satisfy the following condition from the approximately linear domain

X 1 InZy — Z\X
€ = e - o [~ 14 =+ (22 =2)Y],

Y X Y
(4.10) o
InZ¢=Z+Y(1- Y)
1 8
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FIGURE 6. (a) The normalized maximum fragment mass vs. the
striking velocity with square symbols depicting the MD simula-
tion data and the solid curve the data fit with Equation (4.9).
(b) Schematics of the maximum fragment mass dependence on a
generic state variable = € {K, Puax, Tmax, £2}. The results corre-
spond to d = 53 (15 x 110nm). (The projectile diameters are pre-
sented henceforth in nondimensional form by normalization with

the equilibrium interatomic distance, d = d/rg.

The slope at the inflection point (4.10); is uniquely determined from the con-
dition that it corresponds to the second derivative of (4.9) being equal zero.

The empirical expression (4.9) cannot formally capture the terminal (shatter-
ing) fragmentation, v = v1 > Mmax = 1, except as the limit case, limz_ oo (Mmax) =
1, defining the horizontal asymptote depicted schematically by abscissa in Fig-
ure 6b. (It should not be overlooked that simulation data presented in Figure 7
depicts the terminal fragmentation® obtained, not-surprisingly, for the smallest pro-

jectile diameter used in the investigation (d = 19).

4The terminal or “shattering” phase transition (with the onset v = v1) is defined by occurrence
of the uniformly monatomic fragment debris (mmax = 1) accounting for a deterministic fragment
distribution. The term “shattering” is inspired by Redner’s [35] discussion of a mathematical
patohlogy in a solution of the linear fragmentation rate equations “in which mass is lost to a dust
phase consisting of an infinite number of zero mass particles”.
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Furthermore, the simulation-data fitting by (4.9) reveals not only that the
fitting parameters X and Y have the same values for all four impact parameters
and state variables = € {K, Pmax, Tmax; € aax} Dut also that

X =~ 257 Y =~ lnmmaxo
Thus, equation (4.9) can be rewritten in a more visually appealing form

(4.11) In Mmax = INn Mpaxo - €Xp 1+ln1717(1n:7Z)2£}
2 2

Consequently, the nonlinear phenomenological model for the maximum frag-
ment mass is captured by the same reverse-sigmoid curve for all four above-men-
tioned state parameters when the independent generic variable, In =, is shifted by
Z (4.11) as illustrated in Figure 6b and discussed in [12].

Finally, the size effect of the damage-fragmentation transition threshold ob-
served in the ballistic Taylor experiments investigated in [11] is extended in this
review article to include the maximum fragment mass (absolute rather than com-
monly-used normalized counterpart). Timar et al. [33] assumed the scaling form
for the critical striking velocity

(4.12) vo(d) = vo(c0) + Ad~YY,  d>dp

in terms of the system size. The limit of validity of the power law (4.12) for
the impact fragmentation of slender projectiles was proposed based on observation
that in the small-size region (d < dr =~ 29) the critical striking velocity deviates
from (4.12) by becoming insensitive to the projectile diameter [11]. The critical
striking velocity of the infinite system and the correlation length exponent of the
transition (4.12); were identified to be vg(c0) = 0.40km/s and v = 0.77 £+ 0.01,
respectively [11].

With regards to results of the trailblazing study of Kun and Herrmann [36]
it can be assumed that: (i) the system exhibits a continuous phase transition
at the damage-fragmentation threshold (vo, Mmaxo0)), (i) the maximum fragment
mass is the order parameter of that transition, and (iii) the striking velocity (v) is
the control parameter of that transition. The finite size scaling of the maximum
fragment mass (Figure 7a) could be admitted in the form

In Mmax 0

(4.13) In Mumax (v, d) = d =PV F{[v(d) — vo(c0)]d /¥
where [ is the critical exponent of the order parameter and F' designates the scaling
function (e.g., [33,38]) illustrated by reverse-sigmoid curves of Figure 7a. Thus,

Figure 7b is obtained by rescaling v (4.12) and muyax (4.13) by appropriate powers
of the projectile diameter defined by scaling exponents v = 0.77 + 0.01 and =
—0.25 + 0.02. These exponents are identified from simulation results based on
the transition-point data collapse requirement. Figure 7b illustrates that collapse
of the Mmax = Mimax(v;) curves for d € {33,45,53}. The detailed view of the
critical-point neighborhood, presented as inset in Figure 7b, emphasizes both the
good-quality data collapse of these curves at the transition threshold for the three
selected projectile diameters d > d, as well as the horizontal peak shift of the curve
belonging to the small-size plateau d = 19 < dj. These observations resemble
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FIGURE 7. (a) Logarithmic plot of the maximum fragment mass
(Mmaz) vs. the striking velocity (v) with symbols depicting the
MD simulation results for four different projectile diameters and
curves the corresponding data fits with equation (4.9). (b) Scaled
logarithmic mmpmax = mmax(v,c{) curves of Figure 7a correspond-
ing to the transition threshold (vg, Mmaxo) collapse for the three
projectile diameters d € {33,45,53} belonging to the power-law
(4.12) validity range. Inset: A detail of the main plot emphasiz-
ing the neighborhood of the onset on the damage-fragmentation
phase transition; the data points for d = 19 are added to highlight
the horizontal peak shift of the curves belonging to the small size
plateau. (All projectiles have the same slenderness ratio.)

those already reported for the similar scaling of the average fragment mass [11] in
agreement with the claim of Kraft et al. [37] that “there is no scaling law with one
universal power-law exponent encompassing the entire size-dependent range (of the
mechanical strength)”. It cannot be overemphasized that all curves in Figure 7b
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are fitted with the Weibull-type function (4.9) with all fitting parameters identical
with exception, naturally, of the location parameter Z. Therefore, shifting of the
curves would result in their overlap in the linear transition region similar to that
illustrated in Figure 6b.

In addition to obvious usefulness of the scaling approach (4.12), (4.13) as a sim-
ple but powerful conceptual analytical tool [38], the set of reverse-sigmoid curves
in Figure 7b offers a number of visual benefits for the analysis of the impact frag-
mentation of slender projectiles. First, it is straightforward to both interpolate
(the dash-double-dot gray line in Figure 7b) and extrapolate (the dashed gray line)
simulation results with a minimum additional computational effort. Second, the
coordinates of the transition threshold (vg, Mmaxo) are defined for every system
size. Third, it is possible to estimate the terminal velocity, v;(d), by introducing
an abscissa neighborhood of predetermined thickness to Figure 7b and determine
its interception with the particular d curve (fit). As an example, for d = 53, the
terminal velocity could be pinpointed roughly to v; & 250 + 20km/s with the
lower-horizontal-asymptote (i.e., abscissa) neighborhood thickness set arbitrarily
to 5 percent of the biatomic fragment (M., = 2) vertical coordinate. (The thick-
ness of this barely-visible gray stripe along the abscissa in Figure 7b is selected
based on the available terminal fragmentation datum for d = 19.) This, although
admittedly a rather arbitrary and coarse estimate, not-surprisingly exceeds the
linear-model prediction of 45km/s quite substantially (Figure 6a) [10]. Note that
the later linear-model prediction was already proven to underestimate v, by a hefty
margin since the terminal fragmentation for d = 53 have not been achieved in MD
simulations even at v = 60km/s [12]. As a final note, it seems reasonable to assume
that, within the framework of the present analysis, there is a saturation system size
(defining the limiting curve) beyond which the terminal fragmentation is impossible
to ahieve.

5. Summary

The sigmoid and reverse-sigmoid response patterns reviewed herein were ob-
served lately in the analyses of simulation data obtained by two different methods
of the computational mechanics of discontinua: molecular dynamics and lattice.
Two functional models, referred herein as the Hill model and the Weibull model,
were suggested as useful tools not only for data fitting but also for investigation of
the salient features of the simulated phenomena. The sigmoid (the reverse-sigmoid)
response patterns were characterized by two horizontal asymptotes at the domain
tails, which bound the regions of relatively weak dependence of the dependent
variable upon the independent one, and a smooth comparably-steep transition in
between with a non-negative (a non-positive) derivative at each point for the two
respective shapes. The gradient of this transition, as a rule, has a very important
physical meaning for the material response modeling. The various properties of
the Hill and Weibull models, used frequently as curve fitting tools for nonlinear
and saturable phenomena, were reviewed with emphasis on the parameters gov-
erning the essential response features. Although the satisfactory curve-fitting of
data does not imply causality, it might, hopefully, hint at a future investigation
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pathway. It should be noted that the physical mechanisms, which the described-
patterns embody, are still not understood fully. That is, outlooks of the purely
empirical functions of various physical parameters are not sufficiently clear. There-
fore, in absence of the complete physical picture and derivations from the first
principles, the expressions presented strive at best to formal significance common

to

all phenomenological models and empirical formulas manufactured to capture

experimental data or simulation results.
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HEKN CUT'MOUNJIHUN 1 OBPHYTO-CUT'MONJIHN
OBPACIIZ OA3UBA COJINJIA KOJU CE JABJ/BAJY
ITPU N3Y3ETHO CHAXKHUM OIITEPEREIBVMA

PeE3uME. Ilum oBor mpersiesnor paja je aBocTpyk. IIpBo, ma mcrakHe Heke
CUTMOWTHE U OOPHYTO CUIMOUIHE oOpaciie oj3uBa npumehene y ckopuje Bpeme mpu-
JIIKOM cuMysiangja onrepeliema (yriaBHOM, KBA3UKPTUX) COJIHUJIA BEJIUKUM Op3u-
nama gedopmucama. JIpyro, ma npukake pa3andure OCOOMHE JIBa MOJEIA KOjU Ce
9eCcTO KOPHUCTE Kao ajlaTh 3a “‘puroBambe’ KpUBUX KOJ HEJMHEAPHUX I0jaBa KOje
kapakrepulne 3acuheme. OBa JBa Moje/ia - MHCIUpUCaHa XuUjaoBoM u Bejoyiio-
BOM (DYHKIIHjOM pacIojieie BepoBaTHONa - OrpaHUYeHa Cy JIBEMa XOPU30HTAJHUM
ACHMIITOTAMA Ca TVIATKUM [IPEJIa30M U3Mel)y OCHOBHOT M KOHAYHOI CTaHha 3acullermha
KOjU OJJIUKYjy He-HeraTUBHU (HEe-IO3UTUBHU) [IPBU U3BOJU Y CBAKO] TAYKH CUIMO-
uznsor (o6puyTo curmomHor) obsiuka. Maga ce kopucre npe cgera 3a “buroBame”
nogaTaka 300r cBoje (OIEKCUOMIHOCTH U e(UKACHOCTHA, OBU HEJIUHEAPHU MOJIEIN
[IOCe1yjy W JIpyre OJJIMKE IIOrOJHE [P AHAJIU3U HEIIOBPATHUX, HEJIMHEAPDHUX U He-
paBHOTEX)KHUX T0jaBa. (OcobuHe OBa JBa MOJEJA CY Y OBOME IPErJIely CACTEMAT-
CKU M3JI0XKEHE. YIIPKOC YMEHEHUITHN /18 Ce YCIENHO “(uToBame” MogaTaka He MOYKe
CMaTpaTH JOKA30M y3POYHOCTH, OHO OM MOIVIO Ja MCTaKHe 0Opa3all IOHAIIAma H,
MOXKJIa, IIPY2KHA CMEPHUIIE 32 J1a/ba UCTPAKIBAHA.
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