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Abstract: The behavior of counterpropagating self-trapped optical beam 
structures in nematic liquid crystals is investigated. A time-dependent model 
for the beam propagation and the director reorientation in a nematic liquid 
crystal is numerically treated in three spatial dimensions and time. We find 
that the stable vector solitons can only exist in a narrow threshold region of 
control parameters. Bellow this region the beams diffract, above they self-
focus into a series of focal spots. Spatiotemporal instabilities are observed 
as the input intensity, the propagation distance, and the birefringence are 
increased. We demonstrate undulation, filamentation, and convective 
dynamical instabilities of counterpropagating beams. Qualitatively similar 
behavior as of the copropagating beams is observed, except that it happens 
at lower values of control parameters. 
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1. Introduction 

Nematic liquid crystals (NLC) exhibit huge optical nonlinearities, owing to large refractive 
index anisotropy, coupled with the optically-induced collective molecular reorientation. They 
behave in a fluid-like fashion, but display a long-range order that is characteristic of crystals 
[1, 2]. Thanks to the optically nonlinear, saturable, nonlocal and nonresonant response, NLC 
have been the subject of considerable study in recent years, from both theoretical [3, 4] and 
experimental points of view [5-10]. 
 Nematic liquid crystals possess properties of both liquids and solids. They contain rod-
like molecules which display orientational alignment without positional order. Several types 
of long-range order are observed in thermotropic NLC, the simplest one being when the 
position of molecules is arbitrary but their orientation is the same. A useful property of NLC 
is the ability to change optical properties under the action of an external electric field, which 
enables the macroscopic reorientation of the angle of the director (a unit pseudovector 
pointing along the predominant direction of molecules). In other words, the light incident on 
NLC modifies the electric permittivity tensor, leading to the reorientational nonlinearity. 
 The average alignment of the molecules is associated with the director, and in our work it 
is prescribed to be parallel to the top and bottom bounding surfaces. As it is well known [1], at 
a critical value of the strength of applied electric field, a static distortion of the nematic 
occurs, and this phenomenon is referred to as the Freedericksz transition. 
 In an earlier publication [11] we investigated the propagation of laser beams in NLC, both 
in time and in 3 spatial dimensions, using an appropriately developed theoretical model and a 
numerical procedure based on the split-step fast Fourier transform technique. We extend the 
analysis here to the counterpropagating (CP) beams. We find that the spatial solitons [12] 
exist in a narrow region of beam intensities, similar to the case of copropagating beams [11], 
but at lower values of the control parameters. Below this region the beams diffract, above the 
region the beams display periodic and even chaotic behavior. Novelty here is that for higher 
intensities a transversal motion of the beams (the undulation, or the beam shift) is observed. 
We also consider the propagation of broader CP Gaussian beams, which offers rich 
opportunities for observing a complex pattern-forming dynamical behavior. The propagation 
and interactions of more complex beam structures, such as optical vortices, are also studied. 

2. The model 

As mentioned, a useful property of NLC is to change optical properties under the influence of 
an external electric field, producing a reorientation of the director tilt angle θ. To describe the 
evolution of slowly-varying CP beam envelopes A and B, linearly polarized along the x axis 
and propagating along the z axis, we utilize the paraxial wave equations [4, 5, 8, 9]:  
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where A and B are the forward and the backward propagating beam envelopes, k = k0n0 is the 
wave vector in the medium and εa = ne

2-n0
2 is the birefringence of the medium. 

 The rest distribution angle θrest in the presence of a low-frequency electric field is 
modeled by [5, 8]: 
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with θ0 (V) being the orientation distribution due to the applied voltage V far from the input 
interface. θin is the director orientation at the boundaries z = 0 and z = L, where L is the 
propagation distance and  z  is the relaxation distance. The temporal evolution of the angle of 
reorientation is given by the diffusion equation [2, 4]: 
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where γ is the viscous coefficient and K is Frank’s elastic constant. Here θ is the overall tilt 
angle, owing to both the light and the voltage influence. Using the rescaling z = zkx0

2, x = xx0, 
y = yx0, and t = tτ, the equations are transformed into a dimensionless form: 
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where τ is the relaxation time and x0 is the transverse scaling length. Equations (5), (6) and (7) 
form the basis of the model. By solving these equations we will be describing the beam 
propagation in both space and time. We develop a novel numerical procedure, utilizing our 
prior experience in treating the propagation of CP beams in nonlinear media [13]. The 
temporal equation for the angle of reorientation (Eq. (7)) and the spatial propagation equations 
for the beam envelopes (Eqs. (5) and (6)) are solved together in a system of nested loops, 
including an iterated convergence loop. Starting from a given distribution of θ (t; x, y, z), the 
incident fields A and B are propagated (from their entrance sides) along z, to obtain a new 
distribution of the fields. Then the distribution of θ is integrated for a time step at each spatial 
point. The fields now do not correspond to the new distribution of θ, and have to be 
propagated again along z. This two-step procedure is iterated until stable self-consistent 
distributions of the reorientation angle and the beam envelopes are obtained, which means that 
θ, A and B are advanced for a time step dt. The convergence in the self-consistency loop 
signifies that a solution at the time t + dt is found, and a new temporal step can start.  

3. Results and discussion 

Numerical studies of Eqs. (5) - (7), for CP beams propagating in electrically biased plane-
oriented NLC, are performed in different conditions and for different beam configurations. 
The geometries are similar to the ones used in experiments [5-10]. The propagation of narrow 
and broad Gaussian beams, as well as vortices, is investigated. Even though the planar NLC 
are often made thin, we consider the propagation in the bulk. All the pictures and the movies 
in the transverse (x, y) plane are presented at the exit face of the crystal (z = L), and those in 
the (y, z) plane are at the x = 0 plane (in the middle of the crystal). All the pictures and the 
movies are presented for one beam (forward) only. In all the figures the times are indicated, 
except where the steady state is displayed. 
 In all the simulations the following data are kept constant: the diffraction length Ld = kx0

2 
= 79 µm, the propagation distance L = 6.3 Ld = 0.5 mm, the transverse scaling length x0 = 2 
µm, the laser wavelength λ = 514 nm, the relaxation distance  z = 40 µm, the elastic constant 
K = 0.7 10-11 N, the viscous coefficient γ = 0.08 kg/ms, the ordinary refractive index n0 = 1.53, 
the director orientation at the boundary θin = π/2, the orientation distribution θ0 = π/4, the 
birefringence εa = 0.5. All of these data are consistent with the values reported in the 
experimental investigations [5-8]. 
 First we consider the behavior of CP Gaussian beams in NLC, as the beam intensity is 
increased. The effect of the input intensity variation on the CP Gaussian beams propagation is 
presented in Fig. 1. For smaller intensities (Fig. 1(a)) self-focusing is too weak to keep the 
beam tightly focused, so it is not passing through unchanged, as a soliton. By increasing the 
beam intensity (Fig. 1(b)), at a certain value a stable solitonic propagation is achieved. For 
still higher intensities we observe transversal motion of the beam, in the form of transverse 
jumps [13]. One (Fig. 1(c)), and two consecutive jumps (Fig. 1(d)) are noted in Fig. 1. This 
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beam displacement is due to a force exerted on the beam, caused by the refractive index 
change in the medium, and originating from the presence of the other beam. Such transverse 
motion of beams corresponds to the small-amplitude undulations [5-10], observed in 
experiments. For further increase in the intensity we see unstable dynamical behavior, Fig. 
1(e), in the form of convective instabilities.  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The forward beam propagation, shown in the (y, z) plane (the first and third rows) and in 
the (x, y) plane (the second row), for different input intensities. a), f) and k) Diffracting beam, I 
= 6x10+9 V2/m2. b), g) and l) Soliton, I = 7x10+9 V2/m2. c), h) and m) One beam shift, I = 8x10+9 

V2/m2. d) (632 KB), i) (334 KB) and n) (1.381 MB) Two beam shifts, I = 1x10+10 V2/m2. e) 
(131 KB), j) (229 KB) and o) (760 KB) Convective instability, I = 9x10+10 V2/m2. The first and 
second rows depict intensity distributions, the third row θ(y,z). For all the simulations FWHM 
= 4 µm, L = 0.5 mm and εa = 0.5. 

 

In Fig. 2 we present examples of intensity distributions from Fig. 1, visualized by iso-
surfaces in 3D, for different input beam intensities, for which stable solitonic propagation, 
undulation, filamentation and irregular dynamics occur. Several isosurfaces of the same beam 
are superimposed onto the same picture, represented by different colors. Figure 2(c) clearly 
displays the convective nature of the modulational instability occurring in the system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Beam propagation, shown in 3D, for different input intensities: a) I = 7x10+9 V2/m2 at t = 
15 τ, using two intensity levels (0.1 and 0.2 of I); b) I = 1x10+10 V2/m2 at t = 3.5 τ and t = 4.8 τ, 
the same intensity levels.; c) I = 9x10+10 V2/m2 at t = 1 τ, using eight intensity levels (in relative 
units: 0.0001, 0.001, 0.01,0.1, 0.5, 1.0, 3.0 and 5.0). Parameters: FWHM = 4 µm, L = 0.5 mm 
and εa = 0.5. 

 In Fig. 3 we compare the behavior of copropagating (CO) and CP beams. In the CO case 
we launch two overlapping beams from the same side of the cell, and look for the formation of 
vector solitons. The transversal motion of the beams found in CP geometry has no counterpart 
in the CO geometry. For narrow CP beams (4 µm), the intensity needed for soliton existence 
(to pass through the medium without diffraction) is about three times lower than in the CO 
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case [11]. This is not difficult to understand: each of the CP beams produces a larger change 
of the refractive index and contributes more to beam focusing in its own half of NLC (where it 
enters). The change in the index needed for soliton formation is caused by total intensity, 
hence less intensity of each beam is required. The same conclusion holds for broader beams, 
with the input FWHM = 20 μm (Fig. 3). As expected, the same (or similar) behavior occurs 
for CO and CP cases, but at different input beam intensities. For the CP beams, the soliton 
existence region is wider than for the CO beams. For higher intensities we again observe 
different kinds of instabilities: soliton breathing (the second column), stable filamentation (the 
third and fourth columns), and long-lasting convective instabilities (the fifth column). 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Comparison between the copropagating (the first row (708 KB, 591 KB, 296 KB)) and 
the counterpropagating (the second row (521 KB, 406 KB, 184 KB)) beams in NLC, for 
different input intensities, indicated in the figures. For all the simulations input FWHM = 20 
µm, L = 0.5 mm and εa = 0.5. 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Intensity distributions at the output face of the crystal for two values of intensities: I = 
1x10+9 V2/m2 (the first row (71 KB, 1.428 MB, 1.303 MB, 1.749 MB)) and I = 7x10+9 V2/m2 

(the second row (116 KB, 108 KB, 873 KB, 1.123 MB, 1.290 MB)), for different input FWHM 
of beams (indicated in each figure). In all the simulations L = 0.5 mm and εa = 0.5. 

 Further, we consider the behavior of broader CP Gaussian beams in NLC (Fig. 4). We 
utilize broader Gaussian beams to display modulational instabilities and pattern formation of 
CP beams. We vary the input FWHM of Gaussian beams, for two different values of the input 
beam intensity. Interestingly, by increasing FWHM we see more regular patterns developing 
after an irregular transient dynamical phase, unlike the case of CP broad Gaussians in 
photorefractive crystals [13]. There one sees ordered patterns first, which become increasingly 
irregular. This behavior is the consequence of the long-range nonlocal interactions that are 
characteristic of NLC, in contrast to the local interactions, characteristic of the isotropic 
photorefractive medium. Nonlocal interactions tend to suppress modulational instabilities of 
broader beams and produce smoother patterns. Still, the transverse symmetry of developing 
initially axially symmetric beams need not remain axially symmetric. Pattern formation often 
involves symmetry-breaking mechanisms, and the resulting patterns could be of a different 
symmetry. Another feature of broad CP beams in NLC is relatively long time needed to 
achieve the steady state.  
 Besides varying beam parameters, we also vary the birefringence εa, which characterizes 
the strength of the nonlinearity. In Figure 5 we show the propagation for εa = 0.8, analogous to 
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Fig. 1. One can see that the instabilities develop similarly to the case εa = 0.5, but at different, 
and smaller, input intensities. In particular, the values of intensity where the stable soliton 
propagation is observed are different for the two cases. For higher εa this value is smaller, as 
expected (for εa = 0.8 the threshold intensity for the stable soliton existence is 2.7x10+9 V2/m2, 
whereas for εa = 0.5 the soliton appears at I = 7x10+9 V2/m2). 

 

 
 
 
 
 
 
 

Fig. 5. The intensity distributions for εa = 0.8 and for different input intensities: a) I = 
2x10+9 V2/m2, b) I = 2.7x10+9 V2/m2, c) I = 5x10+9 V2/m2 (757 KB), d) I = 7x10+9 V2/m2 
(518 KB). In all simulations FWHM = 4 µm and L = 0.5 mm. 

 

 Finally, we consider the interaction of CP vortices with opposite topological charges (±1) 
in NLC. Vortex beams carry angular momentum, proportional to the charge, and as a rule 
provide for interesting transverse dynamics. The input beam intensities are varied for two 
values of the input FWHM (Fig. 6). We find stable vortex propagation for lower intensities 
(first and forth columns), as well as standing filaments in the form of dipoles and quadrupoles 
for higher intensities (second and fifth columns). By further increasing the input beam 
intensities, an irregular long-lasting behavior is observed (third and sixth columns).  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. CP vortices in the (y, z) plane (the first row) and in the (x, y) plane (the second row), for different 
input FWHM: 8 µm (first, second and third columns (125 KB, 82 KB)) and 23 µm (fourth, fifth and sixth 
columns (94 KB, 169 KB)), and for different intensities, noted in each figure. The first and fourth columns 
depict stable vortex propagation. The second and fifth columns display the filamentation of vortices. The 
third and sixth columns display dynamical instabilities. In all the simulations L = 0.5 mm and εa = 0.5.  

4. Conclusions 

We report, for the first time to our knowledge, on the behavior of CP self-trapped beam 
structures in NLC. We demonstrate the existence of CP vector solitons in a narrow region of 
beam intensities. For narrow CP Gaussian beams we discover the transversal motion of the 
beams, corresponding to the undulation of the beams. At higher input intensities, we see 
filamentation and irregular dynamics of CP beams. The consideration of broader Gaussian 
beams offers opportunities for observing complex long-lasting dynamical behavior. By 
increasing FWHM of input beams regular patterns, after an irregular transient dynamical 
behavior, are displayed. For CP vortices with the same topological charge, stable vortex 
propagation, standing and rotating filaments, and an irregular behavior are observed, 
depending of the beam parameters.  

Acknowledgments  

Work at the Institute of Physics is supported by the Ministry of Science and Environmental 
Protection of the Republic of Serbia, under the project OI 141031. We are thankful to the IT 
Services of the Texas A&M University at Qatar, for allowing us to use the SAQR 
supercomputing cluster.  

    

    

 

 

 

 

    

#76054 - $15.00 USD Received 13 October 2006; revised 22 November 2006; accepted 24 November 2006

(C) 2006 OSA 11 December 2006 / Vol. 14,  No. 25 / OPTICS EXPRESS  12315

http://www.opticsexpress.org/viewmedia.cfm?URI=oe-14-25-12310-21
http://www.opticsexpress.org/viewmedia.cfm?URI=oe-14-25-12310-22
http://www.opticsexpress.org/viewmedia.cfm?URI=oe-14-25-12310-23
http://www.opticsexpress.org/viewmedia.cfm?URI=oe-14-25-12310-24
http://www.opticsexpress.org/viewmedia.cfm?URI=oe-14-25-12310-25
http://www.opticsexpress.org/viewmedia.cfm?URI=oe-14-25-12310-26

