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Abstract: Dynamical and steady-state behavior of beams propagating in 

nematic liquid crystals (NLCs) is analyzed. A well-known model for the 

beam propagation and the director reorientation angle in a NLC cell is 

treated numerically in space and time. The formation of steady-state soliton 

breathers in a threshold region of beam intensities is displayed. Below the 

region the beams diffract, above the region spatiotemporal instabilities 

develop, as the input intensity and the material parameters are varied. 

Curiously, the only kind of solitons we could demonstrate in our numerical 

studies was the breathers. Despite repeated efforts, we could not find the 

solitons with a steady profile propagating in the NLC model at hand.  
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1. Introduction  

By now, nematic liquid crystals (NLCs) are common materials found in many consumer 

electronic devices. They behave in a fluid-like fashion, but display long-range order that is 

characteristic of crystals [1]. They contain rod-like molecules which exhibit orientational 

alignment without positional order. NLCs exhibit strong optical nonlinearities, owing to large 

refractive index anisotropy. Another useful property of NLCs is the ability to change optical 

characteristics under the action of an external electric field, which enables the macroscopic 

reorientation of the director tilt angle θ. The light incident on a NLC modifies the electric 

permittivity tensor, leading to the reorientational nonlinearity. For these reasons the 

propagation of self-focused beams [2] in NLCs have been subjected to increased scrutiny in 

recent years, in both experimental [3, 4] and theoretical [5-8] aspects of research.      

We investigate the propagation of single self-trapped laser beams in a bulk NLC cell. 

Starting from the standard equations describing nonlocal and nonlinear (NN) interactions in 

NLCs, we develop a numerical model that exhibits rich dynamical behavior in three spatial 

dimensions and time. We treat the full system of partial differential equations (PDEs) in both 

space and time, using an appropriately modified split-step FFT procedure. We vary different 

beam parameters: FWHM of the input beam and the optical and static permittivity 

anisotropies of liquid-crystal molecules. We present breathing soliton transverse profiles at 

the cell exit (x,y) plane, the optical field intensity I(0,y,z) and the optically induced molecular 

reorientation θ̂  (0,y,z) along the propagation axis, in the middle of the crystal. We 

demonstrate the formation of soliton breathers in a threshold region of beam intensities. 

Despite repeated efforts and careful numerics, we could not observe steady spatial solitons, 

propagating with an unchanging transverse profile. The only kind of solitons we could 

identify in the model at hand was the breathers. We observe self-focusing and modulational 

instabilities (MI). The effects of self-focusing and breathing we describe resemble the physics 

of self-written waveguides, first noted in photosensitive glass [9-11] and later developed for 

polymers [12-14]. Even though rich dynamical behavior is observed, we confine our attention 

mostly to spatial effects, i.e. the effects observed in 3 spatial dimensions, after temporal 

steady state is reached in the system. To ascertain the reliability of our numerical procedure 

and the reality of effects we report upon, in the end a comparison is presented with the steady-

state numerical method, based on a successive over-relaxation (SOR) algorithm. 
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The paper is organized as follows. Section 2 contains the description of the NN model 

adopted and of the numerical method employed. Section 3 presents results of our numerical 

simulations, grouped in a number of subsections. Section 4 brings a summary of the paper. 

2. The model  

The distortion of molecular orientation in NLC can be described by the reorientation angle θ 

of the director in the transverse plane. In the presence of an external low frequency electric 

field the spatial evolution of a slowly-varying beam envelope A, linearly polarized along the x 

axis and propagating along the z axis, is well captured by the dimensionless paraxial wave 

equation [15]:  

2 2
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i A A
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α θ θ
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where ∆x,y is the transverse Laplacian. The temporal evolution of the angle of reorientation θ 

is described by the dimensionless diffusion equation [4, 16, 17]: 
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with the boundary conditions: 
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Here γ is the viscous coefficient and K is Frank’s elastic constant, τ is the director relaxation 
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Also, k=k0n0 is the wave vector in the medium, x0 the transverse scaling length, and 

∆ε
OPT

=ne
2
-n0

2
 is the optical permittivity anisotropy of the liquid-crystal molecules. E

DC
 = V/D 

is the applied field strength (V is the applied bias voltage, D is the cell thickness) and ∆ε
DC 

is 

the static permittivity anisotropy of the liquid-crystal molecules. θ is the overall tilt angle (the 

total orientation of the molecules with respect to the z axis), owing to both light and voltage: 

0
ˆθ θ θ= + , where the angle θ0 accounts for the molecular orientation induced by the static 

electric field only, while the quantity θ̂  corresponds to the optically induced molecular 

reorientation. Hard boundary conditions on the molecular orientation at the transverse borders 

of the liquid-crystal cell are introduced by relation (3). 

Equations (1) and (2) form the basis of our model. It is a closed NN model that describes 

the propagation of self-trapped beams in NLCs well. By solving these equations we will be 

describing the beam propagation in both space and time. We develop a novel numerical 

procedure, based on FFT, utilizing our prior experience in treating the beam propagation in 

NLCs [5]. The novelty is that we treat concurrently the system of coupled PDEs in both space 

and time. Both the spatial and the temporal integrations are based on the split-step FFT 

method, because both Eqs. (1) and (2) are of the parabolic type. The only difference is that the 

spatial equation is a paraxial wave equation, whereas the temporal equation is a diffusion 

equation. Our procedure is uniquely suited for observing the dynamical states in slowly-

varying photosensitive systems, where the fast optical fields are slaved to the slow change in 

the photorefractive nonlinearity.  

In all simulations the following data are kept fixed: the diffraction length Ld = kx0
2
 = 76.6 

µm, the propagation distance (i.e. the cell length) L = 20 Ld = 1.5 mm, the transverse scaling 

length x0 = 2 µm, the laser wavelength λ = 514 nm, the elastic constant K = 12 10
-12

 N, the 

viscous coefficient γ = 0.08 kg/ms, the ordinary refractive index n0 = 1.53, the cell thickness D 

= 75 µm, and the bias voltage V = 1V. All of these data are consistent with the values reported 
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in experimental investigations [4, 16]. The initial beam widths FWHM are varied between 2 

µm and 5 µm. The values for the optical and static permittivity anisotropies of the liquid-

crystal molecules are varied between 0.3 and 0.8, and between 10 and 14.5, respectively. The 

intensity is varied between I = 1.0x10
9
 V

2
/m

2 
and I = 5x10

12
 V

2
/m

2
.  

The main difference between the model used in this paper and the model used previously 

[5, 18] is in the form and the treatment of the temporal equation for the angle of reorientation. 

Now the temporal evolution of the angle of reorientation, owing to both light and voltage, is 

given by a more complete Eq. (2), in which 
0

ˆθ θ θ= + . Previously θ0 was given by a simple 

approximate formula or held constant, θ0=π/4. Here, the initial distribution θ0 is determined in 

the beginning, independent of the solution of the full system of Eqs. (1) and (2), using 

boundary conditions and a SOR algorithm for solving PDEs. Such a procedure is preferable 

when one deals with a steady-state boundary-value problem, as is the case of θ0. Only after θ0 

is determined the main integration of Eqs. (1) and (2) begins. This provides for a more 

realistic physical modeling of the system. 

Our model, composed of a system of two PDEs, represents a typical example of a NN 

system. Nonlocality, provided by the temporal diffusion Eq. (2), exerts great impact on the 

beam propagation in NLCs [19-23]. Spatiotemporal nonlocality means that the response of the 

medium at a particular point and in a given moment, is not determined exclusively by the 

wave intensity at that point and in that moment, but also depends on the wave intensity in its 

vicinity and at earlier moments. Nonlocality also exerts great influence on the self-focusing 

and MI of propagating beams [20-23].    

In the end, to stress again, we restrict our attention mostly to the spatial effects, even 

though we treat the system in 3+1 spatial and temporal dimensions. A number of movies are 

still provided, depicting the approach to steady state. Although it is common that people refer 

to the spatial effects along the propagation axis as the “dynamical effects”, we carefully 

distinguish between the dynamical and the spatial effects.  

3. Results of numerical simulation  

3.1 Propagation of Gaussian beam in three spatial dimensions and time  

3.1.1 Influence of input beam intensity  

We consider first the behavior of propagating beams in NLCs with Gaussian input intensities. 

We increase the input beam intensity until spatial solitons – stable beams propagating without 

change in the transverse profile – are located. The effect of the input intensity variation on the 

beam propagation is presented in the movies in Fig. 1. 

For smaller intensities self-focusing is too weak to keep the beam tightly focused, so that it 

cannot get through localized. The beam just diffracts and diminishes in intensity (not shown). 

By increasing the beam intensity (Figs. 1(a) and 1(b)) we achieve a threshold for stable 

solitonic propagation, however with breathing; the beam preserves its new shape, but its 

characteristic width and maximum intensity breathe periodically as it propagates. For still 

higher intensities (Fig. 1(c)) we observe irregular behavior of the beam, so that it is not 

passing through unchanged, as a soliton. Slight width-modulations, present at the onset of 

soliton formation, become more pronounced as the intensities are increased. In that range of 

intensities we see periodic spot size variation during propagation – the breathing of a spatial 

soliton. The width modulation pitch increases with the intensity increase. Eventually, the 

soliton is completely broken by the joint action of the longitudinal MI and the transversal 

instability, developing at the intensities above 5x10
11

 V
2
/m

2
 [24].  

In Fig. 1 we display how the steady-state beam intensities I(0,y,z) and the angle 

reorientation distributions θ̂  (0,y,z) are reached, as functions of the propagation distance, for 

different input beam intensities. The beam intensity I is proportional to |A|
2
. The region of 

intensities in the figure corresponds to the threshold region in which the breathing solitons 
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(BSs) are found. Figure 1 represents typical behavior during the propagation of input 

Gaussian beams in NLCs. A comparison between the beam intensity and the reorientation 

angle distributions shows that they change in unison, as they should; Eq. (2) is solved 

independently at every z position, using the current propagating value of A from Eq. (1). The 

reorientation angle distribution follows closely the intensity distribution, but owing to broader 

nonlocality for the given parameters, it is always wider. The profiles exhibit similar behavior 

to the experimental profiles reported in [4, 17, 25, 26] (cf. Figs. 6 in [4], 3 in [17], 5 in [25] 

and 5 in [26]). 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 1. Breathing solitons. Beam propagation in z-direction, in the middle of the crystal, shown 

for intensities I(0,y,z) (left) and reorientation angles θ̂  (0,y,z) (right). Input intensities: (a) I = 

2.8x10+10 V2/m2 (Media 1) and (Media 2), (b) I = 3.5x10+10 V2/m2 (Media 3) and (Media 4), and 

(c) I = 4x10+10 V2/m2 (Media 5) and (Media 6). Parameters: ∆εOPT = 0.5, ∆εDC = 14.5, FWHM = 

4 µm and L = 1.5 mm.  

In addition to Gaussians, we tried other initial beam profiles: hyper-Gaussians, hyperbolic 

secants, etc. Invariably, we obtained BSs whose profile is different from the input beams. We 

also launched the obtained BS profiles as initial beams, to again find breathing beams. The 

soliton breathing (maximum intensity breathing periodically as the soliton propagates) was the 

only way of soliton propagation that we could identify in this NN system. We did not observe 
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steady spatial solitons. This, of course, doesn’t mean that such solitons do not exist in the 

system – it only means that we could not find them. 

3.1.2 Influence of the input beam width FWHM  

When the same sequence of increasing input intensity simulations is repeated for different 

input widths, for fixed parameters ∆εOPT
 = 0.4 and ∆εDC

 = 14.5, similar behavior is found. In 

Fig. 2(a) we show the cases of BS propagation, for FWHM = 2 µm, 2.5 µm, 3 µm, 3.5 µm, 4 

µm, 4.5 µm and 5 µm. For each input beam width, appropriate input beam intensity can be 

found to establish the existence of a breather. We also note that the changes in FWHM cause 

the changes in the period of oscillation. In Fig. 2(b) we depict the intensities of BSs as 

functions of the input widths (FWHM ranging as in Fig. 2(a)). For smaller FWHM higher 

input intensities are needed for the emergence of breathers. The curve fitted through the points 

is y=1/x
4
. Such a functional dependence is predicted by Snyder and Mitchell [27] for 

accessible (highly nonlocal) solitons in nonlocal Kerr media. It is clear from Figs. 1 – 3 that 

for the range of parameters considered in this paper we are close to the strongly nonlocal 

regime. This also helps explain the lack of steady solitons in our numerical simulations, as 

well as in the corresponding experiments [21, 25, 26]. It is typical of highly nonlocal solitons 

to display breathing behavior. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2. (a) Soliton propagation in the z direction: the input beam intensity in the middle of the 

crystal is shown for different input FWHM widths (FWHM = 2µm (Media 7), FWHM = 2.5µm 

(Media 8), FWHM = 3µm (Media 9), FWHM = 3.5µm (Media 10), FWHM = 4µm (Media 11), 

FWHM = 4.5µm (Media 12) and FWHM = 5µm (Media 13)). For each input beam width 

appropriate input beam intensity is found for the existence of a breathing soliton. (b) Input 

intensities of breathers versus input FWHM widths (blue dots). Red line is the fit y=1/x4 

through the dots. Parameters: ∆εOPT = 0.4, ∆εDC = 14.5 and L=1.5 mm. 

For the intensity of soliton breathing, (input FWHM = 3.5 mm, I = 8.6x10
10

 V
2
/m

2
, Fig. 

2(a)), we present in Fig. 3 the intensity and the optically induced molecular reorientation in 

the middle of the crystal, I(0,0,z) and θ̂ (0,0,z) and the corresponding FWHM of its transverse 

profiles, as functions of the propagation distance. In Fig. 3 we also depict the transverse 

profiles of BS and the induced tilt angle at the exit (x, y) plane. We show how the BS changes 

its width and intensity, and how the molecular reorientation changes during z propagation. We 

invariably observe soliton breathing - the beam preserves its new shape but its characteristic 

width and maximum intensity breathe as it propagates. 
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Fig. 3. (a) Beam intensity, and (b) optically induced molecular reorientation in the middle of 

the crystal, with the corresponding FWHMs, as functions of the propagation distance (the first 

row), and the corresponding transverse profiles at the exit (x, y) plane: the optical field intensity 

I(x, y) (Media 14) and the optically induced molecular reorientation θ̂  (x, y) (Media 15) (the 

second row). The example shown is for the input beam intensity I = 8.6x1010 V2/m2 from Fig. 

1. Parameters are as in Fig. 2. 

3.1.3 Influence of the optical and the static permittivity anisotropy 

If we consider the change in ∆εOPT
 and ∆εDC

 for the input Gaussian beam propagation, we 

observe again stable beams in a narrow threshold region of control parameters. Below the 

threshold region the beams diffract, above it spatiotemporal instabilities are observed, as the 

input intensity and the optical and static permittivity anisotropies of the liquid crystal 

molecules are increased. As before, we only observe spatial soliton breathers.  

If the same sequence of increasing input intensity simulations is repeated for different 

birefringences (0.3-0.8), and for the fixed input beam width FWHM = 4µm, a similar 

behavioral pattern is observed (Fig. 4). We change ∆εOPT
 and repeat the sequence of 

increasing input intensities for two values of ∆εDC
, ∆εDC

 = 10 and ∆εDC
 = 14.5. 
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Fig. 4. (A) Intensity of soliton breathing propagation versus birefringence ∆εOPT, for two values 

of ∆εDC, ∆εDC = 10 and ∆εDC = 14.5. Curves through the points are only a guide to the eyes. 

Inset depicts soliton propagation in the z direction, for different ∆εOPT and ∆εDC; four cases are 

shown: a) ∆εOPT = 0.3 and ∆εDC = 10, b) ∆εOPT = 0.4 and ∆εDC = 10, c) ∆εOPT = 0.3 and ∆εDC = 

14.5, and d) ∆εOPT = 0.4 and ∆εDC = 14.5. (B) The molecular orientation induced by the electric 

field only θ0(x, 0) at any z, for the two mentioned values of ∆εDC. Insets depict θ0(x, y). Other 

parameters: FWHM = 4 µm and L = 1.5 mm. 

In Fig. 4 we show the intensities of BSs as functions of ∆εOPT
 and the molecular 

reorientation induced by the electric field only θ0(x,y), as functions of the transverse variables, 

for the two mentioned values of ∆εDC
. Inset in Fig. 4(A) depicts soliton breathing propagation 

in z, for ∆εOPT
 = 0.4 and ∆εOPT

 = 0.3 (∆εDC
 = 14.5). We can see that if we increase 

birefringence (for fixed εDC
) the threshold input intensities for soliton propagation are 

decreasing; for smaller birefringence the appropriate input beam intensity for the emergence 

of BSs appears at a higher intensity. For smaller ∆εDC
 = 10 we see similarly an increase in the 

intensity needed for the existence of stable BSs. We conclude that the changes in FWHM lead 

to the changes in the intensity and in the period of oscillation along z direction. 

3. 1. 4. Influence of the change in boundary condition θ(x = -D/2) = θ(x = D/2) = 30
0
 

If we repeat the same sequence of increasing input intensity simulations for different input 

widths FWHM, for fixed parameters ∆εOPT
 and L, but change boundary conditions, we find 

similar behavior as before. For each input beam width the appropriate input beam intensity 

can be found for the existence of BSs. In Fig. 5 we show the cases of BS propagation, for 

different FWHM (2.5µm - 4µm). 
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Fig. 5. The first column: The molecular orientation induced by the electric field only θ0(x,y), as 

a function of transverse cordinates. The second column: Soliton propagation in the z direction, 

the beam intensity profile is shown for different input FWHM. For each input beam width 

appropriate input beam intensity is found for the existence of BSs. (a): ∆εDC = 10, θb=θ(x = -

D/2) = θ(x = D/2) = 300; (b): ∆εDC = -10, θb=θ(x = -D/2) = θ(x = D/2) = 300. Parameters: ∆εOPT 

= 0.4, L = 1.5 mm. 

3.2. Propagation of input Gaussian beams using a steady-state procedure  

As an independent check on our time-dependent solution procedure, we considered the steady 

state propagation in NLCs, and found similar behavior - the existence of BSs as the only 

stable propagation mode of localized beams in NLC model at hand. The propagation in the 

steady state is achieved by putting / 0tθ∂ ∂ =  in Eq. (2) from the beginning and by solving 

Eqs. (1) and (2) as a time-independent system of PDEs. The temporal solution procedure is 

now eliminated, being substituted by a SOR algorithm. However, the results are very similar 

to the ones obtained in the limit of long time evolution in the original time-dependent 

procedure.  

3. 2. 1. Influence of input beam intensity 

For the steady state case we again examine the beam propagation, similar to the previous 

analysis. We consider the behavior of propagating single input Gaussian beams in NLCs. We 

increase beam intensity until spatial solitons are located. The effect of the input Gaussian 

intensity variation on the single beam propagation is presented in Fig. 6. Again, for smaller 
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intensities, self-focusing is too weak to keep the beam tightly focused - it can not pass through 

localized. One should note the behavior of the beams with the smallest and the next to the 

smallest input intensities of I = 1.0x10
+9

 V
2
/m

2 
and I = 1.0x10

+10
 V

2
/m

2
. While the beam of the 

smallest intensity (inset) smoothly diminishes in intensity with propagation, the beam next to 

it is initially greatly reduced in intensity, but then it recovers in an irregular fashion. 

By increasing the beam intensity we achieve regular breathing and stable solitonic 

propagation. For FWHM = 4 µm we see stable soliton propagation for an input intensity of I = 

3.5x10
+10

 V
2
/m

2
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. (a) Steady state beam propagation along the z-direction, shown for intensities in the 

middle of the crystal, I (0,0,z), (for different input intensities). Inset presents the lowest 

intensity beam on the linear scale. (b) Beam propagation along the z-direction in the middle of 

the crystal, for the input intensity I = 3.6x10+10 V2/m2. I(0,0,z) (top) and θ̂  (0,0,z) (bottom) are 

shown on the linear scale. Parameters: ∆εOPT = 0.5, ∆εDC = 14.5, FWHM = 4 µm, θ(-D/2) = 

θ(D/2) = 2o and LD =  76.57 µm. 

The comparison between the maximum beam intensity and the reorientation angle values 

shows that they change in unison, the amplitude of the angle of reorientation oscillation being 

small. This again comes out because of the nonlocal nature of nonlinearity. In Fig. 1 the 

comparison between the optical intensity distribution and the reorientation angle distribution 

shows the same, that the amplitude of the reorientation angle oscillation is small.  

3. 2. 2. Comparison between the steady-state propagation procedure and the propagation in 

time. 

We also compare directly results between the steady state propagation procedure and the 

propagation in time procedure, after steady state is reached. We find that the agreement is 

very good for shorter propagation distances (~10LD). For longer propagations small 

quantitative discrepancies appear, however the qualitative behavior in both numerical 

procedures remains the same. When one compares the spatial distributions obtained by the 

two procedures, the differences are hardly discernible. It is reassuring that two very different 

numerical procedures provide very similar results over a broad range of parameters. Still, we 
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believe that the propagation in time procedure provides more reliable and physically more 

transparent results. 

A comparison between the time-dependent and the steady-state procedure is displayed in 

Fig. 7. Black curve in Fig. 7 represents the steady-state propagation result, for a set of 

parameters. Three profiles at the noted maximum, middle, and minimum points of the steady-

state curve are used as the input intensity profiles in the time-dependent procedure. The 

resulting curves after steady state is reached are represented in red, green, and blue. One can 

note essentially the same qualitative breathing behavior, only displaced in phase. The 

discrepancy noted at larger distances probably stems from the fact that the initial profile in the 

steady-state procedure was Gaussian, while the initial profiles in the time-dependent 

procedure were established BS profiles. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Comparison between the steady-state procedure (black curve) and the time-dependent 

procedure (red, green and blue curves): Three profiles at the noted maximum (red dot), middle 

(green dot), and minimum (blue dot) points on the steady-state curve are used as the input 

intensity profiles in the time-dependent procedure. The resulting curves after steady state is 

reached are represented in red, green, and blue. Parameters: The input intensity (for steady-

state) I = 8.6x10+10 V2/m2, ∆εOPT = 0.4, ∆εDC = 14.5, θ(-D/2) = θ(D/2) = 2o and L = 1.5 mm. 

4. Summary 

In this paper we studied a model for the laser light propagation in a cell containing a liquid 

crystal in the nematic phase. We investigated the behavior of beams in time and in three 

spatial dimensions, using an appropriately developed theoretical model and a numerical 

procedure based on the fast Fourier transform. Starting from the standard equations describing 

nonlocal and nonlinear interactions in NLCs, we developed a numerical model that exhibits 

rich dynamical behavior in three spatial dimensions and time. However, our attention here 

was mostly focused on the behavior in steady state. 

We presented beam propagation in NLCs for different values of the beam and material 

parameters. We demonstrated the formation of stable solitons in a narrow threshold region of 

beam intensities for fixed parameters and display soliton breathing.  

We examined the influence of input intensities, input FWHM, ∆εOPT
, ∆εDC

, and boundary 

conditions. For different combination of these parameters, we always obtained consistently 

similar results, which present typical behavior during the propagation of input Gaussian 

beams in NLCs. The typical stable soliton propagation mode is the soliton breathing. Also, we 

considered the behavior of propagating single input Gaussian beams using a steady state 

procedure, and found similar results. We could not locate steady (not breathing) spatial 
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solitons in any of our numerical simulations, despite repeated efforts. We conclude that the 

soliton breathing is the predominant stable way of soliton propagation in NLCs. 
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