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The biological basis of physiological signals is incredibly complex. While many types 
of research certainly appreciate molecular, cellular and systems approach to unravel 
overall biological complexity, in the recent decades the interest for mathematical 
and computational characterization of structural and functional basis underlying 
biological phenomena gain wide popularity among scientists. Nowadays, we 
witnessed wide range applications of nonlinear quantitative analysis that produced 
measures such as fractal dimension, power-law scaling, Hurst exponent, Lyapunov 
exponent, approximate entropy, sample entropy, Lempel–Ziv complexity, as well 
as other metrics for predictions of onset and progression of many pathological 
conditions, especially in the central nervous systems (CNS). In this Research Topic, 
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we seek to bring together the recent practical and theoretical advances in the 
development and application of nonlinear methods or narrower fractal-based 
methods for characterizing the complex physiological systems at multiple levels 
of the organization. We will discuss the use of various complexity measures and 
appropriate parameters for characterizing the variety of physiological signals up to 
the systems level. There are multiple aims in this topic. The recent advancement in 
the application of nonlinear methods for both normal and pathological physiological 
conditions is the first. The second aim is to emphasize the more recent successful 
attempt to apply these methods across animal species. Finally, a comprehensive 
understanding of advantages and disadvantages of each method, especially between 
its mathematical assumptions and real-world applicability, can help to find out what is 
at stake regarding the above aims and to direct us toward the more fruitful application 
of nonlinear measures and statistics in physiology and biology in general. 
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Editorial on the Research Topic

Nonlinearity in Living Systems: Theoretical and Practical Perspectives on Metrics of

Physiological Signal Complexity

Despite the extraordinary development of physiology in recent decades, we still struggle to
understand the multilevel organization and functional integration in complex biological systems
(Goldberger et al., 2002; West, 2010). In this respect, the use of non-linear descriptors and models
in physiology is becoming an essential part of current and future efforts to understand complex
biological systems in both health and disease (Goldberger et al., 2002). Nonetheless, non-linear-
based methods have been utilized in solving many fascinating problems in different subfields of
physiology and pathophysiology.

In this Research Topic, we present original research articles, reviews and new hypotheses
that extend our knowledge and understanding of fractal physiology and its interdisciplinary
nature. Many of physiological researches in recent decades has focused on quantitative analysis,
characterization of dynamics across time scales, and ultimately control of functional physiological
networks, especially in the central and peripheral nervous system (West, 2010; França et al., 2018).
Also, one of the greatest challenges of fractal physiology is to elucidate the fractal and non-linear
mechanisms involved in the generation and allometric control of complex physiological networks,
for which we know that they are a product of several different and interacting temporal scales
(Goldberger et al., 2002; West, 2010; França et al., 2018). Therefore, it would not be wrong to
emphasize that the future of physiology lies in finding ways for applying existing non-linear
measures, developing new ones, and setting new hypotheses aimed at understanding the variability
of physiological time series in health and disease. In this respect, Bohara et al. provide a new
hypothesis with valuable theoretical insight into the relationship between crucial events (1/f noise)
and the wave-like nature of the brain processes. The results of this paper confirm an important role
of crucial events in the dynamics of the brain; they provide theoretical tools necessary to understand
the joint action of crucial events and periodicity, which can be helpful in better understanding
of cognitive processes. von Wegner proposed an information-theoretic approach to numerically
determine the Markov order of discrete processes defined over a finite space. This approach uses
a combination of autoinformation and partial autoinformation to deal with Markov and non-
Markov processes with known stochastic properties and can be used for discrete transformation
of electroencephalograph (EEG) data sets as well.
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Many of the contributions highlight the non-linear behavior
of various components of an organism (“vertical” component
of complexity) from the cellular to tissue and organ levels
work together to maintain complex physiological networks.
Among the multiplicity of non-linear measures, Higuchi
fractal dimension (HFD), used alone or in combination with
other measures, once again proves to be a valuable and
important source of new information about neuronal networks
underlying time scale invariant EEG dynamics. In that regard,
Croce et al. used HFD and detrended fluctuation analysis (DFA)
to investigate circadian rhythms in fractal features of EEG
signals. These authors showed that HFD can be useful for
monitoring circadian fluctuations of fractal features of EEG at
rest in both eyes closed and eyes open conditions. Päeske et al.
employed a set of non-linear measures such as HFD, Katz
fractal dimension (KFD), Lempel-Ziv complexity (LZC), sample
entropy (SampEn), and synchronization likelihood (SL) to
estimate the impact of the strong cyclic signal component on the
result of surrogate data method in the case of resting EEG signals
(80 healthy human subjects) and the impact of segment length on
thismethod. The authors have found that in the case of the signals
with non-monotonic spectrum and strong dominant frequency,
the correct use of surrogate data method requires the signal
length comprising of full periods of the spectrum dominant
frequency. This study once more highlights the importance of
correct selection of EEG signal segment length for the surrogate
data method to estimate non-linearity. Lebiecka et al. showed
that HFD may be a useful marker for evaluation of the repetitive
transcranial magnetic stimulation (rTMS) effectiveness and the
therapy progress as well as for group differentiation between
major depression disorder (MDD) and bipolar disorder (BP), or
between responders and non-responders. In this research topic,
the significance of HFD as a non-linear measure for different
time series including electrocardiograph (ECG) signals has been
confirmed. For instance, Gomolka et al. performed HFD analysis
of heart rate variability (HRV) in order to assess the autonomic
nervous system (ANS) sympathetic and parasympathetic activity
in healthy and diabetic individuals. They concluded that HFD
may be used for assessment of percutaneous auricular vagus
nerve stimulation (pVNS) on ANS, to provide stimulation
feedback for online regulation of therapy in a fast and robust
way. Furthermore, Ahammer et al. simultaneously used video
recordings and electrode registration of potentials to characterize
beat to beat variability of cardiac tissue in control conditions and
during acetylcholine stimulation. By using variation analyses of
video recordings with two distinguished non-linear measures,
SampEn and HFD, these authors showed that high-speed video
camera technique might represent a non-invasive tool that
allows long-lasting recordings for detecting variations in beating
dynamics during varying conditions.

The use of other non-linear measures and their specific
combinations also occupy a significant place in this research
topic. Thus, Liang et al. employed DFA combined with surrogate
data method to measure the long-range temporal correlations
(LRTCs) of the EEG signals of patients with the minimal
conscious state after the spinal cord stimulation (SCS). Authors
concluded that the brain activities at low-frequency oscillations,

particularly in the frontal and occipital regions, were improved
by SCS. By using cross recurrence quantification analysis (cRQA)
of the coupling of the gaze and postural sway to the motion of a
visual stimulus, Haworth and Stergiou showed that chaos is an
invariant and beneficial feature of biological motion, a feature
which may be critical for immediate and robust coordination of
the self with the environment and other environmental agents.
In a similar manner, Andreo et al. applied Box-counting FD as
well Minkowski-Bouligand FD measure of dynamic changes in
the center of mass during a set movement that indicated real-time
processing effects during a balance task associated with the type
of taping used to enhance postural stability. Hwang et al. applied
stabilogram diffusion analysis and showed that amplification
of low-frequency errors improves force control by shifting
relative significance of feedforward and feedback processes.
Lucas et al. combined Shannon entropy, wavelets, mean bending
energy in order to devise automated determination of foot
type. Their research suggests that automated wavelet-based
foot type classification of 2D binary images of the plantar
surface of the foot is comparable to current state-of-the-art
methods providing a cost and time effective tool suitable for
clinical diagnostics. In their study Solé-Casals at al. proposed
a methodology for extracting of handwriting features using the
discrete Fourier transform (DFT) and derive an algorithm in
order to discriminate between control and subjects with essential
tremor (ET). Authors showed that the radius and residues of
XY positions of an Archimedes’ spiral, could be used to detect
ET with a performance of almost 85 and 96%. The results
indicated that it is possible to detect ET from controls using
a reduced set of features, which makes this method feasible
for implementation in the portable form of the device and
on the web network. Ibáñez-Molina et al. used Lempel-Ziv
complexity (LZC) and Multiscale LZC to reveal EEG multiscale
complexity in schizophrenia patients during picture naming. In
addition to showing that patients and controls showed a different
pattern of brain complexity depending on their cognitive state
(at rest or under cognitive challenge), these authors once more
demonstrated that non-linear approaches to EEG signal analysis
can help to characterize brain dysfunction in schizophrenia.

Two original papers dealt with the correlation between
the neurodegenerative process underlying cognitive impairment
and retinal vascular complexity. Cabrera DeBuc et al. used
information dimension, correlation dimension, FD measured by
box counting method for quantification the correlation between
the retinal vascular complexity and neurodegenerative changes in
patients with cognitive impairment (CI). This paper showed that
there are multimodal retinal markers that may be sensitive to CI
decline, suggesting that retinal geometric vascular and functional
parameters might be associated with physiological changes in the
retina due to CI. In a similar manner, Kostic et al. illustrated
that the FD of the foveal vessel arborization could provide
useful information to identify early morphological changes in
the retina of patients with type 2 diabetes mellitus. Despite
the significant progress in the development and application
of non-linear methodology in biomedical research, there is
still room for the use of linear methods in the analysis of
electrophysiological signals. In that respect, Jalilifar et al. have
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evaluated antiepileptogenic effects of low-frequency stimulation
(LFS) before or after kindling using spectral power analysis
(theta/alpha ratio) of EEG signals.

The development of automated systems that can predict
the course of the disease is one of the greatest challenges of
modern pathophysiology that can provide better outcomes of
medical interventions. In recent times, there is an increasing
interest in adaptive neuro-fuzzy inference systems (ANFIS) and
their application to non-linear dynamical systems in health and
disease. Accordingly, Yadollahpour et al. have developed ANFIS
based medical decision support system to predict chronic kidney
disease progression.

The “horizontal” component of complexity is also not
neglected in this topic. In that regard, Eguiraun et al. proposed
a non-linear analysis and Shannon entropy to characterize
the relationship of the constituted complex entities with other
complex entities (interactions between individuals of European
seabass). Finally, the topic includes the review of measures
and metrics of biological systems. Kasum et al. summarize and
reviews different mathematical and informational approaches
to biological systems, providing an interesting overview of the
complex relationship between experimental biomedical research
on one hand and computational science and mathematics
on other.

Although a common thread runs between them, each
article in this research topic proposes distinctive applications

of non-linear methodology in physiology and deserves

attention in its own right. Together, they illustrate the
importance and vitality of fractal research in physiology
and medicine. Whether through an effort to improve our
understanding of crucial events as an important process of
self-organization; consideration of how best to exploit and
combine non-linear measures; extension of applications of these
measures to new physiological and pathological conditions,
the authors here develop engaging proposals for investigating
“horizontal” and “vertical” components of complexity in
biological systems.
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Earlier research work on the dynamics of the brain, disclosing the existence of crucial

events, is revisited for the purpose of making the action of crucial events, responsible

for the 1/f −noise in the brain, compatible with the wave-like nature of the brain

processes. We review the relevant neurophysiological literature to make clear that crucial

events are generated by criticality. We also show that although criticality generates a

strong deviation from the regular wave-like behavior, under the form of Rapid Transition

Processes, the brain dynamics also host crucial events in regions of nearly coherent

oscillations, thereby making many crucial events virtually invisible. Furthermore, the

anomalous scaling generated by the crucial events can be established with high accuracy

by means of direct analysis of raw data, suggested by a theoretical perspective not

requiring the crucial events to yield a visible physical effect. The latter follows from the

fact that periodicity, waves and crucial events are the consequences of a spontaneous

process of self-organization. We obtain three main results: (a) the important role of

crucial events is confirmed and established with greater accuracy than previously; (b)

we demonstrate the theoretical tools necessary to understand the joint action of crucial

events and periodicity; (c) we argue that the results of this paper can be used to shed

light on the nature of this important process of self-organization, thereby contributing to

the understanding of cognition.

Keywords: brain waves, crucial events, periodicity, 1/f spectrum, coherence

1. INTRODUCTION

Following the dynamics of the brain is a challenging issue that has forced researchers to go beyond
applying the conventional forms of non-equilibrium statistical physics (Papo, 2013) and is expected
to contribute to reshaping the emerging field of complex networks as well (Papo et al., 2014). The
dynamics of the brain and of biological processes in general, are characterized by homeodynamics
(Yates, 1994), thereby implying that the analysis of biological dynamics ought to be done taking
into account that it is typically driven by rhythms and waves.

A parallel line of inquiry has recently been developed that focuses on the connection between
the dynamics of the brain and the phenomenon of criticality (Aburn et al., 2012; Tagliazucchi
et al., 2012; Boonstra et al., 2013). Criticality in the brain is a subject widely discussed in
the neurophysiology literature, as reviewed in the recent paper (Cocchi et al., 2017) and is a
term adopted by physicists to denote, for instance, the spontaneous magnetization of a material
below the Curie temperature. At the critical temperature TC where this transition occurs, a
long-range correlation between the thermally disordered spins occurs. It is widely thought that an
analogous condition is fulfilled by brain dynamics with the consequence of strongly correlating the
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functionality of different physical regions of the brain. This
connection between brain dynamics and phase transition
processes at criticality led the present investigators to focus on
the concept of crucial events.

For context, let us briefly consider how the concept of
crucial events was introduced in neurophysiology. Contoyiannis
and Diakonos (Contoyiannis and Diakonos, 2000) studied a 3-
dimensional Ising model at criticality and proved it to be the
generator of Type I intermittency. In the sequel (Contoyiannis
et al., 2002) they pointed out that this connection with
Type I intermittency can be formally expressed through a
waiting-time probability density function (PDF) ψ(τ ), with a
dominant inverse power law (IPL) structure, with IPL index µ.
This PDF is exponentially truncated at long times. Using the
intermittency language (Manneville and Pomeau, 1979; Pomeau
and Manneville, 1980) a laminar region is interpreted as a
quiet zone between short regimes of rapid erratic activity. The
durations of different laminar regions are uncorrelated and
the turbulent processes separating consecutive laminar regions
are the crucial events studied in this paper. The discovery of
crucial events in the field of turbulence (Manneville and Pomeau,
1979; Pomeau and Manneville, 1980) had deep consequences in
statistical physics. In fact, if the IPL index µ of ψ(τ ) is smaller
than 3, the process hosting the crucial events is not ergodic. On
the other hand , the statistical analysis of molecular diffusion in
biological cells (Metzler et al., 2014) shows that these processes
are not ergodic, since they host crucial events. This leads to
the inequality µ < 3 as being an important condition for the
definition of crucial events. It has to be stressed that ergodicity
breakdown seems to be a general property of biological processes
(Grigolini, 2015), not limited to the specific case of molecular
diffusion in biological cells.

Returning to neurophysiology, we can make the conjecture
that crucial events in the EEGs are signaled by abrupt transitions
from regular to a fast irregular behavior, Rapid Transition
Processes (RTPs). Allegrini et al. (2010) searched for these
events in the brain of healthy patients using a technique for
identification of RTPs in the brain activity proposed by brothers
Fingelkurts and co-workers (Fingelkurts, 1998; Fingelkurts and
Fingelkurts, 2005, 2006, 2008, 2015; Kaplan et al., 2005). After
detecting them, Allegrini et al. (2010) proved that, as expected,
the RTPs host crucial events.

On the basis of earlier remarks, crucial events are defined in
terms of their statistical properties as follows. The time intervals
between consecutive crucial events are described by the waiting-
time PDF ψ(τ ) having an IPL structure

ψ(τ ) ∝
1

τµ
, (1)

with the IPL index µ in the interval

1 < µ < 3. (2)

From the earlier arguments, furthermore, it is clear that the
crucial events are renewal and consequently the times τi should
not be correlated. If a sequence of crucial events are defined by
the time intervals τ1,τ2,τ3,. . . then the time-average correlation

function is a Kronecker delta function where the time average is
indicated by an overbar

C(t) =

∑

|i−j|=t

(τi − τ)
(

τj − τ
)

∑

i
(τi − τ)

2
. (3)

This correlation function is properly normalized, thereby
yielding C(0) = 1 , and in the case of genuine renewal events
should satisfy the condition C(t) = 0 for t > 0. This renewal
property can also be expressed by the assumption that the
probability of occurrence of both τi and τj, 5(τi, τj), when i 6= j
is given by,

5(τi, τj) = P(τi)P(τj), (4)

where P(τi) and P(τj) are the probability of occurrence of τi and
τj, respectively.

Allegrini et al. (2010) following the line of thoughts illustrated
in this Introduction conjectured that these crucial events are
a signature of criticality and addressed the important tasks of
detecting them from the observation of EEG time series (Coles
and Rugg, 1995). The criticality hypothesis is in line with the
views of many other researchers (Levina et al., 2007, 2009;
Haimovici et al., 2013). In conclusion, the widely shared idea that
the brain operates at criticality led to the discovery that crucial
events act on the brain. This important conclusion left open two
important problems, hereby illustrated. Their solutions are the
main results of this paper.

1.1. First Problem
It is not yet clear what kind of criticality generates crucial events,
either that determined by externally tuning a control parameter
(Ising-like), or that achieved spontaneously through the internal
system dynamics, i.e., self-organized criticality (SOC), is expected
to afford a sufficient theoretical picture. We discuss the open
issue of the proper form of criticality to use to increase our
understanding of the brain dynamics in sections 5 and 6.

Here we stress that the research lines of this paper are
determined by the recent form of self-organization called self-
organized temporal criticality (SOTC) (Mahmoodi et al., 2017,
2018a,b; Mahmoodi et al., to be submitted). This form of
criticality has been proposed for the purpose of establishing a
new view of the field of Evolutionary Game Theory. The authors
of this field explain the emergence of cooperation, in spite of
the incentive for the single individual to cheat, and are looking
for the spontaneous emergence of the global cognition that
cooperation generates more social benefits, and consequently
more benefits for the single individuals. SOTC shows that this
cognition emerges naturally from a social interaction where
the degree of social attention, which is related in some way
to the control parameter of the ordinary approaches to phase
transitions, is changed by the single individuals and it increases
or decreases according to whether their overall social benefit
increases or decreases.
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1.2. Second Problem
The second problem left unsettled by the results of Allegrini
et al. (2010) is how to make crucial events compatible with
homeodynamics (Yates, 1994). Although SOTC has a sociological
origin, it can also be applied to neurophysiological processes and
more generally to biological processes satisfying the principle of
homeodynamics. In this case the single units are oscillators that
adjust their interactions with other units so as to maximize the
reciprocal synchronization (Mahmoodi et al., to be submitted).
This extension of SOTC yielding the emergence of global
periodicity makes it difficult to make analytical predictions.
Recent work (Lambert et al., to be submitted) bypasses this
difficulty: it is a promising way to take homeodynamics into
account so as to make periodic behavior compatible with
crucial events, replacing extensive computations with analytical
equations. This theoretical approach establishes a connection
between coherence and criticality-induced crucial events, and
was recently used (Tuladhar et al., 2018) to evaluate the influence
of meditation on brain dynamics (Tuladhar et al., 2018) bymeans
of the statistical analysis of the heart rate variability time series of
these subjects.

The main result of the present paper is establishing an
approach that simultaneously detects the statistical properties
of crucial events and a connection with the wave-like nature
of brain dynamics. The adoption of the RTP method is very
attractive but, as shown in section 2, its adoption does not make
it possible for us to measure the complexity of brain dynamics
directly and in addition requires a filtering process. Herein we
propose a technique of analysis of EEG time series data not
requiring the detection of RTPs, and that leads to the detection
of scaling directly from raw data. We show that the resulting
scaling is identical to that obtained in earlier work using RTP’s.
More importantly, the present technique helps establish a bridge
between EEG waves (di Santo et al., 2018) and crucial events. In
fact, as shown in section 3, this bridge is expected to lead us to
understand more about what form of criticality to apply to study
the dynamics of the brain.

1.3. Outline of the Paper
In section 2 we review the procedure adopted to detect RTP
events. We devote section 3 to an intuitive introduction to the
process of self-organization combining periodicity and crucial
events and in section 4 we analyze the spectrum of one EEG
to point out the interesting qualitative agreement with the
predictions of section 3 . In section 5 we illustrate a technique
of detection of crucial events that facilitates the analysis of EEG
time series. Finally, in section 6 we draw some conclusions and
present plans for future work.

2. DETECTION OF RAPID TRANSITION
EVENTS

As mentioned earlier, the efficacy of the RTP method in the
study of brain dynamics has been established by the brothers
Fingelkurts and co-workers (Fingelkurts, 1998; Fingelkurts and
Fingelkurts, 2005, 2006, 2008, 2015; Kaplan et al., 2005).

FIGURE 1 | Illustration of the RTP procedure of Kaplan et al. (2005).

The connection between RTPs and crucial events has been
demonstrated by Allegrini et al. (2010). However, for the sake
of clarity we sketch here the approach adopted by the latter
authors to obtain crucial events from RTPs, to emphasize the
importance of recovering the same results for detecting the same
scaling, using a very different technique. We base our analysis
on data derived from Fingelkurts (1998), which are available in
physionet.org Fingelkurts and Fingelkurts (2005).

These EEG time series data have been filtered between 0.15-28
Hz and the sampling rate (Fs) is 2048 Hz. We select one healthy
subject, from the dataset, and the top panel of Figure 1 shows the
raw data of this subject. The second panel displays one intrinsic
mode function, obtained adopting the method of Hilbert-
Huang Transformation (HHT) illustrated in Huang and Wu
(2008). The HHT method decomposes the original EEG signal
into many intrinsic mode functions, with different structures.
We select a structure with a kind of sausage-like pattern
suggested by the theoretical results of (Bologna et al., 2010).
They proved that a set of infinitely many three-state oscillators,
cooperatively interacting with an interaction parameter K, at
criticality generate a coherent non-harmonic oscillation. When
the number of oscillators is finite the regular non-harmonic
oscillations generate a sausage-like structure similar to the second
panel of Figure 1. In section 6.1 we make additional remarks on
the criticality-induced sausage-like structure.

The third panel from the top of Figure 1 is the modulus of
the data depicted in the second panel. The green curve in the
fourth panel is the envelope of the curve of the third panel, called
a Testing Sequence (TS). The blue curve in the fourth panel is the
Level Sequence (LS) obtained from the TS bymeans of a running-
average smoothing. Finally, the red crosses in panel five denote
crucial events.
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Note that this procedure for finding the crucial events is not
sufficiently accurate to be restricted to detecting only renewal
events. It is known that the events revealed by this analysis are a
mixture of crucial events and ordinary Poisson events (Allegrini
et al., 2010). However, the presence of Poisson events does not
prevent us from detecting the anomalous scaling generated by
the crucial events. The desired scaling is detected in the following
way. The authors of Grigolini et al. (2001) use the detected events
to generate a diffusion process x(t) by means of the rule that
the random walker jumps ahead when an event, either crucial or
Poisson, occurs. The scaling generated by the Poisson events has
a power-law index δ = 0.5, whereas the scaling power-law index
δ of the crucial events is given by the important relation

δ =
1

µ− 1
. (5)

Note that the latter scaling dominates asymptotically in the time
due to Equation (5) resulting in δ > 0.5 when the condition 2 <
µ < 3 applies (Grigolini et al., 2001). When 1 < µ < 2 crucial
events yield the scaling δ = (µ − 1), but the EEG time series
studied in this paper and the subordination theory of section 3,
adopted to explain their complexity, show that we need to focus
on µ > 2.

To be explicit, since in this paper as far as the scaling detection
is concerned, we adopt the same procedure as that proposed by
Grigolini et al. (2001), we generate a fluctuation ξ (t) holding the
value 1 when an event, either crucial or Poisson, occurs, and the
vanishing value when no event occurs. The diffusion variable x(t)
is obtained from the following equation of motion

d

dt
x = ξ (t). (6)

Using a moving window of size t, we generate a PDF p(x, t) and
the Shannon information entropy

S(t) = −

∫ +∞

−∞

dxp(x, t)ln[p(x, t)]. (7)

The PDF constructed from the diffusion process has the scaling
form

p(x, t) =
1

tδ
F

( x

tδ

)

. (8)

Then inserting Equation (8) into Equation (7), after some algebra
yields

S(t) = A+ δln(t), (9)

where A is the entropy constant

A ≡ −

∫ +∞

−∞

dyF(y)ln[F(y)]. (10)

To make this treatment compatible with the subsequently
discussed arguments about intermediate asymptotics, we rewrite
Equation (9) in the following way

S(t) = C + δ(t)ln(t), (11)

where C denotes a constant that may differ from A, when, as we
find herein, the proper complexity scaling emerges only in the
region of intermediate asymptotics.

It is important to stress that a significant advance of the
theoretical justification of Equation (11) based on an extension of
the theory of SOC, incorporating complexity in the time domain,
is called SOTC (Mahmoodi et al., 2017, 2018a,b). This new theory
provides a rationale for the crucial IPL indexµ. In fact, according
to SOTC the processes of spontaneous self-organization, in
general, and especially those behind the statistical analysis used
herein, namely physiological processes, naturally evolves to a
state generating the crucial events defined in section 1. These
events manifest scaling in the intermediate time domain, called
intermediate asymptotics (Goldenfeld, 1992; Barenblatt, 1996).
As a consequence of temporal complexity emerging in the
intermediate time scale, S(t) is not a straight line when expressed
as a function of ln(t). As shown in Figure 2, entropy is a straight
line in the intermediate time region and its slope is used to
define the statistics of crucial events occurring within that region
through the IPL index µ, established by Equation (5). This
data analysis technique has been labeled the diffusion entropy
approach (DEA).

To explain using an intuitive interpretation the intermediate
asymptotics, we notice that the short-time region corresponds to
the time scale where the self-organization is not yet perceived
by the interacting units. According to SOTC (Mahmoodi et al.,
2017), the intermediate time scale with temporal complexity
becomes more and more extended as the number of units
cooperatively interacting increases. However, the fluctuation
intensity becomes smaller and the long-time scale is a
sort of Poisson shoulder that, however, does not affect the
communication efficiency of the complex system, since that
efficiency is determined by the intermediate time region. The
exponential truncation favors the transmission of information,
because the flexibility of the complex system’s response to the
environment requires that the system explore a sufficiently high
number of crucial events (free-will states) to adapt itself to the
external influence. It has the effect of making the mean value of
the time interval between consecutive crucial events finite, even
in the case µ < 2. We remind the reader that the theoretical
mean time between crucial events is < τ >∝ 1/(µ − 2), if
µ > 2 and it is divergent if µ < 2 and the IPL PDF is not
truncated.

The events generated by SOTC are renewal, which explains
adopting Equation (5) for the connection between δ andµ, which
is based in fact on the renewal assumption (Grigolini et al.,
2001). We see from Figure 2 that the subject examined with DEA
procedure yields µ = 2.2.

It is convenient to stress the fact that the choice of the
RTP method, illustrated in Figure 1, has been motivated by the
intuitive assumption that crucial events have physical effects.
With reference to the second panel from the top of Figure 1,
an event may be located in the short-time region of weak
fluctuations separating the ending of one sausage from the
beginning of another. Actually, the theoretical approach outlined
in section 3 suggests that many more crucial events exist, thereby
leading to a scaling method evaluation resting on a much larger
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FIGURE 2 | Detection of the scaling δ applying DEA to the diffusion process

generated by a random walker making a jump ahead when a crucial event

occurs.

number of crucial events, even if, as in the case of the earlier
mentioned method by the brothers Fingelkurts and co-workers
(Fingelkurts, 1998; Fingelkurts and Fingelkurts, 2005, 2006, 2008,
2015; Kaplan et al., 2005), not all the events adopted to generate
the diffusion process analyzed with DEA, are crucial.

3. SUBORDINATION

Establishing the statistics of the crucial events manifest in EEG
time series by means of the detection of RTP, unfortunately, does
not help us to build a bridge between the wavelike nature of
EEG time series and crucial events. To establish the theoretical
connection between the periodicity of EEG time series and
crucial events, we adopt the SOTC model of units with an
individual periodicity, for instance the SOTC model (Mahmoodi
et al., 2017) as applied to the Kuramoto model (Kuramoto, 1975).
This computationally demanding approach, however, has not yet
been converted into an analytical approach for bridging the gap
between waves and crucial events. We believe that the theoretical
remarks of this section are a fair account of this form of SOTC.

The research work done in the recent past on the brain with
the help of the RTPmethod led Allegrini et al. (2009) to conclude
that the crucial events are characterized by values of µ very close
to µ = 2, according to the prescription

S(ω) ∝
1

ω3−µ
. (12)

The derivation of this spectrum was done by other researchers
(Margolin and Barkai, 2006; Lukovic and Grigolini, 2008), who
assumed that the time regions between consecutive crucial events
are filled with either +1′s or −1′s, values generated by a coin
tossing algorithm. However, no direct evaluation of the EEG
spectrum was done. Herein we see that if the EEG spectrum

is evaluated, the frequency region for ω → 0 is affected by
strong fluctuationsmaking it difficult to assess the IPL property of
Equation (12). However, we are able to shed light into the overall
structure of the spectrum and we argue that this is compatible
with Equation (12).

To establish a bridge between crucial events and periodicity, as
done by Ascolani et al. (2009), we make an extension of the well
known Continuous Time RandomWalk (CTRW) (Montroll and
Weiss, 1965; Sokolov, 2000; Shlesinger, 2017). The subordination
to a coherent process with frequency � is a mathematically
simple way of simulating a genuine process of self-organization.
We have a clock, the hands of which move clockwise with
frequency� from noon to noon, making TRR clicks with the time
interval1t between one click and the next. Thus,

� =
2π

TRR1t
. (13)

The crucial events, some of which have been detected by Allegrini
et al. (2010) through the search of RTP, are imbedded into
this regular motion, by assuming that the time interval between
consecutive clicks is derived from a waiting-time PDF ψ(τ ) with
the temporal complexity of Equation (1). The explicit analytical
form of ψ(τ ) is

ψ(τ ) = (µ− 1)
Tµ−1

(τ + T)µ
, (14)

corresponding to the survival probability

9(τ ) =

(

T

τ + T

)µ−1

. (15)

The parameter T serves the purpose of properly defining the
short-time scale and setting the normalization condition 9(0) =
1. The temporal complexity becomes important at times τ ≫ T.

This procedure of infusing the original perfect coherence of
the clock with complex randomness establishes a bridge between
waves and crucial events. This has the effect of turning the
frequency � into an effective frequency �eff , thereby modeling
a process of self-organization of interacting oscillators, each of
which is characterized by its own frequency, into a collective
homeodynamic process.

According to the theoretical treatment of Lambert et al. (to be
submitted), the effective frequency is, valid for µ > 2,

�eff =
�(µ− 2)

T
. (16)

This theoretical prediction suggests, in agreement with Figure 3,
that the frequency peak is evident forµ > 2 and that, in addition,
it also depends on the parameter T of the waiting-time PDFψ(τ )
of Equation (14). This property is used in section 4 to shed light
into themeaning of the HHT components of themethod adopted
to detect RTP events Huang and Wu (2008). In the range µ > 2,
when both the first and second moment of τ are finite, �eff = �

(Lambert et al., to be submitted).
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FIGURE 3 | Power Spectra obtained averaging over 300 trajectories with

numerical parameters T = 0.5 and the regular oscillation before subordination

has the frequency � = 0.77. The inlay denotes the calculations for IPL indices

spanning a range from 1.1 to 10.

This illustration of subordination makes it evident that crucial
events are not only at the border between consecutive pieces of
the sausage but the oscillatory-like behavior within a sausage
hosts crucial events. It is surprising that the same conclusion
has been achieved by the Fingelkurts brothers (Fingelkurts and
Fingelkurts, 2005) who wrote “By varying the parameters of this
technique it is possible to obtain the segments corresponding to a
more or less detailed structure of the EEG/EMG. Therefore, there
are prospects for the description of the structural EEG/EMG
organization as a hierarchy of segmental descriptions on different
time-scales. We make the conjecture that this may have the effect
of establishing a correlation between the non-crucial events,
thereby contributing a significant theoretical advance on the issue
of cognition, and the effects of meditation on the dynamics of
the brain (Tuladhar et al., 2018). This observation suggests that
it should be possible to design a method of statistical analysis for
extracting information from a larger set of crucial events even if
they remain invisible.

Figure 3 illustrates spectra generated by surrogate sequences
obtained using the subordination method with 1t = 1. We
keep the frequency � fixed and change the IPL index µ. We
note that a spectrum consists of three parts. There exists a peak
corresponding to the effective frequency �eff that shifts to the
right upon decreasing µ and disappears for µ < 2. At the left of
the�eff peak the slope of the spectrum β is determined to be

β = 3− µ. (17)

We see that the spectrum becomes flat at µ = 3 and remains flat
for higher values of µ, as clearly shown in Figure 3.

Note that due to the average of many realizations, which is not
possible with real EEG time series, the region of low frequency is
regular and is not affected by the fluctuations that would appear
when evaluating the spectrum with only one time series. For this
reason, the adoption of surrogate time series makes it possible for

FIGURE 4 | Power Spectra derived with permission from Aburn et al. (2012)

under the terms of the Creative Commons Attribution License http://

creativecommons.org/licenses/by/3.0/.<p>denotestheneuronfiringrate.

us to prove that, as expected, subordination is compatible with
the emergence of 1/f −noise in the ideal case µ = 2.

Let us now discuss the spectra depicted in Figure 4, which
was obtained by Aburn et al. (2012) by approaching the Hopf
supercritical bifurcation in order to better understanding the
alpha rhythm of human EEG time series. We note that this
spectrum is similar to those of Figure 3 when µ ≥ 3. In other
words, this theory does not involve crucial events. It is interesting
to notice that for values of ω larger than the peak frequency,
the spectrum depicted in Figure 4 yields the slope β = 2. The
comparison between Figures 3, 4 indicates that subordination
creates a bridge between periodicity and crucial events, while
making the high-frequency region identical to that of a spectrum
with no crucial events.

When µ < 3 there exists a close connection between
periodicity and complexity, as indicated in Figure 3 showing
that the position of the periodicity bump is very sensitive to the
temporal complexity.

4. SPECTRA FROM RAW DATA

In this section we discuss the spectrum generated by real EEG
time series fluctuations as shown in Figure 5. We see that the
region of low frequencies is very erratic, due to the fact that,
as mentioned earlier, the use of only one time series makes
it impossible to generate a smooth curve. There exists an
indication of a frequency bump, generated by periodicity, and for
frequencies larger than this bump the slope β = 2 is rediscovered.
This real spectrum depends on a wide swath of frequencies.

To stress the multi-frequency nature of the real spectrum,
again using the HHTmethod (Huang andWu, 2008) we evaluate
six intrinsic mode functions of the EEG raw data corresponding
to the spectrum of Figure 5. These different components of the
whole signal correspond to six different frequencies of decreasing
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value. They are the frequencies: 26.84; 18.97 hz, 10.59 hz; 5.406 hz
and 2.438 hz and 1.031 hz, which are shown in Figure 6.

In Figure 7 we use the subordination prescription described
in section 3, with 1t given by an inverse sampling frequency of
real data (1t = 1

2048 sec) to generate surrogate spectra, helping to
clarify the meaning of the different spectra in Figure 6. We assign
to themonochromatic frequency 62 hz with six different values of
the parameters T, mimicking the dominant frequencies of the six

FIGURE 5 | Power Spectrum obtained from raw EEG time series data.

HHT components illustrated in Figure 6. The real spectrum of
Figure 5 is interpreted as a superposition of the spectra illustrated
in Figure 7. In fact all these spectra share the property β = 3−µ
in the low frequency region and the property β = 2 in the high
frequency regions and intermediate region where the change of
slope occurs is significantly broader than in the monochromatic
case.

5. METHOD OF STRIPES

The stripe method was originally adopted to detect the scaling
of crucial events hosted by heartbeats (Allegrini et al., 2002) and
was not used in the case of EEG time series in all likelihood
because of the lack of a proper theoretical understanding of the
connection between crucial events and periodicity. The same
method was more recently applied by Bohara et al. (2017) to
establish a connection between the occurrence of crucial events
and multifractality.

In section 3 we used an intuitive illustration of the process of
self-organization, based on subordination that affords theoretical
support for the adoption of the method of stripes. The central
idea is that the RTPmethod detects only a small fraction of crucial
events, whereas real EEG time series and subordination theory
with them, host a much larger number of crucial events, even if
they remain invisible.

Figure 8 shows how the method of stripes works. As is well
known (Coles and Rugg, 1995), an EEG time series captures
Event Related Potentials (ERPs) which, in turn, measures the rate
of firing neurons. The method divides the vertical axis into many

FIGURE 6 | Power Spectra of the same subject with different HHT frequency components.
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FIGURE 7 | Power Spectra generated using the data recorded in Figure 6 according to subordination of section 3.

FIGURE 8 | Illustration of the method of the stripes. The size of stripes is

1E = 1/30 µv.

stripes of size 1E, here assumed to have the value 1E = 1/30
µv, and we record the times at which the raw signal crosses the
line separating two adjacent stripes. The level of the stripe is
determined by the number of neuron firings at a given time, and
we record for how long that firing rate remains constant.

The change from one firing rate to another is an event.
Of course this event is not necessarily a crucial event. As
a consequence, the time interval between consecutive events
cannot be used to define the important parameter µ. This lack of
precision in determining the occurrence of crucial events applies
also to the RTP method. Let us call NT the total number of events
detected, Nc the total number of (unknown) crucial events and
Nnc the total number of non-crucial, possibly Poisson events.
The intermediate asymptotics, revealing the complex scaling δ of

FIGURE 9 | DEA applied to the diffusion process generated by the

stripe-crossing events.

Equation ( 5), begins earlier upon increase of the ratio

rc ≡
Nc

NT
. (18)

In both cases, the adoption of the DEA method is essential. In
fact, after recording events with the method of stripes, as done
with the method of RTP, we adopt the prescription of Grigolini
et al. (2001).We again turn the sequence of detected events, either
crucial or not, into a diffusion signal x(t) by making the random
walker jump ahead by a fixed quantity, equal to 1. As pointed out
in section 2, the non-crucial events generates a diffusion process
with scaling δ = 0.5 and the crucial events, on the contrary,
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generate the scaling index of Equation (5) that for µ > 2 is
larger than 1/2, thereby making it possible for DEA to establish
the correct scaling of Equation (5) at long times.

The result illustrated in Figure 9 shows that the scaling
detected with this method is virtually identical to the result
obtained with the use of RTP method. In both cases the complex
scaling of Equation (5) appears in the intermediate time regime,
but it appears that the present method is more accurate, since
the slope covers three decades of scale, see Figure 9, while the
RTP method is limited to only two decades (Figure 2). This is a
clear indication that the method of stripes makes the ratio rc of
Equation (18) significantly larger than the RTP method.

6. CONCLUDING REMARKS

The adoption of the RTP method makes it easy to establish the
non-local nature of the brain criticality (Allegrini et al., 2010).
This is a consequence of the fact that it is sufficient to count
how many electrodes undergo RTP’s at the same times. However,
the detailed illustration in section 2 shows that the procedure to
establish the occurrence of an RTP is not straightforward and we
conjecture that it may be replaced by the adoption of a cross-
correlation function between the EEG time series generated by
different electrodes. But this remains to be verified.

6.1. Self-Organized Temporal
Criticality(SOTC)
The sausage-like structure of the model studied by Bologna et al.
(2010) has a surprising similarity to the second panel from the top
of Figure 1. This is not accidental. In fact, the theory adopted by
(Bologna et al., 2010) is a phase transition obtained by the control
parameter K taking on the critical value K = 1.5. At criticality
the oscillators are no longer independent of one another and
as a result of highly correlated motion they generate a regular
non-harmonic oscillation.

The SOTC is a new form of self-organization studied
by Mahmoodi et al. (2017, 2018b), which establishes a
significant difference between critical slowing down and
temporal complexity. In the case of a conventional form of
criticality, where the control parameter is finely tuned so as to
generate phase transition (Beig et al., 2015) the two forms of
complexity can be mistakenly judged to be equivalent. When
a system at criticality is assigned a distribution different from
the equilibrium distribution, the system is expected to relax
back toward equilibrium with infinitely slow motion (critical
slowing down). When the number of units is finite the mean field
fluctuates around the mean value and the time interval between
consecutive origin re-crossings, temporal complexity, may be as
slow as critical slowing down (Beig et al., 2015).

In the case of SOTC the time necessary to evolve toward
the condition of temporal criticality is finite (Mahmoodi et al.,
2017, 2018b). In the special case studied by Bologna et al. (2010),
another form of criticality generated by the fine tuning of the
control parameter, but combining crucial events with periodicity,
the mean field does not have regular oscillations: the intensity
of these oscillations and their frequency are modulated in time

generating the sausage-like structure of the second panel from
the top of Figure 1. SOTC of a set of cooperating oscillators is
expected to spontaneously lead to the same qualitative results.
Subordination theory affords a simple way of mimicking this
process of organization, introducing ad hoc the crucial events,
which actually are the results of a spontaneous self-organization.

The processes of phase transitions are characterized by IPL
PDFs with indices expressing the universality of criticality.
The construction of renormalization group theory made it
possible to determine without a detailed knowledge of the micro-
interactions of the system, the scaling nature of phase transitions.
In the case of the brain the micro-units, whose dynamics depart
from the erratic behavior of independent units to collective
behavior at criticality, are neurons. However, in spite of the
frequent use of the term SOC these models rest on tuning
a control parameter to a critical value that establishes global
properties making the micro-dynamics unimportant in favor the
macro-dynamics of criticality. If a neuron fires all the neurons
linked to it makes a step ahead toward the firing level. Criticality
is a condition generated by a suitable value of the control
parameter that establishes a complex dynamics characterized
by temporal complexity, namely, the crucial events defined in
section 1. An interesting example of “Self-organized criticality”
is given by Levina et al. (2009). They propose a very interesting
model generating super-criticality and sub-criticality as well as
criticality, a puzzling result because we expect that a process
of self-organization may lead only to criticality. We make the
conjecture that SOTC may realize this wide set of condition
depending on how the process of self-organization is realized.

6.2. Future Research Work
The results of this paper suggest promising directions to
establish homeodynamics as a form of genuinely spontaneous
organization. SOTC (Mahmoodi et al., 2017) affords the
prescription to turn a set of independent Poisson units,
fluctuating between the values ξ = 1 and ξ = −1, into a self-
organized system, thereby yielding, with a finite number of units,
temporal complexity and crucial events. It is important to stress
that, as shown by Mahmoodi et al. (2017), SOTC is a generator
of complexity in line with the important concept of intermediate
asymptotics of Barenblatt (Goldenfeld, 1992; Barenblatt, 1996).
This is made evident in Figures 2, 9. The deviation of the scaling
in both the short-time and long-time regions from the complex
prediction of Equation (5) is not due to the numerical inaccuracy
of DEA. Rather it is a surprising benefit of this technique of
analysis that does not rely on the evaluation of the second
moment of the PDF p(x, l) of Equation (8), but is a direct
consequence of the general scaling behavior of the PDF. Not only
is the PDF not forced to be Gaussian, its exact function form is
not important.

These remarks lead us to conclude that the subordination
theory used in this paper is an appropriate way to mimic the self-
organization of units characterized by periodicity, as manifest in
their spectra.

The comments we make in section 3 on the surprising
agreement between the physical meaning of SOTC and the
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architectonic structures of Fingelkurts and Fingelkurts (2005)
deserves further study. In our view, the interesting review
paper (Fingelrkurts et al., 2012) provides directions on how to
approach the challenging problem of cognition especially if it is
supplemented by the contribution that emotion is expected to
afford to it (Tuladhar et al., 2018), presumably through the proper
action that meditation and emotion may exert on the non-crucial
events.
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1Group for Intelligent Systems (GIS), Faculty of Mathematics, University of Belgrade, Belgrade, Serbia, 2 Faculty of Transport

and Traffic Engineering, University of Belgrade, Belgrade, Serbia

The concept of biological signals is becoming broader. Some of the challenges

are: searching for inner and structural characteristics; selecting appropriate modeling

to enhance perceived properties in the signals; extracting the representative

components, identifying their mathematical correspondents; and performing necessary

transformations in order to obtain form for subtle analysis, comparisons, derived

recognition, and classification. There is that unique moment when we correspond the

adequate mathematical structures to the observed phenomena. It allows application

of various mathematical constructs, transformations and reconstructions. Finally,

comparisons and classifications of the newly observed phenomena often lead to

enrichment of the existing models with some additional structurality. For a specialized

context the modeling takes place in a suitable set of mathematical representations of the

same kind, a set of models M, where the mentioned transformations take place. They

are used for determination of structures M, where mathematical finalization processes

are preformed. Normalized representations of the initial content are measured in order

to determine the key invariants (characterizing characteristics). Then, comparisons are

preformed for specialized or targeted purposes. The process converges to the measures

and distance measurements in the space M. Thus, we are dealing with measure and

metric spaces, gaining opportunities that have not been initially available. Obviously,

the different aspects in the research or diagnostics will demand specific spaces. In our

practice we faced a large variety of problems in analysis of biological signals with very

rich palette of measures and metrics. Even when a unique phenomena are observed for

slightly different aspects of their characteristics, the corresponding measurements differ,

or are refinements of the initial structures. Certain criteria need to be fulfilled. Namely,

characterization and semantic stability. The small changes in the structures have to

induce the small changes in measures and metrics. We offer a collection of the models

that we have been involved in, together with the problems we met and their solutions,

with representative visualizations.

Keywords: measures of biological signals, metrics on biological signals, complexity, dimension, similarity

INTRODUCTION

A biological signal is any mapping (change) of a biological quantity/content into the corresponding
set (codomain), with the purpose to represent the particular process in a form suitable for studying,
monitoring, determination of functional connections (relations, dependence) between the studied
quantity and its relevant constituents.

20

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01707
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01707&domain=pdf&date_stamp=2018-12-04
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pera@sf.bg.ac.rs
https://doi.org/10.3389/fphys.2018.01707
https://www.frontiersin.org/articles/10.3389/fphys.2018.01707/full
http://loop.frontiersin.org/people/569710/overview
http://loop.frontiersin.org/people/520700/overview


Kasum et al. Measures and Metrics of Biological Signals

The change in biological quantities can have particular
significance and lead to discovering of deep processes hidden
from the direct (e.g., visual) observations. Long ago, it
was discovered that biological organisms function through a
sequence of interconnected processes-results of action of systems
and subsystems within a hierarchically organized functions.

Hence, it is prudent to formally define a biological signal
as a function of the form f :D → M that maps the initial
set of biological phenomena (states, conditions, etc.) D into the
corresponding codomain M of measurement data. For example,
such signals are the usual home or clinical measurement of
the body temperature, arterial pressure or atmospheric pressure,
performed sporadically or at regular intervals. The purpose is to
determine their current values, and to monitor their change in
time in order to identify the presence of pathology, or to control
the side effects of introduced drugs thatmay have negative impact
on systems regulating vital functions.

Certain biological phenomena such as body temperature or
blood pressure are analog. The number of erythrocytes, or the
number of bacteria per space unit are examples of digital signals,
but with a large number of units. The corresponding measuring
procedures are designed to obtain the suitable approximations
within some finite scale. For example, the body temperature of a
living human is scaled by the degrees in Celsius, withmin = 35◦C
and max = 42◦C. Similarly, the blood pressure is scaled by a
height in millimeters of Hg in a capillary tube, while the number
of erythrocytes is scaled in thousands per space unit etc. The
basic concepts about analog and digital quantities can be found
in textbooks (Attenborough, 2003;Werde and Spiegel, 2010; Hsu,
2014).

On the other hand, measurements are performed in order
to assess the presence or the absence of a property/pathology.
As such, they are composed with the additional binary scale
(absence, presence), ternary scale (absence, presence, strong
presence), and so on. Some phenomena require more complex
structures involving indications of inner dependences, usually
represented by multigraphs.

Regardless of the form of the performed measurements,
the modern computers are at such technical level that
allows implementation of various numerical and symbolic
algorithms related to acquisition, representation, analysis and
transformation/manipulation of biological signals. Hence, the
modern representation of biological signals use mathematical
structures (numerical or abstract) suitable for digitization, exact
representation, deeper insights and finally, classification. In the
very rich variety of biological signals, here we focus on some
mathematical representation and operation aspects involving
broad range of applications, thus illustrating the rich abundance
of phenomena and their mathematical treatment, rather than
trying to havemore complete approach, which needs much larger
space and more complex method coverage.

Automated acquisition and processing of biological signals
has opened the possibility of elimination of subjectivity
in validation and interpretation of a measurement. At
the same time, digitization has enabled application of the
large mathematical apparatus, making possible nontrivial
transformations of the initial content. The large number of
scientific breakthroughs that are made in this way has established

the new, highly prominent scientific discipline involving broad
mathematical modeling and their computer implementations.

Developing some systems for operation with biological
signals, in our group GIS (Group for Intelligent Systems), we
have implemented systems for digital upgrades of the existing
analog research and clinical equipment for the measurement
of e.g., arterial pressure, ECG, EEG, specific neurology,
ultrasound, NMR, and digital microscopy signals. Those
systems have enabled digital acquisition of the various types of
related signals, including biometric parameters like voice and
fingerprints, acquisition of various molecular biology signals like
chromosomes and genetic sequences. We have also implemented
tools for representation, visualization, manipulation and
transformation of signals and integrated it with the CCD
computerized microscopy.

In particular, developed software solutions include: signal
monitoring, acquisition and real time analysis (the first version
was implemented in 1994); image acquisition and analysis (1994);
image spectroscopy (1995), photomorphology (1995–1998),
color combine fluorescent microscopy (1997–1998); automatized
karyotyping involving object recognition, normalization, and
classification (1997).

As mentioned above, before implementation, all
measurements and analyses were performed manually by
direct observation. The improvement in efficiency and precision
was immediately observed by the involved researches. Developed
solutions have been in use for almost two decades at more
than 20 research laboratories at the University of Belgrade,
Lomonosov state university at Moscow, and UC Berkeley, see
(Jovanović, 2001; Jovanović et al., 2014).

In addition, we have also developed hardware for those
laboratories including CCD microscopes, computerized EEG,
ECG, CTG, acoustic RT spectroscopes, equipment for recording
of magnetic field attenuation etc. (see Jovanović, 2001; Jovanović
et al., 2014).

Those systems have enabled precise measurements, significant
reduction of errors previously made by subjective visual
detection of important features, nontrivial numerical, algebraic,
geometrical, topological, and visual transformations of the
acquired signals and integration with other related computerized
systems. In particular, images displayed at Figures 1, 2, 4, 7–9,
12 and 21 were produced by the mentioned software for signal
acquisition, processing and visualization.

In last few decades we are witnessing impressive developments
of technologies and methods implemented in biological signals.
More powerful instrument perception is progressing together
with more powerful and more sophisticated methods.

BASICS

A biological signal, coded in computer as a digital function, is
usually a finite approximation of an analog signal. Consequently,
sampling resolution should be sufficient in order to provide a
quality acquisition, enabling detection, extraction, recognition,
and normalization of important features in signals and
adequate comparison with etalons. Moreover, the successful
implementation of mentioned procedures can be further
enriched to fully or highly automated systems for classification,
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FIGURE 1 | A mammal acoustic signal.

FIGURE 2 | Arterial pressure signals with implanted transducers (rats)

(Jovanović, 2001; Jovanović et al., 2014).

reasoning, and decision making. This aim is the essential
improvement of the previously achieved insights.

The older (we can say classical) methods, that are usually
simple, do not necessarily lead to simplifications, though they are
often ballasted with certain semantic limits. On the other hand,
the more modern and sophisticated methods do not necessarily
improve our knowledge. In the case of careless application,
they might lead to false understanding with broader poor
consequences. Some of issues related tomethods for computation
of Granger causality were discussed in (Kasum et al., 2015).

The application of Mathematics and Statistics require
permanent criticism and scrutiny, especially in the points where
these are connected to non-mathematical semantics. The proper
mix of simple and complex modeling could offer substantial
advantages.

The initial signal usually requires preprocessing involving
different types of normalizations. The standard examples are:

• Filtering of electrophysiological signals;
• Filtering of microscopic optic signals and certain

preprocessing operations, e.g., determination of contours
of microscopic objects or their nonlinear transformations, or
determination of contours of spectrogram features.

Discrete and continual counting measures normalized to the
real unit interval are the most prominent measures present in
expression of the observed statistical dependences, statistical
analysis of the experimental data, probabilistic estimations on
finite domains, or on more abstract mathematical structures.

Biomedical statistical analysis involves comparison with the
control group, computation of the relevant statistics (e.g., mean,
variance, correlation coefficient, p−value, F− statistics etc.),
determination of the regression curves (so called curve fitting)
and so on. Statistics has proved to be a very important and
powerful mathematical method in biological experimentation,
indispensable in the contemporary research and scientific
publishing. Conceptual correspondence between the initial
measurement and their statistical interpretation always require
additional observation and unbiased critical analysis of the

initially proposed connections between the natural semantics
of the studied phenomena and the constructed mathematical
(statistical) model. The following examples will illustrate main
issues with semantic stability in the above connection. For basic
concepts about statistics we refer the reader to the textbook
(Spiegel and Stephens, 2018).

Example 2.1 A simple sinusoidal oscillation y = f (x) around
c on the interval

[

a, b
]

will be by the application of the standard

signal energy measure
∫ b
a f (x) dx identified with its mean value,

which is the constant function y = c (Figure 6.)
As a consequence of the integration, any additional

information that the initial signal carry will be lost. �
Example 2.2 Consider the signal y = f (x) defined by

f (x) = 440 · 1[0,1) (x)+ 528 · 1[1,2) (x)+ 660 · 1[2,3) (x)

+ 528 · 1[3,4) (x)+ 440 · 1[4,5](x)

for 0 ≤ x ≤ 5. Its average energy
∫ 5
0 f (x)dx is adequately

represented by its mean value y = 519.2 (see Figure 10).
However, the above signal can be interpreted as a producing

the equal length tunes a, c1, e1, c1, a (frequencies on the y axis,
A-minor chord), while the corresponding mean 519.2, is atonal
and does not have any meaningful connection with the played
melody.

METHOD

Complexity Issues
While dealing with simple signals, with simple changes in
time, the direct simple representation/visualization is often
satisfactory. However, the study of subtler details and processes,
and integration of system insight, requires increased complexity.
Themodern research demands, with invisible important features,
higher complexity in representations, and involved structures.
This is the point of departure from the simple and simplest
representations and measurements, thus opening room for more
complex functions and structures and consequently, for more
complex measures and operations on these structures. It is
very difficult to determine what would be the upper bound
for complexity of mathematical structures when dealing with
biological signals. Especially now when everybody is aware
that neurological signals are directly related to the processing
of sensory information and system control in all variety of
situations. As an illustration, we refer the reader to the concept of
Granger causality that has been extensively used in neuroscience,
see (Granger, 1969, 1980; Granger and Morris, 1976; Geweke,
1982, 1984; Kaminski and Blinowska, 1991; Sameshima and
Baccala, 1999; Baccalá and Sameshima, 2001a; Baccala and
Sameshima, 2001b; Kaminski et al., 2001; Brovelli et al., 2004;
Babiloni et al., 2005, 2007; Wang et al., 2007; Blinowska, 2008,
2011; Kuś et al., 2008; Takahashi et al., 2008; Blinowska et al.,
2010; Brzezicka et al., 2011; Kasum et al., 2015).

Moreover, and much more important, biological signals like
DNA sequences are information bearing structures (even more,
they are knowledge bases) and should be treated as such. The
particular DNA molecule should be also studied by its set of
consequences, not solely by its morphological properties. It seems
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FIGURE 3 | Garden snail neuron activity (Kesić et al., 2014).

FIGURE 4 | (Left): fast EEG; (Right): very fast firing of a neuron (Jovanović, 2001; Jovanović et al., 2014).

FIGURE 5 | Mitosis-two chromosome distributions (Jovanović, 2001;

Jovanović et al., 2014).

prudent to involve the entire data science and a significant part of
mathematical logic into foundations of biology.

For example, propositions “today is Tuesday” and “it is not
true that today is not Tuesday” have the same meaning, but

syntactically are quite different. In terms of Euclidean metrics
(the main tool for the similarity estimation), they are quite
distant. Thus, the syntactical similarity can be quite different
form the more important, semantic similarity. The syntax
similarity only works properly if applied on objects in normal
form (a concept similar to disjunctive or conjunctive normal
form in propositional logic).

Back to DNA, we may ask the following questions:

• Is there a normal form of a DNA sequence?

• If the answer is positive, are the DNA molecules always in the
normal form?

• What are the properties of the “gene to protein” relation?

• Can we produce an axiom system and derivation rules (i.e.,
logic) for the synthesis of proteins?

It is not our attention to dispute the well-established use of

the Hilbert space formalism in acquisition of biological signals.
However, it cannot be the sole mathematical apparatus used in

biology, since it offers nothing about consequence relations and
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FIGURE 6 | RNA dots related to the neuron nucleus (rats) (Jovanović, 2001;

Jovanović et al., 2014).

FIGURE 7 | FISH signal of the same preparation in two different wavelengths

(Jovanović, 2001; Jovanović et al., 2014).

deduction in general. It seems prudent to involve some other
mathematical disciplines related to automated reasoning. For the
reader unfamiliar with the basic concepts of mathematical logic
we refer to (Mendelson, 1997).

This is why more complex methods are finding applications
and are well emancipated in the processing of biological signals.
Here we shortly summarize some elements with their relevant
properties that are already in broader use.

Measures and Metrics
Where there are measurements, immediately there are measures.
The signal processing techniques involve application of
different kind of measures: counting cardinality, probabilistic,
vector valued (non-monotonic), common Euclidean geometry
measures, special probabilistic Boolean ({0, 1}-valued) filters
(those emerge in situations when deciding if an object has
certain property or not) and so on. Usually, the sets occurring
in experiments are fairly simple in the sense that they can
be adequately approximated by finite sets, or by finite
Boolean combinations of intervals and points. As such,
they can be rather directly and easily measured. Original
entities/objects are corresponded to their mathematical
representations. Then obviously, a question arises: to

FIGURE 8 | Gel used in molecular biology (Jovanović, 2001; Jovanović et al.,

2014).

what extent are the representations of a certain kind of
entities similar/identical, which we resolve obviously with
certain distance measurements-metrics between individual
representations. Thus representations, no matter how simple
or complex, become points in the space of representations and
distance measurements directly determine similarity of originals.

However, one should always be aware of the underlying
measure algebra, particularly when dealing with probability

measures. The main cause of so called probability paradoxes is

absence of the precise determination of the underlying measure
algebra, i.e., the absence of the precise definition of the set of

events that can be measured with the given probability function.
For readers unfamiliar with the basic probabilistic concepts
we refer textbooks (Attenborough, 2003; Spiegel and Stephens,

2018).
One of the subjects of the contemporary research is the study

of the impact of quantum phenomena on complex biological
formations, starting from large molecules, to large systems like

brain and related biological phenomena e.g., consciousness.
Along this line has emerged the awareness of the necessity

of precise description and understanding of signals that are
more complex and structures, which leads to utilization of more
complex sets (events) and measures on them.

An example of this kind would be determination of the
geometric probability for the set with fractal or rather complex
boundary. Fractals have become broadly present in Biology in
representation of biological functions and characterization of
their complexity. Functions are sets; events in a probability are
sets.

Another example of more complexmeasures involves Boolean
measures on the set of natural numbers N induced by nontrivial
filters and their total extensions.

The first measurements of the more complex curves and
geometric objects were performed with the discovery and
application of the infinitesimal calculus. The definite integral
∫ b
a f (x) dx of a positive function f on

[

a, b
]

returns the surface
area of the corresponding curved trapezium bounded with lines
y = 0, x = a, x = b, and y = f (x).
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FIGURE 9 | Integral computation.

FIGURE 10 | Simple calculation of the mean and its semantics.

Development of calculus has brought the methods for
integration of more complex functions, e.g., functions with
countably many jump discontinuities and functions with
essential discontinuities. The abstract concept of an integral
has been finally shaped with Lebesgue’s theory of measure and
integration.

Starting with the basic geometric measures arising from
Euclidean metrics (length of a straight line, area of a rectangle,
volume of a cube); the measure of more complex sets is
determined by application of the σ−additivity property:

µ

(

∞
⋃

n= 0

An

)

=

∞
∑

n= 0

µ (An)

for pairwise disjoint sets An, n∈ N,
For example, let

A =

∞
⋃

n= 0

[

n, n+
1

2n

]

.

Since
[

n, n+
1

2n

]

∩

[

m,m+
1

2m

]

= ∅

form 6= n, and µ
([

n, n+ 1
2n

])

= 1
2n , we obtain that

µ (A) =

∞
∑

n= 0

1

2n
= 1.

The main feature of the zero−measure sets. Precisely, if E is a set
of the positive measure, Z is a zero−measure set (i.e., µ (Z)= 0),
then for any Lebesgue integrable function f , the following is true:

∫

E
f (x) dµ =

∫

ErZ
f (x) dµ.

This was a significant improvement of the Riemann integral.
The modern understanding of a probability is as a normed

measure on a probability space. More precisely, probability space
is a triple (�,A, P), where � is a nonempty set of elementary
events, A is a σ−complete subalgebra of the powerset algebra
P (�), and P :A → [0, 1] is a σ−additive function such that
P (�) = 1. In particular, P is total if A = P (�). These notions
can be similarly defined for any other kind of measure.

The additivity add (µ) of a measure µ is defined as the
smallest cardinal number κ such that there is a family Z =

{Zi : i ∈ κ} satisfying the following two properties:

• µ (Zi) = 0 for all i ∈ κ;
• µ

(
⋃

i∈κ Zi
)

> 0.

Some examples:

1. Calculating area of the curved trapezium;
2. Calculating area of the figure whose boundary has finitely

many stepped discontinuities;
3. Calculating area of the figure whose boundary has countably

many stepped discontinuities;
4. Calculating geometric probability of the set with simple

boundary;
5. Calculating geometric probability of the set with fractal

boundary (e.g., Weierstrass function).

Note that add (µ) = ω means that µ is k−additive for all finite
k. Measures of various additivity are investigated in theory and
used in practice, when additivity can be arbitrary large.

The notions of metrics and measure play important part
in modeling of similarity. In the study of information bearing
structures, most notably formal deductive systems, it is often
easier to define measure than metrics. For example, a consistent
propositional theory (set of formulas) T naturally induces the
corresponding binary measureµT on Lindenbaum algebra LA by

µT ([φ]) =

{

1, T ⊢ φ

0, T 0 φ

Here φ is a propositional formula and [φ] = {ψ : ⊢ ψ ↔ φ}.
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One of the most common ways to generate metrics from a
given measure µ is to measure symmetric difference:

d (A,B) = µ (A△ B) .

The obtained metrics d do not satisfy condition d (A,B) = 0 ⇒

A = B, so it is a pseudo-metrics.

Dimension
The most commonly knownmeaning of the notion of dimension
is that it is the cardinal number of any basis of the given vector
space. For example, dimension of the Euclidean space R

n is, as
expected, equal to n. Recall that two vector spaces over the same
field are isomorphic if and only if they have equal dimensions.
This theorem establishes dimension of the vector space as its
most important characteristics.

Another important concept of dimension is topological
dimension. We shall omit a rather cumbersome technical
definition, and try to illustrate the concept in the case of charts.
A k−dimensional chart in R

n for k < n is any subset of R
n of the

form

M = {(x1 (t1, . . . , tk) , . . . , xn (t1, . . . , tk)) : (t1, . . . , tk)

∈ I1 × . . .× Ik} ,

where each Ii ⊆ R is an interval and each xi : I1 × . . .× Ik→ R is
a smooth function. For example, a sphere with radius R = 5 and
center at origin is represented by the chart

S = {(5 cos (s) cos (t) , 5 sin (s) cos (t) , 5 sin (t)) : 0 ≤ s < 2π ,

−
π

2
≤ t ≤

π

2

}

.

Generally, a plain curve can be intuitively described as the set of
the form

s =
{(

x(t
)

, y (t) : t ∈ I
}

,

where I is an interval. However, various conceptual problems
emerge when the additional conditions on coordinate functions
x(t) and y(t) are omitted. This was explicitly shown by
Weierstrass, Dirichlet, Peano, Hilbert, Sierpinski, and others,
who constructed quite exotic functions. Some of them are
continuous and nowhere differentiable (Weierstrass functions,
Koch triangle etc.), space filling (Peano curve is a continuous
surjection of the segment [0, 1] onto the square [0, 1] × [0, 1])
and so on. The basic concepts of calculus can be found in
textbooks (Attenborough, 2003; Werde and Spiegel, 2010; Hsu,
2014; Spiegel and Stephens, 2018).

Note that if l is a graph of a Weierstrass function, then, every
two points on it are, measured along l, at infinite length. The same
is true for fractal curves.

Higuchi fractal dimension procedure became popular with
the expanding applications on biological, especially neurological
signals. It has been used alone or in combination with other
signal analysis techniques in the revealing complexity patterns

in the single neuron activity as well as in EEG/ECoG signals
that originate from complex neuronal networks in different
physiological and pathophysiological conditions (Kesić and
Spasić, 2016).

Example 3.3.1 (Higuchi fractal dimension) In (Kesić et al.,
2014) authors use Mean of the empirical HFD distribution
to investigate the changes in the complexity of snail Br
neuron activity after the treatment application. HFD measure
allows fast computational tracking of variations in signals
and in this study has been used in combination with
the normalized mean of the empirical HFD distribution
because the signal of Br neuron activity is non-stationary
(Figure 3). This study, among other factors, showed that the
normalized mean of empirical HFD distribution method is
a significant mathematical invariant in monitoring the effects
of different treatments on modulation of bursting neuronal
activity.

On Figure 11 is shown typical electrophysiological activity of
garden snail Br neuron (60 s) and corresponding Higuchi’s fractal
dimension (HFD) values in control condition (left column) and
after treatment application (right column). Mean of empirical FD
distribution of the group in control condition and after treatment
application behaves as the mathematical invariant characterizing
system modulation.

In 1918 Felix Hausdorff introduced a generalization of the
notion of topological dimension in order to classify objects with
fractal boundaries.

Definition 3.3.2. (Hausdorff measure) Let
(

X, d
)

be a metric

space and let λ ≥ 0. The Hausdorff measure Hλ :P (X) →
[0,+∞] is defined by

Hλ (S) = sup
δ > 0

inf

{

∞
∑

n= 0

d (Un)
λ

: S ⊆

∞
⋃

n= 0

Un ∧ (∀n∈ N) d (Un) < δ

}

. �

The connection between Hausdorff measure and Lebesgue
measure is rather strong, as it is stated by the following theorem.

Theorem 3.3.3 Suppose that E ⊆ R
n is a Borel set and that µn

is the Lebesgue measure on R
n. Then,

µn (E) =
π

n
2

2nŴ
(

n
2 + 1

)Hn (E) . �

Now the Hausdorff dimension is defined by

dimH(S) = inf
{

λ ≥ 0 : Hλ (S) = 0
}

.

A consequence Theorem 3.3.2 is the fact that topological
dimension of any smooth manifold M is equal to its Hausdorff
dimension dimH (M). In particular:

• dimH(D
n) = n, where Dn = {x ∈ R

n
: ‖x‖ ≤ 1}

is the n − dimensional unit ball in R
n;

• dimH([0, 1]
n) = n;

• dimH({x}) = 0 for any x ∈ R
n;

• dimH([0, 1]× {0}) = 1.

The more interesting examples are related to various fractals.
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FIGURE 11 | Higuchi’s fractal dimension (Kesić et al., 2014).

FIGURE 12 | Construction of Cantor set.

FIGURE 13 | Construction of Koch line.

Example 3.3.4 (Cantor set) Arguably, the most important
fractal construction method was given by Georg Cantor with his
iterative construction of the nowhere dense subset of the real unit
interval that is equipotent with the unit interval (i.e., has the same
cardinal number). In particular, Cantor set C is defined by

C =

∞
⋂

n=1

3n−1−1
⋃

k=0

([

k

3n−1
,
3k+ 1

3n

]

∪

[

3k+ 2

3n
,
k+ 1

3n−1

])

.

The intuitive definition goes as follows:

• Start with C0 = [0, 1];
• Remove the middle third from C0. More precisely, C1 = C0 r
(

1
3 ,

2
3

)

. Note that C1 =
[

0, 13
]

∪
[

2
3 , 1
]

;
• Repeat the above procedure on each closed subinterval. For

example, C2 =
[

0, 19
]

∪
[

2
9 ,

1
3

]

∪
[

2
3 ,

5
9

]

∪
[

8
9 , 1
]

;

C =

∞
⋂

n= 0

Cn.

The corresponding Hausdorff dimension of the Cantor set is
given by

dimH(C) = log3(2) . �

Example 3.3.5 (Cantor comb)
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FIGURE 14 | Construction of Koch snowflake.

FIGURE 15 | Construction of Sierpinski triangle.

FIGURE 16 | Construction of Sierpinski carpet.

The Cantor comb is the set CC = C × [0, 1]. The
corresponding Hausdorf dimension is calculated as follows:

dimH(CC) = dimH(C)+ dimH([0, 1]) = log3(2)+ 1. �

Example 3.3.6 (Koch line and Koch snowflake) A Koch line is
a planar fractal .whose iterative construction is a modification of
the construction of the Cantor set. Instead of deleting the middle
segment, over it is constructed equilateral triangle, then its base
is removed, as shown on Figure 13.

This procedure is repeated ad infinitum. Similarly, Koch
snowflake is constructed from the equilateral triangle by
transformation of its edges into Koch lines, as shown on
Figure 14.

The Hausdorff dimension of both Koch line and Koch
snowflake is equal to log3 (4).

Example 3.3.7 (Sierpinski triangle and Sierpinski
carpet) Another modification of Cantor’s iterative fractal
construction was introduced by Sierpinski. The corresponding
transformations are shown on Figures 15, 16.

The Hausdorff dimension of Sierpinski triangle is equal to
log2 (3), while the Hausdorff dimension of Sierpinski carpet is
equal to log3 (8). �

Boundary-Interior Index
One of the natural questions involving metric characteristics of a
given subset of a metric space is to compare measures of sets and
their boundaries. Amotivation can be found in classical problems
of finding a figure with fixed type of boundary (or fixed measure)
with maximal or minimal area or volume. An example of this
kind is finding a figure of maximal area whose boundary has the
fixed length l.

Definition 3.4.1 Let A be a measurable set in R
n. We define

the boundary-interior index (BI) of A by

bi (A) =

{

µn−1(∂A)
µn(A)

, if division is possible
(

µn−1 (∂A) ,µn(A)
)

, otherwise
. �

In the following examples we shall calculate BI for several
important sets illustrating characteristic cases.

Example 3.4.2 (BI of a circle) Let S be a circle of radius R.
Then,

bi (S) =
µ1(∂S)

µ2(S)
=

2Rπ

R2π
=

2

R
.

Moreover, circumference l = µ1(∂S) and radius R are connected
by the well-known equation l = 2Rπ, so in terms of
circumference l we can express the BI of a circle by bi (S) = 4π

l
�

Example 3.4.3 (BI of n−dimensional ball) Let Dn
a,R =

{x ∈ R
n

: ‖a− x‖ ≤ R} be the n−dimensional ball with center

a and radius R. Since µn

(

Dn
a,R

)

= 2πn/2

nŴ( n2 )
Rn−1 and µn

(

∂Dn
a,R

)

=

2πn/2

Ŵ( n2 )
Rn−1, it follows that bi

(

Dn
a,R

)

= n
R . �

Example 3.4.4 (BI of n−dimensional cube) Let A = [0, a]n

where a > 0. Clearly, µn (A) = an. On the other hand,
µn−1 (∂A) = 2nan−1. Thus, bi (A) = 2n

a . �

Example 3.4.5 Let H be the area in Euclidean plane R
2

bounded with y = 0, x = 1 and xy = 1. Then,

µ1 (∂H) =

∫ ∞

1

√
x4 + 1

x2
dx ≥

∫ ∞

1
dx = +∞

and

µ2 (H) =

∫ ∞

1

dx

x
= +∞.

Hence, bi (H) = (∞,∞)

On the other hand, let T be the region in Euclidean space R
3

that is formed by rotation of H along the x axis. Then,
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µ2 (T) = 2π +2π

∫ ∞

1

√
x4 + 1

x3
dx ≥ 2π + 2π

∫ ∞

1

dx

x
= +∞,

and

µ3 (T) = π

∫ ∞

1

dx

x2
= π .

Thus, bi (T) = (∞,π). �
Example 3.4.6 (BI of Koch snowflakeKS) LetKSn be the figure

obtained in the n−th iteration of the construction of the Koch
snowflake. Then, µ1 (∂KSn) = 3

(

4
3

)n
and µ2 (KSn) =

3
√
3

16

(

4
9

)n

for n > 0 and µ2 (KS0) =
√
3
4 , so

µn−1 (KS) = 3 lim
n→∞

(

4

3

)n

= +∞

and

µn (KS) =

√
3

4
+

3
√
3

16

∞
∑

n=1

(

4

9

)n

=
2
√
3

5
.

Thus, bi (KS) =

(

∞, 2
√
3

5

)

. If the length of the base of the

equilateral triangle KS0 is equal to a > 0, then bi (KS) =
(

∞, 2a
2
√
3

5

)

. �

Example 3.4.7 (BI of Sierpinski triangle ST and Sierpinski
carpet SC) Similarly as in the previous example, let STn be the
figure obtained in the n−th iteration of the construction of
Sierpinski triangle. It is not difficult to see that µ1 (∂STn) =

3a
(

3
2

)n
and µ2 (STn) =

a2
√
3

4

(

3
4

)n
, so

µ1 (ST) = lim
n→∞

3a

(

3

2

)n

= +∞

and

µ2 (ST) = lim
n→∞

a2
√
3

4

(

3

4

)n

= 0.

Thus, bi (ST) = (∞, 0). Here a > 0 is the length of the base of
the initial equilateral triangle ST0.

In the case of Sierpinski carpet, µ2 (SCn) = a2
(

8
9

)n
and

µ1 (∂SCn) = a
2

(

8
3

)n
, so similarly as in the case of Sierpinski

triangle we obtain that bi (SC) = (∞, 0) �

Example 3.4.8 (BI of Cantor comb CC) Let CC = C × [0, 1]
be the Cantor comb and let CCn be the figure obtained in the
n-th iteration of its construction. Since µ1 (C) = 0 and Fubiuni
theorem is true for the Lebesgue integral, µ2 (D) = 0.

On the other hand, µ1 (CCn) = 2n+1 3n+1
3n , so µ1 (CC) =

+∞. It follows that BI has the same value as in the case of
Sierpinski triangle and Sierpinski carpet, i.e., bi (CC) = (∞, 0).

Note that for any A ⊆ R
2 of positive measure disjoint to CC, the

set B = A ∪ CC satisfies condition bi (B) =
(

∞,µ2(A)
)

.

On the other hand, boundary of Cantor comb contains 2ℵ0

disjoint copies of the segment [0, 1], so, its rectification produces
a very long line: a concatenation of 2ℵ0 copies of [0, 1]. Clearly, it
cannot be represented by a real number, which opens possibility
of facilitating some other types of orderings, e.g., Suslin lines. �

Example 3.4.9 (BI of Cantor set C) It is well known that
µ1 (C) = 0. Furthermore, µ0 (C) = |C| = 2ℵ0 , so bi (C) =
(

2ℵ0 , 0
)

. For readers unfamiliar with the basic concepts of set
theory we refer to the textbook (Jech, 2006).

The case bi (A) = (0, a) for a ∈ (0,+∞) is not possible.
Indeed, µn−1 (∂A) = 0 implies that the topological dimension of
A satisfies condition dim (∂A) ≤ n− 2, hence either interior or
exterior of A is empty. Consequently, µn (A) = 0 (case int (A) =
∅) or µn (A) = ∞ (case ext (A) = ∅).

With respect to objects in R
n for n > 1 with fractal

boundaries, BI behaves like a filter: for fractal ∂A, it is either
µn−1 (∂A) = 0 or µn−1 (∂A) = ∞.

When there is a need to calculate energy under fractal curve,
or further integrate it as with spectrograms, we immediately
switch to the 2D or 3D objects with complex-fractal boundary.

Chromosomes
The early image processing initiated the efficient algorithms to
penetrate images (Haralick et al., 1973). Extracting objects and
operating with them toward desired aims demanded more, e.g.,
(Vukosavic et al., 2001; Cermak et al., 2016). Every analysis of
chromosomes begins with identification of single chromosomes
and continues with matching of homolog couples using specific
banding patterns, thus reaching the basic karyotyping. The
careful visual inspection of small objects in direct observation
on photography was the only operation made in genetics for
decades. This was seriously extended with CCD microscopy
(Jovanović, 2001), when chromosomes became available for
mathematical modeling and unprecedented detailed analysis.
The gain was lost of subjectivity present in earlier direct visual
observations (as illustrated on the Figures 17–20).

Genetic content is well ordered within chromosomes,
with individual genes located at specific positions, organizing
chromosomal coordinate system. Chromosomal (karyotype)
classification reached in importance since any change, small or
smaller is related to most important life aspects of the studied
organism.

The methods and techniques applied in these analyses
are expanding at an accelerated rate. Besides karyotyping
and its comparisons with the developing standards toward
the localization and classification of the individual genes,
identification of irregular chromosomes with backtracking of
the genetic material forming them, as well as the localization
of hardly perceptible (small) fractures and their extraction and
further analysis, have been in the research focus (Jovanović et al.,
2014).

In the formation of microscopic preparations of
chromosomes, they get bent forms randomly. The images
(patterns) of light absorption correspond to the absorption
intensity two-argument functions are 3D manifolds with
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FIGURE 17 | Identification of the central meridian-line of a chromosome

before normalization-“rectification,” the feature preparation for the

metric-comparison (Jovanović, 2001; Jovanović et al., 2014).

FIGURE 18 | Normalized chromosomal structure detail in chromosomal

coordinate system (Jovanović, 2001; Jovanović et al., 2014).

characterizing distribution of convex and concave parts (dark
and light segments).

The longitudinal distortions bending, unless negligible make
direct geometric analysis and comparison hard or non-
reasonable.

What initially remains is the investigation of algebraic and
topologic invariants of the representing manifolds. Following
with multitude of single chromosome shapes we are forced
to operate with this representations collected into large sets
which is a serious complication. In this preliminary part
of chromosomal analysis we recommended a rather simple
controlled normalization procedure, as follows (Jovanović et al.,
2010).

After the initial contour definition, we form the original
chromosomal coordinate system with the orthogonal section
lines on the central meridian line. This determines the initial
geodesics and the corresponding metrics. By preserving of this
central meridian in its original length, using Euclidean distance
(which departs substantially from digital-pixel wise distance),
rectifying it and positioning the orthogonal lines in the original
points, we obtain the receiving Euclidean coordinate network
(mesh). This mesh is used to map the original pixels into the
receiving orthogonal mesh.

The inflections of the meridian will demand interpolation
of pixels in the receiving network, and they correspond to
the convex side. The concave-symmetric part will demand
pixel fusions in the receiving image, which is the rectified
chromosome. Such normalization is very suitable for applications
of metrics in order to determine the degree of chromosome
similarity with other compared chromosomes, leading rather
straight to classification. Thus, rectifying-normalization is
intended to produce image of the studied chromosome, as it
would be if the chromosome did not have any inflections in the
preparation production.

Clearly, smaller inflection enables more precise rectification
of the particular chromosome. In cases when the inflection angle
induces substantial detail damage, the rectification procedure
can be frozen at each desirable angle, thus preserving important
image sections, or, extend necessarily the chromosome length.

The alternative procedure is to generate narrow longitudinal
bands concentric to the original curved meridian. Those bands
should contain the smaller features that are undesirably distorted
in the above normalization of the whole chromosome, and rectify
only the selected narrow band. This approach will reduce the
above disadvantage to negligible.

Once normalized, chromosomal images are well positioned
over the simple rectangular domain. Obviously, the algebraic-
topological invariants in the original chromosomes are now
algebraic-geometric invariants, in the (almost) orthogonal
chromosomal coordinate system.

In the early nineties, zooming the chromosome into the
chip diagonal, we managed to obtain close to 100 k pixel per
chromosome resolution. Now with pixels reduced hundredfold,
the number of pixels per chromosome increases proportionally,
offering high resolution orthogonal chromosomal systems. The
consequence is significant improvement of accessible details
within the observed genetic structures. Once when the real
chromosome 3D high resolution images become reality, we will
deal with the 3D chromosomal orthogonal cylindrical geometry,
with appropriate metrics.

In this way, the original chromosome manifold MChi
(

x, y
)

converts to the normalized manifold Mi

(

x, y
)

. In order to
determine chromosomal invariants we determine the following
two corresponding sets

Mmaxi =

{

(

x, y
)

:

∂

∂x
Mi

(

x, y
)

= 0 andMi

(

x, y
)

is local max

}

and

Mmini =

{

(

x, y
)

:

∂

∂x
Mi

(

x, y
)

= 0 andMi

(

x, y
)

is local min

}

,

assuming that the central meridian is collinear with the x−axis.
The absorption bands tend to form parallel reefs, which will result
in certain accumulations along some orthogonal lines on the
meridian line. When projected to the meridian (for y = 0), they
will converge to narrow bands. As representatives of these bands,
we take their midpoints and collect them into sets (vectors)Maxi.
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FIGURE 19 | 3D representation of absorption in chromosomes; top left, non-normalized –example, the lowest chromosome from Figure 5; the other examples are

normalized (Jovanović, 2001; Jovanović et al., 2014).

FIGURE 20 | Chromosome measurement, comparison and classification (Jovanović, 2001; Jovanović et al., 2014).

Similarly form Mini for the minimums. In this way we can
use Maxi as a single simple chromosomal invariant and define
measures on such representations which would indicate the level
of chromosome similarity and provide general classification.
Then for two representation vectorsMaxi andMaxj we can define
the metrics by

d
(

Maxi,Maxj
)

=

n
∑

k=1

∣

∣xi,k − xj,k
∣

∣ (∗)

The alternative is to calculate the relative distances of nonzero
coordinates ofMaxi andMaxj and use these vectors in the metric
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(∗). For the alternative purposes we apply more or less refined
metrics based on Euclidean metrics, e.g., less refined for global
comparisons, more refined for detail inspections.

Earlier we defined some normalized and fuzzy metrics
using simplified chromosomal representations. If more detailed
and more precise similarity measurement is needed, for the
representing set Maxi we can take all local extreme structures,
instead of the point-wise projections on the meridian lines (thus,
2D structures).

Other complementary structural study of images of
chromosomes is supporting operations on chromosomes
with multiple FISH signals, and detection of very small features
on chromosomes, see (Jovanović et al., 2014), which would
include small structural changes and localization of individual
genes in the chromosomal coordinate system.

FOURIER SPECTROSCOPY

Infinite dimensional function spaces, in particular Hilbert spaces,
have become a natural mathematical background for signal
processing. A Hilbert space H is a normed vector space with
a scalar product 〈 , 〉 which is also complete, i.e., each Cauchy
sequence in H is convergent.

A countable Fourier basis of H is any subset B = {bn : n∈ N}

of H with the following properties:

• 〈bn, bn〉 = 1 for all n∈ N;

•
〈

bi, bj
〉

= 0 for i 6= j;
• x =

∑∞
n= 0 〈bn, x〉 bn, for all x ∈ H.

The number x̂n = 〈bn, x〉 is called the n-th coordinate of x
in the basis B. Moreover, the first two properties say that B is
an orthonormal system of vectors, while the last property says
that each vector can be expanded in Fourier series. Moreover,
coefficients x̂n are uniquely determined in the following sense:
x =

∑∞
n= 0 anbn H⇒ (∀n∈ N) an =x̂n.

A number of semantic distortions and complications occur
if the system B is not orthonormal, and have serious impact on
the validity of the spectroscopic analysis. In (Blinowska, 2008)
authors developed a system of base functions that is neither
orthogonal, nor normed, unintentionally opening a serious
question of the exact meaning of the observed harmonics. More
precisely, beside the regular harmonics, such spectroscopy always
induces virtual harmonics and do not preserve projections. In
particular, projections of certain signal components often do not
carry the samemeaning as in the regular case, in fact they become
meaningless.

Note that Fourier basis can be uncountable. However, the
number of the nonzero coordinates is at most countable, which is
the statement of the classical theorem that is stated below:

Theorem 4.1. Suppose that B = {bi : i ∈ I} is any Fourier
basis of the Hilbert space H and that x ∈ H. Then the set
{

i ∈ I : x̂i 6= 0
}

is at most countable. �
In signal processing, the standard Hilbert space is the

completion of the space of continuous functions on the closed
interval [−π ,π]. Recall that the scalar product is defined by

FIGURE 21 | FFT spectrogram as a part of the acoustic melody recognition

(Jovanović, 2001; Jovanović et al., 2014).

〈

x, y
〉

=

∫ π

−π

x (t) y (t) dt.

The corresponding standard Fourier basis B is defined by

B =

{

1
√
2π

,
cos (t)
√
π

,
sin (t)
√
π

,
cos (2t)
√
π

,
sin (2t)
√
π

,

cos (3t)
√
π

,
sin (3t)
√
π

, . . .

}

.

Discrete Fourier transform and the fast Fourier transform
(FFT) are the most common and most popular methods for
the expansion of the numerical vector x (t) in the standard
Fourier basis. Starting from its development in late sixties, it has
founded a quite remarkable application in signal processing. In
particular, it has enabled discovery of the efficient method for
determination of periodic components of the given signal. The
usual preprocessing involves various normalization techniques
that ensure semantic stability. Readers unfamiliar with the basic
concepts of the Fourier spectroscopy we refer to (Attenborough,
2003; Hsu, 2014).

One of the main assumptions is that a given signal x(t) is
stationary, or relative stationary on the observed time interval
L, i.e., that x(t) do not have significant changes for t ∈ L.
It is often a case that authors present and analyze single FFT
spectra, without any consideration of signal dynamics. If the
signal contains multiple frequency components, say disjoint on
the time axis but all within the domain L of the performed FFT,
then the present frequency components will be detected without
time resolution.

Consequently, in order to isolate and extract disjoint periodic
component of a signal, it is necessary to successively perform the
FFT with a t time slide at each iteration and the corresponding
shortening of the initial signal. Note that this procedure requires
appropriate sample rate and resolution.
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For instance, performing FFT for the signal from the Example
2.2 with L ≥ 5, we can detect all frequency components 440,
528 and 660, but without time separation, i.e., they will appear
simultaneously. However, performing five FFT’s with time sliding
1t = 1 five times, each time at the interval

[

k− 1, k− 1+1t
]

,
we shall obtain five spectra, each of them containing exactly one
of the frequency components.

Furthermore, reducing L to 0.5 and 1t to 0.1 will produce 45
spectra each of them with a single frequency components, or two
at the switch zones. In this way, we have approached the criterion
of spectral stability and obtained time spectra—a spectrogram
with separated tones and melodies within the signal, with the
more precise determination of the basic frequencies, intensities,
and duration of its components, conditions present in the change
of frequency components. This provides a more complete insight
into dynamics of a signal.

In particular, with a spectrogram with 50 equidistant spectra
we can compensate possibly or certainly erroneous insight and
understanding of circumstances induced by analysis of single
spectra. Applying some interventions on Fourier spectrograms,
e.g., (Jovanović et al., 2010; Spasić et al., 2010), it is possible
to achieve very sharp time resolution of the present frequency
components and their realistic magnitudes.

The example on Figure 22 (Culić and Šaponjić, 1998;
Japundzic-Zigon, 1998, 2001; Japundzic-Zigon et al., 2004)
with hemorrhage offers insight into the effects of different
substances on AP, the modulators of AP regulating system.
Different approaches are available for single sort of experiment.
For example presence/absence of major frequency features
and their relative relationship, like frequency shifts and power
ratios. The low frequency range LF and high frequency-
HF, at the middle of frequency interval are essential
features in these experimentation, yielding spectrogram
characterizations of investigated physiology, which converge
to the binary measure form- Y/N, filters, if/when, for
example, distinguishing between control, and experimental
group, as in the experiment in Figure 23, distinguishing
spectral morphology of normal-control state and modulated
spectrogram after administration of scopolamine methyl
nitrate.

Some other issues are related to semantics of the signal
processing by Fourier spectroscopy, see Spasić et al. (2010).
Here we shall emphasize the following two important moments.
A good time spectrogram can contain features significant for
the studied process. Such content often require higher order
spectroscopy, with or without the preprocessing involving
normalization and application of various measurement, (see
Jovanović et al., 2010; Perović et al., 2013).

Secondly, if the spectrogram contains small, hardly detectible,
or imperceptible components in some cases they can be detected
and extracted by application of the specific methods developed
for the image processing. Some of them are applied for the
analysis and detection of small features in chromosomes (e.g.,
Bradski, 1998; Bouguet, 2000; Welch and Bishop, 2004).

We can conclude that measures applied in various
classification problems have better semantic correspondence
with the reality when used on sufficiently resolute spectrograms

or on their features. Furthermore, it is clear that all relevant
measures will involve similar invariants-features, with high
context dependence.

Specific situations often change the approach for choice of the
adequate measure for the complexity of features. In the case of
chromosomes, the Euclidean geometry is replaced by the local
chromosomal geometry induced by the corresponding geodesics
(contours, meridians). In spectroscopy, possible measures will
focus on some of the following.

• Position of dominant lines;
• Dispersion;
• Second order FFT performed on extracted features;
• Counting/comparing of picks within certain frequency range

with the threshold ε;
• Binary 0 − 1 measures defined by filters and maximal filters,

for example connected to the position of higher harmonics.

Additional treatment of measures on spectra and spectrograms in
more general settings is given and discussed in the next section.

BRAIN CONNECTIVITY MEASURES

The EEG resolution (the number of electrodes on the scull)
has exceeded 28 points more than a decade. Higher density
of electrodes-signals for EEG will increase with technology
development, and is expected to reach thousands soon.

The relationship of different signals within integrated
neurological functions received significant attention in the last
few decades. The focus was mainly on the problem of modeling
brain connectivity. Developed models have led to the broad
range of applications in numerous experimental laboratories,
contributing to the rich discourses of fundamental importance
in neuroscience.

Clearly, as every processing in the brain involves certain signal
processes in the brain, any investigation of neurological signals
almost certainly faces the most complex kind of signals. It is also
well known that a highly complex system behavior mimics highly
chaotic random systems.

For this reason, the successful modeling of stock market
trends by Cleave Granger in late sixties and early seventies
(Granger, 1969, 1980; Granger and Morris, 1976), soon after
found application in the modeling of brain processes, namely
brain connectivity.

The initial Granger causality model improved by Geweke
which for vector variables has a form

x (t) =

p
∑

j=1

A
(

j
)

x
(

t − j
)

+ E (t) ,

where x (t) = (x1 (t) , . . . , xn(t)) is a vector of variables,
A
(

j
)

, j = 1, . . . , p is a coefficient matrix defining variable
contributions at step t − j, E(t) are prediction errors. In terms of
frequency, Geweke in (Geweke, 1982, 1984) defined the causality
model by

x (λ) = A−1 (λ)E (λ) = H (λ)E(λ),
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FIGURE 22 | Shown are FFT spectrograms of arterial pressure –AP in hemorrhage experiments, exhibiting the actions of AP modulators present in the AP regulation

(system antagonists: renin angiotensin, of sympathetic nervous system and vasopressin). (A) hemorrhage 10%; (B) hemorrhage 10% pretreated with captopril; (C) the

same, pretreatment withy phentolamin; (D) pretreatment with the substance V2255 (Jovanović, 2001; Jovanović et al., 2014).

FIGURE 23 | Spectrograms showing the normal AP state and the spectrogram changes and regular feature destructions after administration of scopolamine methyl

nitrate (Jovanović, 2001; Jovanović et al., 2014).

where

A (λ) = −

p
∑

j=0

A(j)e−2iπλj,

A (0) = I and H (λ) is the system transfer matrix. Then he
defined the measure of linear causality of two vectors of variables
x and y at frequency λ by

fy→x (λ) = ln

(

|Sxx (λ)|
∣

∣Hxx (λ)62 (λ)H
∗
xx (λ)

∣

∣

)

.

Here H∗
xx (λ) is the Hermitian transpose of Hxx (λ), | | denotes

determinant and Sxx (λ) is the upper left block of the spectral
density matrix S (λ) defined by

S (λ) =

[

Sxx(λ) S∗yx(λ)

Syx(λ) Syy(λ)

]

= H (λ)62 (λ)H
∗

(λ) ,

H (λ) =

[

Hxx(λ) Hxy(λ)
Hyx(λ) Hyy(λ)

]

.

Finally, 62 (λ) is the matrix of error variance.
The idea of Geweke that directed causality between the

two nodes i and j of the graph consisting of precisely located
electrodes-signals needs to be analyzed frequency wise was a
substantial improvement, which was followed by other brain
modeling teams, some of which received major attention and
spread broadly.

In the implementations the major connectivity measures are
estimating:

• Connectivity between two nodes i and j;
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• Direction of connectivity between i and j;
• Intensity of connectivity between i and j. (1)

All of this properties are integrated into a single measure,
while generally neglecting the frequency λ at which causality is
constructed, replacing it with the maximum over a frequency
interval3.

Following Geweke, Kaminski, and Blinowska introduced a
modification called direct transfer function, defined by

DTFij (λ) =

∣

∣Hij (λ)
∣

∣

√

∑n
k=1 |Hik|

2
,

measuring causality from j to i at frequency λ. Initially they
started with non-normalized form of DTF using the expression of
Geweke (Kaminski and Blinowska, 1991; Kaminski et al., 2001).

Sameshima and Bacala proposed somewhat different
approach in modifying Geweke measure (Sameshima and
Baccala, 1999; Baccalá and Sameshima, 2001a; Baccala and
Sameshima, 2001b), with their partial directed coherence,
measuring influence of signal at the node i to the signal at the
node j at frequency λ, formally defined by

PDCij (λ) = πij (λ) =
Aij (λ)

√

a∗j (λ) aj (λ)
.

Here Aij (λ) is the i, j-th entry of A (λ), aj (λ) is the j-th column
of A (λ) and a∗j (λ) is the Hermitian transpose of aj (λ).

Earlier, they also introduced the direct coherence measure
with the intention to estimate direct connectivity between nodes
i and j at frequency λ. It was defined by

DCij (λ) =
σjjHij (λ)

√

∑n
k=1 σ

2
kk
|Hik (λ)|

2
.

More recently Sameshima and Baccala introduced information
PDC and DTF (Takahashi et al., 2010), for which they claimed to
measure the information flow from the signal at the node j to the
signal at the node i by

iPDCij (λ) = Aij (λ) σ
−1/2
ii

(

a∗j (λ)6
−1
w aj (λ)

)−1/2

and

iDTFij (λ) = Hij (λ) ρ
1
2
jj

(

h
∗

j (λ)6
−1
w hj (λ)

)− 1
2

.

Here 6w=E
(

w (n)wT (n)
)

is a positive definite covariance
matrix of the so called zero mean wide stationary process w(n),
and ρjj is the variance of the so called partialized innovation
process ζj (n) defined by ζj (n) = wj (n)−E(wj(n)/{wl (n) : l 6=
j}).

Let us mention that numerous experimental teams used the
above measures in their discoveries where the above measures

reached highest popularity in the formation and formulation of
the key conclusions and results, including further modifications
(Brovelli et al., 2004; Babiloni et al., 2005, 2007; Schelter et al.,
2005; Chen et al., 2006; Singh et al., 2007; Wang et al., 2007).

In (Kasum et al., 2015) we undertook a thorough analysis of
these approaches studying all tiny details in the computation
and comparison of these measures on the authors data sets,
discovering certain inconsistencies and problems involving these
measures which substantially compromise their application in
some important issues (Kuś et al., 2008; Takahashi et al., 2008;
Blinowska et al., 2010; Blinowska, 2011; Brzezicka et al., 2011).

Presenting three qualities (1) integrally, we are neglecting
differences in their importance and masking the most important
aspect—being connected. For this reason, we proposed their
separated analysis with certain additions, which can result in the
different insight of the local inconsistency in the above methods.
This is briefly shown on the Figure 24 for a reduced small subset
of the system involving 20 × 20 graphs.

On the left diagram is shown connectivity difference between
the two measures with corrected statistical zero value. The right
diagram contains the same connectivity difference between the
two connectivity measures after the natural harmonization of
the two experimental zeroes. The consequence is the loss of the
connectivity difference in the example illustrating by the authors
of PDC the difference and the advantages of their method.
Manipulating with different values of statistical zero, one can
reach arbitrarily desirable conclusions. Since, we earlier have
shown that the DTF is exposing abundant connectivity, when
almost everything is connected (D. Adams axiom), now the same
will be true for PDC as well, only if sensitivity is sufficiently
adjusted, not as far as in the original measure comparisons
(Sameshima and Baccala, 1999).

Some alternative approaches were suggested by other research
teams (Kroger et al., 2006; Watkins et al., 2006; Jovanović and
Perović, 2007; Liu et al., 2007; Aoyama et al., 2009; Klonowski
et al., 2009).

On the other hand, we introduced the concept of weak
connectivity (Kasum et al., 2015), which might be essential in
some processes and might remain hardly noticeable or even
imperceptible for the current methods. We offer some alternative
methods for detection of such phenomena. One of them is rather
simple and goes as follows.

For a set E of signals we say that there is connectivity of E at
frequency λ if

πE (λ) =
∏

f∈E

PS
(

f
)

(λ) 6= 0.

Here PS(f ) is the power spectrum of f , PS
(

f
)

(λ) is the λ-th
coordinate of PS(f ), and

∏

is the coordinate-wise product.
The use of E with multiple signals instead of binary E might

enhance some hardly noticeable periodic components which are
present in the whole group of signals. Then, we can say that E is
connected if πE 6= 0, i.e., if πE (λ) 6= 0 for some λ.

Besides the above considerations, we also recommended the
connectivity being considered over the time interval T, rather
than at a single point in T. The intention is to obtain insights
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FIGURE 24 | Connectivity difference between DTF and PDC (Kasum et al.,

2015).

in the time dynamics of connectivity. In this way the usual
connectivity directed graphs, after some adaptations, can be
substituted with their integration over time. Consequently, this
will produce dynamic graph movies instead of single directed
graphs, analogous to the spectra—spectrogram integration.

For the power spectra product of the initial time point t we
can integrate πE (λ) = πE (λ, t) over t ∈ T and λ ∈ 3 to obtain

πE (λ,T) =

∫

t∈T

πE (λ, t) dt

and

πE (λ,3) =

∫

λ∈3

πE (λ, t) dλ

as connectivity measures over the time interval T and the
frequency interval3.

Other methods to establish connectivity on these higher
structures are available. Once connectivity between the sets of
signals is established, we might consider other two properties: the
connectivity direction and intensity.

DISCUSSION

Biological research, centered on biological signals is in explosive
expansion, with neurological contents leading in complexity.
With 100 B (Billion) neurons and some its exponent of neuronal
connections, the individual brain, as an information processing
system responsible for all knowledge accumulated in history, plus
a lot of other behavior, exceeds by far the complexity of the
whole Internet processing, with all rich parallelism and powerful
computational nuclei.

The unknown complexity of individual working brain is far
out of reach of our understanding yet. Certainly, it is the most
powerful function humanity met in history. Numerous of the
processes are multi valued, certain processes binary, dispersed
over a range of frequencies. It is the hardest possible approach
to learn the unknown functionality from the hardware and
individual signal sources. With the simple personal computer it
would be a very hard way to reach understanding of software
system controls involved, especially all the components of the
operating system.

Yet, there are already conferences and discoveries related to
the operation of human consciousness, which was until very
recently a “nonscientific category.” The approach of parallel
investigation of multitude of tasks is promising, as some of the

issues are being resolved from multiple projections. The number
of combined teams of scientists engaged in brain research is
growing, engaging significant resources, which might prove
useful.

Mathematical methods briefly discussed here and much more
are a product of the brain, thus having its representation and
life within the brain much before it is used in brain modeling.
Thinking in this way we could be sure all of Mathematics so far
applied in biological signals is anything but too complex, as we
never experienced the situation when very complex is completely
described by very simple.

Nevertheless, we shouldmention some issues that will be faced
sooner in much simpler environments like Quantum Physics
and Cosmology. People usually consider Mathematics as a tool
set sitting on the shelves, ready to be applied by whomever
in whatever capacity and fragments of its developed contents,
with all time growing complexity, as natural scientists and
engineers are learning more of Mathematics. And this is good,
as Mathematics is a public property. The history teaches us that
it is hard to guarantee, even for the most abstract parts, that any
of discovered Mathematics will never be needed by application.
This is the only security for the future of Mathematical funding.

With the growing complexity of the applied mathematical
concepts, we are approaching some serious issues of foundations
of Mathematics. Before that, let us mention that the symbol ∞
does not represent infinity uniquely since Cantor’s discoveries in
1873, when he showed that arithmetical and geometric infinity,
i.e., natural numbers and real line are different infinite quantities.
As a consequence, infinity has been scaled in terms of pairwise
different cardinal numbers. However, the size of this scale is
enormous; it cannot be coded by any set. This was the creation
of Set theory, and the beginning of the studies of foundations of
Mathematics, which is probably never ending.

When dealing with simplest measurements and simplest
Euclidean measures we think that everything can be measured.
One can only imagine the disappointment of Lebesgue who
developed the beautiful completion of measure and integration,
when Vitali find a rather simple set on the real line which is not
Lebesgue-measurable. In fact there are 2ℵ0 Lebesgue-measurable

sets, while there are 22
ℵ0 subsets of R.

The existence of immeasurable sets is highly counterintuitive.
These sets cannot be sketched, they are totally amorphous. Sets
with fractal boundaries can be seen as a bridge toward the
intuitive visualization of immeasurable sets.

From earlier examples, namely, from Lobachevski discovery
of non-Euclidean geometries, in twenties of 19th century, which
was against all believes of the nature of Geometry, after he showed
equiconsistency of the first non-Euclidean Geometry with the
anciently perfectly founded Euclidean Geometry which we still
learn in the schools, we learned that Mathematical theories,
packed around their axioms can be at the same level of logical
certainty, while obviously impossible mixed together since with
colliding axioms.

And within very short time-a few decades, that discovery
gave rise to the huge developments in Geometry, immediately
picked up by the most prestigious theoretical physicists as proper
Cosmometry (Geometry of the Universe, or its specific parts,
e.g., environments of black holes). Concerning the issues related
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to all measures, we have to say that numerous depend on the
axiomatics for Mathematics which is the defining Geometry
of the Universe of Mathematics. And there are alternatives
combining a smaller set of fundamental axioms and their weaker
or stronger versions.

Without entering a discussion that does not belong here,
let us just say that AC (Axiom of Choice) is very much
needed in the foundations of Mathematics, but there are
alternatives. AC implies that Lebesgue measure is not total.
However, it implies that there are numerous mentionedmeasures
that are total. Banach proved that there is a total extension
of Lebesgue measure which is countably-additive, while, as
the Solovay theorem shows (Solovay, 1970, 1971; Pap, 2002),
the existence of a total countably-additive extensions of the
Lebesgue measure is equconsistent to a very strong property.
Some of the functions close to the above-examined fractals
are complex enough to open the fundamental issues (for a
survey on recent developments in Measure theory see e.g., Pap,
2002).

On the other hand, we can stay on the flat Earth and deal only
with short approximation of the phenomena, avoiding entering
the zone of the complex Mathematics and its fundamental issues.
Yet, as proved by Goedel, we cannot escape the hot issues even
remaining only in Arithmetic, nor in any theory containing its
copy (like Geometry).

Other Approaches
Our aim was not to deliver a comprehensive overview of the
all metrics and measurements involved in the contemporary
biological studies. We have been focused primarily on our work.
However, it is prudent to at least mention some of the important
topics that are missed here.

The first is related to methods for fractal analysis developed
initially for the fractal dimension of observed time series from
human physiology and performance. We refer the reader to
(Holden et al., 2013).

The second is related to measurement of self-affine structures
and a spectrum of scaling parameters. An example of this kind
is the detrended fluctuation analysis presented in (Kantelhardt
et al., 2002).

The third is related to the recurrence quantification analysis
based on the Taken’s theorem. For more information we refer the
reader to (Webber and Marwan, 2015).

The fourth is related to properties such as ergodicity,
anomalous diffusion and multiplicative interactions presented in
(Molenaar, 2004; Hasselman, 2013).

The fifth and the final is related to application of non-
commutative probabilities presented in (Brovelli et al., 2004;
Busemeyer and Bruza, 2012).
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An information-theoretic approach to numerically determine the Markov order of discrete

stochastic processes defined over a finite state space is introduced. To measure

statistical dependencies between different time points of symbolic time series, two

information-theoretic measures are proposed. The first measure is time-lagged mutual

information between the random variables Xn and Xn+k, representing the values of

the process at time points n and n + k, respectively. The measure will be termed

autoinformation, in analogy to the autocorrelation function for metric time series, but

using Shannon entropy rather than linear correlation. This measure is complemented

by the conditional mutual information between Xn and Xn+k, removing the influence

of the intermediate values Xn+k−1, . . . ,Xn+1. The second measure is termed partial

autoinformation, in analogy to the partial autocorrelation function (PACF) in metric

time series analysis. Mathematical relations with known quantities such as the entropy

rate and active information storage are established. Both measures are applied to

a number of examples, ranging from theoretical Markov and non-Markov processes

with known stochastic properties, to models from statistical physics, and finally, to a

discrete transform of an EEG data set. The combination of autoinformation and partial

autoinformation yields important insights into the temporal structure of the data in all test

cases. For first- and higher-order Markov processes, partial autoinformation correctly

identifies the order parameter, but also suggests extended, non-Markovian effects in the

examples that lack the Markov property. For three hidden Markov models (HMMs), the

underlying Markov order is found. The combination of both quantities may be used as an

early step in the analysis of experimental, non-metric time series and can be employed

to discover higher-order Markov dependencies, non-Markovianity and periodicities in

symbolic time series.

Keywords: EEG microstates, information theory, entropy, mutual information, Markovianity, stationarity

1. INTRODUCTION AND BACKGROUND

Information theory occupies a central role in time series analysis. The concept of entropy provides
numerous important connections to statistical physics and thermodynamics, often useful in the
interpretation of the results (Kullback, 1959; Cover and Thomas, 2006). Despite the large number
of available measures, there is no generally accepted systematic procedure for the analysis of
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symbolic time series, although collections of theory and
methods are readily available (Daw et al., 2003; Mézard and
Montanari, 2009). In metric time series analysis however, a
hierarchical set of analyses and tests has been established
by Box and Jenkins (Box and Jenkins, 1976). The seminal
work by these authors deals with autoregressive and moving
average processes, some of the most prominent Markov
processes across many fields of science (Häggström, 2002). The
result is a standardized procedure for analyzing continuous
valued, discrete time stochastic processes (Box and Jenkins,
1976). The procedure addresses the impressive complexity of
possible stochastic processes by combining semi-quantitative,
visual analysis steps with a number of rigorous statistical test
procedures. The first step in Box-Jenkins analysis is the visual
and statistical assessment of the autocorrelation function (ACF)
and the partial autocorrelation function (PACF) of the data. In
particular, the order of purely autoregressive processes can be
directly deduced from the PACF coefficients. For a p-th order
autoregressive process, it can be shown that PACF coefficients
for time lags larger than p are equal to zero, within statistical
limits.

Information-theoretical time series analysis is closely linked
to the theory of Markov processes, as Markov processes are
defined via their temporal dependencies. The elemental case is
a first-order Markov process (Xn)n∈Z, for which the transition
Xn → Xn+1 depends on the current state Xn only. Due
to this property, first-order Markov processes are termed
memory-less, as their past does not influence transitions to
future states. Markov processes of order M generalize this
property and have transition probabilities defined by M past
states (Xn, . . . ,Xn−M+1), thus representing finite memory effects
of the time series. Using information-theoretical methods,
memory effects and temporal dependencies can be quantified.
A more formal treatment of Markov processes follows in the
Materials and Methods section, after introducing the necessary
notation.

To assess the Markov property of a time series, and to
identify the Markov order of an empirical symbol sequence,
classical statistics derives a number of tests as detailed in the
Materials and Methods section (Hoel, 1954; Anderson and
Goodman, 1957; Goodman, 1958; Billingsley, 1961; Kullback
et al., 1962).We recently used the tests developed in (Kullback
et al., 1962) to characterize electroencephalographic (EEG)
data transformed into a symbolic time series termed microstate
sequences (von Wegner and Laufs, 2018). Using time-lagged
mutual information, we could show that the symbolic four-
state sequences still retain periodic features of the underlying
continuous EEG signal (von Wegner et al., 2017, 2018). The
aim of the present article is to introduce partial autoinformation
as a measure that is complementary to the time-lagged
mutual information function, in the same sense that the PACF
complements the autocorrelation function in classical time series
analysis of continuous random variables. In the past, we have
used the term autoinformation function (AIF) for time-lagged
mutual information, in analogy with the autocorrelation function
(ACF) of classical time series analysis (von Wegner et al., 2017).
To continue the analogy, the newly introduced measure will

be termed partial autoinformation function (PAIF), because it
answers the same question about the information content of
a symbolic time series as the partial autocorrelation function
(PACF) does about correlations. The new measure is derived
based on the analogy with the PACF and theoretical connections
with well-known functionals such as the entropy rate and
active information storage are established. Next, we apply
the AIF/PAIF approach to a number of symbolic time series
ranging from Markov and non-Markov model data with known
properties to simulated data representing physical systems
(Ising model, abstract ion channel model) and experimental
EEG microstate data. Finally, limitations and possible
applications are discussed for larger state spaces and finite
samples.

2. MATERIAL AND METHODS

2.1. Autoregressive Processes
To illustrate the motivation for this study, an exemplary
autoregressive process is used to explain the principles of
time series analysis with the (partial) autocorrelation approach.
Autoregressive (AR) processes model time series of continuous
random variables in discrete time (Box and Jenkins, 1976).
The p-th order or AR(p) process models the dependency
of Xn on its past via a linear combination of the p values
preceding Xn:

Xn = φ1Xn−1 + . . .+ φpXn−p + εn (1)

where φ1, . . . ,φp are called the autoregression coefficients and
εn represents identically and independently distributed (iid)
Gaussian noise.

The linear dependencies created by Equation (1) can be
quantified by the time autocorrelation function (ACF). The ACF
coefficients ρk of a stationary stochastic process Xn are defined as:

ρk = C
(

Xn+k,Xn

)

(2)

where C(X,Y) =
∑

i
(Xi−µX)(Yi−µY )

σXσY
denotes Pearson’s

correlation coefficient. The ACF coefficients describe the linear
correlation between process values at two different time steps
Xn and Xn+k, without taking into account the effect of
the intermediate time steps Xn+k−1, . . . ,Xn+1. However, Xn

could be correlated with Xn+k directly, independent of the
intermediate values, or the correlation between Xn and Xn+k

could be conveyed via the intermediate values and vanish when
conditioned on these intermediates. To distinguish these cases,
the PACF performs amultivariate regression ofXn+k on all values
Xn+k−1, . . . ,Xn and finally records the conditioned or partial
correlation between Xn and Xn+k, removing the effect of the
intermediate values:

ϕkk = C
(

Xn+k,Xn | Xn+k−1, . . . ,Xn+1

)

. (3)

Continuous-valued, discrete time AR processes can be
systematically assessed using the combination of the
autocorrelation function and the PACF (Box and Jenkins, 1976).
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We here present an example using a third-order autoregressive
process that is parametrized by:

Xn = 0.85Xn−1 − 0.2Xn−2 + 0.1Xn−3 + εn (4)

with AR coefficients φ1 = 0.85, φ2 = −0.2 and φ3 = 0.1.
Figure 1 shows the ACF/PACF analysis of a simulated sample
path (N = 105 samples). The left panel, Figure 1A shows the
exponentially decaying ACF. Though the analytical form of the
ACF can be expressed in terms of the three AR coefficients,
visual analysis does not allow to deduce the order of the AR
process or the magnitude of the coefficients. The right panel,
Figure 1B shows the PACF whose zero-lag coefficient ϕ00 = 1,
by definition. The following three values ϕ11−33 directly reflect
the relative magnitude and sign of the AR coefficients φ1−3.
Thus, through PACF analysis, the AR(3) structure of the process
can be conjectured from visual analysis already. In practice, the
statistical significance of each coefficient can also be assessed
quantitatively. In Figure 1, confidence intervals (α = 0.05) are
shown in blue.

The classical Box-Jenkins approach to time series analysis
considers the magnitude of ACF and PACF coefficients to guess
the statistical structure of the data (Box and Jenkins, 1976). For
a pure autoregressive process of order p, the PACF coefficients
ϕkk vanish for k > p. In case of a pure moving average
process, the expected value of the ACF coefficients ρk are zero
for k > p. For mixed (ARMA) processes, the model orders
cannot be determined visually. Although the pure AR model
order can be deduced from the decay of the PACF, and the
PACF coefficients ϕkk can be expressed in terms of the AR
coefficients φk, the exact value of the AR coefficients φk cannot
be derived visually, with the exception of a few simple low-order
cases.

2.2. Information Theory
Information theory is rooted in mathematical statistics and
uses entropy as one of its main concepts (Kullback, 1959).
Entropy characterizes the shape of probability distributions
and thereby, the amount of uncertainty or surprise
associated with samples generated from the distribution.
This section summarizes the concepts and definitions
needed to derive the PAIF, more extensive treatments can
be found in classical and more recent monographs (Kullback,
1959; Cover and Thomas, 2006; Mézard and Montanari,
2009). Connections of the PAIF with other information-
theoretical quantities are derived in the first paragraph of
the Results section. Logarithms are computed as log2, such
that all information-theoretical quantities are measured
in bits.

We here consider stochastic processes (Xn)n∈Z, i.e., sequences
of random variables Xn, where each Xn takes values in some
finite alphabet of L different symbols S = {s0, . . . , sL−1}.
In practice, we deal with finite samples of the underlying
process, (Xn)n=0,...,N−1. In the following, contiguous data blocks
starting from index n, and covering the past k values of the
process,

(

Xn,Xn−1, . . .Xn−k+1

)

will be termed k-histories and are
written as

X(k)
n =

(

Xn,Xn−1, . . .Xn−k+1

)

. (5)

Denoting a specific realization of the random variableXi as xi, the
joint probability distribution of k-histories is given by

P(X(k)
n ) = Pr

(

Xn = xn,Xn−1 = xn−1, . . .Xn−k+1 = xn−k+1

)

.

where xi ∈ S, for all i = n − k + 1, . . . , n. In the following, the

compact notation P(X
(k)
n ) will be used.

The information content of a random variable X with
possible values xi ∈ S and associated probabilities P(X =

FIGURE 1 | Partial autocorrelation analysis of a real-valued autoregressive process. (A) The AR(3) structure of the data cannot be deduced visually from the shape of

the ACF, though the exponential decay can be parametrized exactly by the three AR coefficients. (B) Removing the effect of intermediate values, the PACF coefficients

directly reflect the AR(3) structure as well as the magnitude and sign of the AR coefficients. Confidence intervals (α = 0.05) for the absence of correlations are shown

in blue.
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xi) = pi is measured by the Shannon entropy H(X) =

−
∑

i pi log pi (Kullback, 1959). The information content of the

joint distribution representing the k-history X
(k)
n is measured by

the joint entropy, which is defined as (Kullback, 1959; Cover and
Thomas, 2006):

HX(n, k) : = H(X(k)
n ) (6)

= −
∑

X
(k)
n

P(X(k)
n ) log P(X(k)

n ) (7)

where the sum runs over all possible values of Xn =

xn, . . . ,Xn−k+1 = xn−k+1. The expression HX(n, k) contains
the time parameter n, such that the expression for HX(n, k)
can be used even in the case of non-stationary processes,
whose statistical properties may depend on n. Under time-
stationary conditions, the entropy is obtained by averaging
over all time points and the resulting entropy will be
abbreviated

Hk =
〈

HX(n, k)
〉

n

where 〈·〉n denotes time averaging.
Adding information about the value of another random

variable Y reduces the uncertainty about X, in case X and Y
are statistically dependent. If X and Y are independent, the
entropy of X does not change with the additional information
about Y . To measure the influence of Y on X, conditional
entropy is defined as H(X | Y) = H(X,Y) − H(Y).
In the following, two conditional entropy terms will be
used.

The first term is a finite approximation to the entropy rate
of the stochastic process X. The entropy rate hX of a process
quantifies the amount of surprise about the next symbol Xn+1

emitted by the process, given knowledge about its past values

X
(k)
n . The theoretical or analytical value hX is defined via an

infinitely long history

hX = lim
k→∞

H(Xn+1 | X
(k)
n ).

Whenworking with finite experimental data samples, the entropy
rate has to be estimated from finite k-histories (Runge et al., 2012;
Barnett and Seth, 2015; Faes et al., 2015; Xiong et al., 2017):

hX(n, k) = H(Xn+1 | X
(k)
n ). (8)

Using the definition of conditional entropy, hX(n, k) can be
computed from joint entropies as:

hX(n, k) = H(Xn+1,X
(k)
n )−H(X(k)

n ) (9)

= H(X
(k+1)
n+1 )−H(X(k)

n ). (10)

Following the notation used for Shannon entropy, the time-
stationary expression for the entropy rate will be denoted hk =
〈

hX(n, k)
〉

n
.

The second conditional entropy term used is the two-point

conditional entropy H(Xn+k | Xn), that measures the amount of
information about Xn+k contained in Xn.

Next, mutual information between two random variables is
defined as I(X;Y) = H(X) − H(X | Y) and measures the
information shared between both variables. Mutual information
will be used to compute two quantities that are useful in
characterizing symbol sequences.

First, active information storage (AIS) (Lizier et al., 2012)
is complementary to the entropy rate. While the entropy rate
measures how much information (or surprise) is contained in

Xn+1, despite knowledge of its k-history X
(k)
n , AIS measures the

amount of common (or shared) information between Xn+1 and
its k-history. The active information storage term for a history of
length k is defined as

aX(n, k) = I(Xn+1;X
(k)
n ) (11)

and the stationary expression is ak =
〈

aX(n, k)
〉

n
.

For computational implementation, active information
storage is decomposed into joint entropy terms:

I(Xn+1;X
(k)
n ) = H(Xn+1)−H(Xn+1 | X

(k)
n )

= H(Xn+1)+H(X(k)
n )−H(Xn+1,X

(k)
n )

= H(Xn+1)+H(X(k)
n )−H(X

(k+1)
n+1 ).

The second mutual information term used is I(Xn+1;Xk), and
yields an estimate of the statistical dependency between the
random variables Xn and Xn+k. In a recent publication, we used
the term autoinformation function (AIF) to denote the set of
time-lagged mutual information terms computed for a number
of time lags (vonWegner et al., 2017). The name AIF was derived
from the formal analogy with the autocorrelation function (ACF)
for metric time series. We defined the AIF coefficient at time lag
k as:

αX(n, k) = I(Xn+k;Xn) (12)

= H(Xn+k)−H(Xn+k | Xn) (13)

= H(Xn+k)+H(Xn)−H(Xn+k,Xn) (14)

and the stationary term is αk =
〈

αX(n, k)
〉

n
. Rather than using

linear correlation to measure the dependency between two time
points, as the ACF does, the AIF employs mutual information
between the random variables at time points n and n + k.
The measure is symmetric, i.e., I(Xn;Xn+k) = I(Xn+k;Xn) and
therefore does not contain directional information. In analogy
to the autocorrelation function, division of all coefficients by
αX(n, 0) normalizes the AIF to αX(n, 0) = 1. The computational
cost is independent of the time lag k, as all entropies are computed
from one-dimensional (H(Xn+k), H(Xn)) and two-dimensional
(H(Xn+k,Xn)) distributions.

Finally, the definition of partial autoinformation, the central
concept of this work, is based on the concept of conditional
mutual information which includes a third random variable
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Z, on which the mutual information between X and Y is
conditioned:

I(X;Y | Z) = H(X | Z)−H(X | Y ,Z). (15)

The information-theoretical match for the PACF should
estimate the two-point dependency between Xn and Xn+k,
while removing the influence of the intermediate variables

X
(k−1)
n+k−1

= (Xn+k−1, . . . ,Xn+1). This is achieved by computing
the conditional mutual information (Equation 15) between Xn

and Xn+k, given X
(k−1)
n+k−1

.
We therefore define the PAIF coefficient πX(n, k) at time

lag k as:

πX(n, k) = I(Xn+k;Xn | Xn+k−1 . . .Xn+1) (16)

= I(Xn+k;Xn | X
(k−1)
n+k−1

). (17)

Using the definition of conditional mutual information in terms
of conditional entropies, and the expression of conditional
entropy in terms of joint entropies, the computation of πX(n, k)
can be reduced to the estimation of joint entropies:

πX(n, k) = H(Xn+k | X
(k−1)
n+k−1

)−H(Xn+k | X
(k−1)
n+k−1

,Xn) (18)

= H(Xn+k,X
(k−1)
n+k−1

)−H(X
(k−1)
n+k−1

)−H(Xn+k,X
(k)
n+k−1

)

+H(X
(k)
n+k−1

) (19)

= H(X
(k)
n+k

)−H(X
(k−1)
n+k−1

)−H(X
(k+1)
n+k

)+H(X
(k)
n+k−1

).(20)

The stationary expression is

πk = hk−1 − hk

= −Hk−1 + 2Hk −Hk+1.

For the first two coefficients πX(n, 0) and πX(n, 1), there are no

intermediate values X
(k−1)
n+k−1

to condition on. Analogous to the
PACF algorithm, we set πX(n, 0) = αX(n, 0) and πX(n, 1) =

αX(n, 1). The computational load increases exponentially with

history length k, as the discrete joint distribution P(X
(k−1)
n+k−1

) over

L labels has Lk−1 elements.
The computation of the quantity of interest, the PAIF

coefficients, is visualized in Figure 2. Above, the relationships
between the quantities discussed here are shown as an
information diagram, a special form of a Venn diagram. AIF
coefficients are represented by the intersection of the two dark
gray circles which represent H(Xn+k) and H(Xn), respectively.
In the scheme below, where each element of the time series
Xn is visualized as a square box, the AIF coefficients represent
the shared information between Xn+k and Xn, without taking

into account the effects of X
(k−1)
n+k−1

(light gray areas in the
information diagram above and the symbolic sequence below).
The PAIF corresponds to the part of I(Xn+k;Xn) that does not
intersect with the lower circle, representing the intermediate

values H(X
(k−1)
n+k−1

). The area that represents the PAIF is shown
in dark blue in the information scheme.

FIGURE 2 | AIF/PAIF analysis. The information diagram above illustrates the

partition of the total data entropy. The intersection of the two dark gray circles,

representing Hn and Hn+k , respectively, corresponds to the AIF coefficient

I(Xn+k;Xn) (light blue area). It measures the shared information between the

time points n and n+ k, while ignoring the intermediate variables. The PAIF

coefficients are represented by the dark blue sub-area of I(Xn+k;Xn) that

results from excluding all elements that belong to the intermediate values

H(Xn+k−1, . . . ,Xn+1), shown in light gray color in the Venn diagram and the

symbolic time series below.

2.3. Markovianity Tests
A discrete Markov process (Xn)n∈Z of order M is defined via the
property

P(Xn+1 | X
(M+k)
n ) = P(Xn+1 | X

(M)
n ) (21)

for all positive integers k ≥ 0. In words, the transition
probabilities from Xn to the state Xn+1 depend on theM-history
of Xn, whereas inclusion of more values from the process’ past,
beyond Xn−M+1, does not convey further information about the
transition probabilities.

General tests for the Markov property of low orders have
been introduced in the 1950s and further tests for many
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special cases are still being developed today. Early works
used analytical expressions for the distribution of symbol
counts, given a certain Markov structure, and developed
likelihood ratio tests for the cases of known (Bartlett, 1951)
and unknown (Hoel, 1954) transition probabilities. Further
developments included χ2 tests for hypotheses about the
time-stationarity of transition probabilities, direct comparisons
of different Markov orders (Anderson and Goodman, 1957;
Goodman, 1958), as well as parameter estimation methods
and tests for continuous time Markov processes (Billingsley,
1961). Using close relationships between χ2 statistics and
information-theoretical expressions, test statistics based on
Kullback-Leibler metrics were summarized as a monograph
and in a practice-oriented article containing many numerical
examples by Kullback (Kullback, 1959; Kullback et al., 1962).
Further approaches include the application of the Akaike
information criterion to optimize the order estimate for a discrete
Markov chain (Tong, 1975) as well as data compression oriented
algorithms (Merhav et al., 1989) and extensive surrogate data
tests (Pethel and Hahs, 2014). The results of the PAIF method
developed here is compared to the Markov order test presented
in van der Heyden et al. (1998). The latter test compares finite
entropy rate estimates (hX(n, k)) of the data to be tested with
surrogate statistics obtained from M-order Markov surrogates

with the same transition probabilities P(Xn+1 | X
(M)
n ) as the data.

The algorithm for the computation of the surrogates is given in
detail in (van der Heyden et al., 1998) and is summarized in
the following section 2.4. This test will be termed conditional
entropy test. In this article, surrogate statistics for each test data
set are computed from n = 100 surrogate sequences for each
Markov orderM = 0, . . . , 5. The Markov order identified by the
conditional entropy test is taken to be the value M for which all
hX(n, k) lie within the α = 0.05 confidence interval defined by
the surrogates.

We recently published our Python implementation of the
Markovianity tests of order 0-2 as well as symmetry and
stationarity tests as given in Kullback et al. (1962), in article
form (von Wegner and Laufs, 2018), and as open-source code.
Although the code is part of an algorithm to process EEG
microstate sequences, the tests can be exported and applied
generically.

2.4. Markov Surrogate Data
A Markov process of order M is also defined via its transition

probabilities P(Xn+1 | X
(M)
n ), where the probability to go into

state Xn+1 is conditioned on the M-history X
(M)
n . To synthesize

a Markov process of order M, using the same transition
probabilities as the underlying experimental time series (Xn), the
empirical M-order transition matrix is estimated first. To this
end, all contiguous tuples of length (M + 1) taken from the
time series, i.e., tuples of the form (Xn−M+1, . . . ,Xn,Xn+1) are
considered. The maximum likelihood estimate for the transition
probability P(Xn+1 | X

(M)
n ) based on this sample is given by

p̂ML(Xn+1 | X
(M)
n ) =

#(Xn+1,X
(M)
n )

#(X
(M)
n )

where #(·) denotes the number of times a specific outcome occurs
in the empirical sequence (Xn) (Anderson and Goodman, 1957;

van der Heyden et al., 1998). For instance, #(X
(M)
n ) is the number

of realizations (Xn = xn, . . . ,Xn−M+1 = xn−M+1). While

counting the tuples, the joint distribution of X
(M)
n is recorded at

the same time.
Following van der Heyden et al. (1998), the first M values of

each surrogate Markov sequence are initialized with a sample

from the joint distribution X
(M)
n . From there, we have a M-

history X
(M)
n for every subsequent value Xn+1. The value of Xn+1

is chosen according to the transition probabilities p̂ML(Xn+1 |

X
(M)
n ) and the given M-history. Given a specific M-history X

(M)
n ,

there are L transition probabilities q0, . . . , qL−1, where qi =

p̂ML(Xn+1 = si | X
(M)
n ). The distribution of the state Xn+1 = si is

sampled correctly using a pseudo-random number r, uniformly
distributed on the unit interval, r ∼ U[0,1], and the condition
∑i−1

l=0 ql ≤ r <
∑i

l=0.
We recently published a Python implementation for first-

order Markov surrogates in the open-source package described
in von Wegner and Laufs (2018), and have included theM-order
Markov surrogates in the Github repository associated with this
paper.

2.5. The Two-State Markov Process
The general concepts introduced above are easily applied to a
two-state, first-order Markov process that can be written as

A
p
⇋
q
B

with transition rates p and q. The self-transition rate for A → A
is 1− p, and the rate of B → B is 1− q. The complete transition
matrix T reads

T =

(

1− p p
q 1− q

)

and has eigenvalues λ0 = 1 and λ1 = 1 − (p + q). The
eigenvalue λ0 = 1 is assured by the Perron-Frobenius theorem
as T is a stochastic matrix, i.e.,

∑

j Tij = 1 for all i. The

normalized positive eigenvector to λ0 is the equilibrium or
stationary distribution pst of the process,

pst =

(

q

p+ q
,

p

p+ q

)

.

We set pA =
q

p+q and pB =
p

p+q . With the auxiliary functions

ϕ,ψ : [0, 1] → R defined as ϕ(x) = −x log x and ψ(x) =

ϕ(x)+ ϕ(1− x), the analytical quantitiesHpq, hpq and apq for the
2-state first-order Markov process acquire a very simple form.

The Shannon entropy of the 2-state Markov process is

Hpq = −pA log pA − pB log pB

= ϕ(pA)+ ϕ(1− pA)

= ψ(pA).
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Due to the Markov property, the entropy rate is hpq = H(Xn+1 |

Xn) and evaluates to

hpq = −pA
[

(1− p) log(1− p)+ p log p
]

− pB
[

q log q

+(1− q) log(1− q)
]

= pAψ(p)+ pBψ(q).

The Markov property reduces the full expression for information

storage I(Xn+1;X
(k)
n ) to apq = I(Xn+1;Xn):

apq = −pA log pA − pB log pB

+ pA
[

(1− p) log(1− p)+ p log p
]

+ pB
[

q log q+ (1− q) log(1− q)
]

= ψ(pA)− pAψ(p)− pBψ(q).

The total entropy is conserved between active information
storage and the entropy rate:

Hpq = apq + hpq. (22)

To validate the proposed approach, these analytical results will
later be compared with numerical results of a hidden Markov
process classified as first-order Markovian by the PAIF method.

2.6. Higher-Order Markov Processes
To test the properties of the PAIF, two higher-order Markov
processes with known properties are synthesized.

The first process is a third-order Markov process denoted

MC1..M=3, with transition probabilities that depend on X
(M=3)
n .

Given L states, there are LM possibleM-histories preceding Xn+1,

such that P(Xn+1 | X
(M)
n ) in matrix form has shape (LM , L). The

specific transition probabilities are random numbers fulfilling
∑

j P(Xn+1 = sj | X
(M)
n ) = 1 for all M-histories X

(M)
n . Sample

paths are generated using the method described in section 2.4.
The second process will be termedMCM=3 and is constructed

in such a way that the Xn → Xn+1 transition only depends on
Xn−2. Like the first process, this process can also be classified as
third-orderMarkovian (M = 3), with the particular property that
the influence of Xn and Xn−1 vanishes.

2.7. Hidden Markov Processes
A more general class of discrete processes is represented by
probabilistic finite state machines (Crutchfield and Young, 1989),
which implement hidden Markov models (HMMs). Hidden
Markov models generate sequences of symbols defined over a
set of observable states that correspond to our measurements.
The observable symbols are emitted by a set of hidden states that
follow a Markov process, usually of first order. Each hidden state
emits the observable symbols according to its own probability
distribution defined over the observable set. It is important to
note that the sequence of emitted symbols does not necessarily
follow a Markov law.

2.7.1. Even Process
The even process is a non-Markov process with two hidden
states ({A,B}) and two observables ({0, 1}). The process scheme
is visualized in Figure 4A. The process can emit arbitrarily long
sequences of zeros by repeated self-transitions of the hidden state
A → A. With probability p = 0.5, the state A can switch to B and

hereby emit a 1, which is followed by another 1 with probability
p = 1. Thus, ones are always generated in pairs, i.e., in blocks of
even length. The procedure generates dependencies that in theory
reach into the infinite past and can therefore not be reduced to a
Markov process.

2.7.2. Golden Mean Process
Two different implementations of the Golden-mean process
are used. First, a 2-state first-order Markovian implementation
using two hidden states ({A,B}) and two observable states
({0, 1}) (Ara et al., 2016), and second, a fourth-order Markov
implementation using seven hidden ({A−G}) and two observable
states ({0, 1}) (Mahoney et al., 2016). The scheme of the 2-state
process (Figure 4B) is structurally similar to the even process,
but dynamically different. Ones are never emitted repeatedly, i.e.,
they are always preceded and followed by a zero, in contrast to
the even process. The 7-state golden mean process is a so-called
R, k-Markov process with Markov order R = 4 and cryptic order
k = 3, in our case (Mahoney et al., 2016).

2.8. Ising Model Data
The Ising model is a widely used discrete model from statistical
physics (Hohenberg and Halperin, 1977). The model describes
the ferromagnetic interaction of elementary spin variables, with
two possible values ±1, as a function of temperature and the
coupling coefficients between spins. The model can be realized
with different geometries and in many cases, shows a phase
transition at a critical temperature. We use a 2D square lattice
geometry (L = 50) and run the system for 106 time steps. Sample
paths are generated by Monte Carlo simulation using a standard
Gibbs sampling scheme (Bortz et al., 1975).

2.9. Simulated Ion Channel Data
The dynamics of a simple ion channel with one open and one
closed state is modeled as a motion of a particle in the double-
well potential V (x) = − a

2x
2 + b

4x
4, which shows two stable

local minima at x1,2 = ±
√

a
b
and one unstable local maximum at

x0 = 0 (Liebovitch and Czegledy, 1992; von Wegner et al., 2014).
The system is excited by thermal noise, as implemented by iid
Gaussian pseudo-random numbers ξn. The system is described
by von Wegner et al. (2014)

Xn+1 = Xn + (aXn − bX3
n)dt + ξn (23)

and integrated with an Euler scheme and dt = 10−3.

2.10. EEG Microstate Sequences
A resting state EEG data set from a 21 year old, healthy right-
handed female during wakeful rest was selected and analyzed.
The data set is part of a larger database for which we have
reported the detailed pre-processing pipeline before (vonWegner
et al., 2016, 2017). The 30 channel EEG raw data was sampled
at 5 kHz using the standard 10 − 10 electrode configuration,
band-pass filtered to the 1 − 30 Hz range using a zero-phase
Butterworth filter with a slope of 24 dB/octave, down-sampled
to 250 Hz and re-referenced to an average reference. Written
informed consent was obtained from the subject and the study

Frontiers in Physiology | www.frontiersin.org October 2018 | Volume 9 | Article 138245

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


von Wegner PAIF

was approved by the ethics committee of the Goethe University,
Frankfurt, Germany. EEG microstates were identified using the
first four principal components (PCA analysis) of the data set and
the symbolic microstate sequence was obtained by competitively
fitting the microstate maps back into the EEG data set as detailed
in (von Wegner et al., 2016, 2017).

3. RESULTS

3.1. Theoretical Results: Relations
Between Measures
Using the time index n + k as a reference, the partial

autoinformation coefficients πX(n, k) = I(Xn+k;Xn | X
(k−1)
n+k−1

)
can be related to the entropy rate hX(n + k − 1, k) = H(Xn+k |

X
(k)
n+k−1

) and to active information storage aX(n + k − 1, k) =

I(Xn+k;X
(k)
n+k−1

) as follows.
The entropy rate hX(n + k − 1, k) can be written as the

difference of two joint entropies of different lengths (Equation 9),

hX(n+ k− 1, k) = H(X
(k+1)
n+k

)−H(X
(k)
n+k−1

).
Next, active information storage can be expressed as the

difference of a joint entropy and the entropy rate:

aX(n+ k− 1, k) = I(Xn+k;X
(k)
n+k−1

)

= H(Xn+k)−H(Xn+k | X
(k)
n+k−1

)

= H(Xn+k)− hX(n+ k− 1, k).

In the stationary case, we have

H1 = ak + hk. (24)

Similar to the case presented for the 2-state Markov process, it

is observed that also in the general case, the entropy H(Xn+k) is
conserved, being the sum of active information storage and the
entropy rate. In words, the information about the future state
Xn+k is the sum of the actively stored information from time step
n up to time step n + k − 1, and the entropy rate between time
steps n+ k− 1 to n+ k.

Finally, the PAIF coefficient πX(n, k) can be written as the
difference of entropy rates for different history lengths:

πX(n, k) = I(Xn+k;Xn | X
(k−1)
n+k−1

)

= H(Xn+k | X
(k−1)
n+k−1

)−H(Xn+k | X
(k)
n+k−1

)

= hX(n+ k− 1, k− 1)− hX(n+ k− 1, k).

Alternatively, πX(n, k) can also be decomposed into a difference
of AIS terms for two different history lengths:

πX(n, k) = I(Xn+k;Xn | X
(k−1)
n+k−1

)

= H(Xn+k | X
(k−1)
n+k−1

)−H(Xn+k | X
(k−1)
n+k−1

,Xn)

= H(Xn+k | X
(k−1)
n+k−1

)−H(Xn+k | X
(k)
n+k−1

)

= H(Xn+k)−H(Xn+k | X
(k)
n+k−1

)−
[

H(Xn+k)

−H(Xn+k | X
(k−1)
n+k−1

)
]

= I(Xn+k;X
(k)
n+k−1

)− I(Xn+k;X
(k−1)
n+k−1

)

= aX(n+ k− 1, k)− aX(n+ k− 1, k− 1).

Going from line 3 to line 4, we simply added and subtracted
H(Xn+k). In words, the PAIF at time lag k is the difference
between two AIF terms with history lengths k and k − 1,
respectively.

The results can be summarized in a more compact form using
the stationary expressions:

πk = ak − ak−1 (25)

= hk−1 − hk. (26)

For stationary Markov processes, the joint Shannon entropy
Hk exists and the k-order entropy rate estimates hk converge
in the limit of k → ∞ (Cover and Thomas, 2006). Using
Equation 24, it follows that the AIS coefficients ak also converge.
Thus, limk→∞ ak − ak−1 = 0 and limk→∞ hk−1 − hk = 0. Using
Equation 25, we deduce that the PACF coefficients πk also vanish
in the large k limit:

lim
k→∞

πk = 0.

3.1.1. Markovianity
Using the Markov property defined in Equation 21, it is
straightforward to prove that for a stationary Markov process of
orderM, the PAIF coefficients vanish (πX(n, k) = 0) for k > M:

πX(n, k) = I(Xn+k;Xn | X
(k−1)
n+k−1

)

= H(Xn+k | X
(k−1)
n+k−1

)−H(Xn+k | X
(k)
n+k−1

)

= hk−1 − hk

= hM − hM

= 0.

Let the first- and second-order finite differences of an arbitrary
discrete function fk of integer parameter k be defined as δk fk =

fk − fk−1, and δ
2
k
fk = fk+1 − 2fk + fk−1, then we get

πk = hk−1 − hk

= −δk hk

= −δ2k Hk.

Thus, the Markovianity test proposed in (van der Heyden et al.,
1998) addresses a sequence of entropy rates hk, for different
history lengths k, which is the negative first-order difference of
the sequence of Shannon entropies Hk. PAIF analysis uses the
second-order difference of the sequence of Shannon entropies
πk = −δ2

k
Hk. The advantage of the PAIF analysis is the

visual exploration of the coefficients, that are equal to zero for
k > M, exactly like in visual PACF diagnostics for metric time
series.

Frontiers in Physiology | www.frontiersin.org October 2018 | Volume 9 | Article 138246

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


von Wegner PAIF

3.2. Higher-Order Markov Processes
The results for the two third-order Markov processes are shown
in Figures 3A–D. The AIF and PAIF for the third-order Markov
processesMC1...M=3 is shown in Figures 3A,B, respectively. The
shape of the AIF does not reveal the third-order dependencies
by visual inspection. The PAIF, however, clearly reflects the
construction of the process, showing significant PAIF coefficients
only up to time lag k = 3.

For the second process, MCM=3, the entropy dynamics can
already be estimated by visual inspection of the AIF, which shows
a clear periodicity (Figure 3C). Significant PAIF coefficients only
occur at time lags that are multiples of the Markov order, M =

3. The PAIF (Figure 3D) however, demonstrates the Markov
structure of the process in a single significant coefficient π3.

Kullback’s Markovianity tests of order 0-2 rejected the
Markovian null hypotheses for both processes, as expected
for Markov processes of order three, by construction. The
conditional entropy test correctly identified the Markov order
M = 3 in both cases.

Confidence intervals (α = 0.05) constructed from
uncorrelated surrogate time series are shown in blue. Due to their
small magnitude, they visually appear as lines.

3.3. Hidden Markov Models
Figure 4 shows the results obtained from HMM data. First, the
non-Markovian even process is analyzed. To the right of the
HMM scheme, Figure 4A shows the PAIF of a single sample path
of length n = 106. The inset shows that for all tested time lags the
PAIF coefficients lie above the iid confidence interval (blue lines).
Thus, PAIF analysis suggests that we are observing a non-Markov
process with extended memory effects.

Figure 4B shows the PAIF of the 2-state golden mean process.
The PAIF has two significant coefficients π0,π1 and decays
to zero for all other time lags. The PAIF thus classifies the
process correctly as a first-order Markov process, despite the
hidden Markov implementation. Due to the Markov property,
the process can also be represented by a transition matrix and

FIGURE 3 | AIF/PAIF analysis of two third-order Markov process samples. (A) The AIF of the MC1...M=3 process slowly decays toward zero and does not reveal the

Markov order of the process. (B) The PAIF of MC1...M=3 shows a cutoff after k = 3 coefficients, in accordance with the nominal Markov order. (C) The AIF of the

MCM=3 process has period 3 and thus hints at the memory structure of the process. (D) The PAIF of the MCM=3 process clearly identifies the Markov order of the

process by a distinct peak at the time lag corresponding to the correct model order M = k = 3.
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FIGURE 4 | Finite state machines. (A) Non-Markovian even process, Markov order M = ∞. (B) 2-state implementation of the golden-mean process, Markov order

M = 1. (C) 7-state implementation of the golden-mean process, Markov order M = 4. The Markov orders are correctly identified by the PAIF approach.

an equilibrium distribution. The associated transition matrix T is

T =

(

1
2

1
2

1 0

)

with stationary distribution pst = [ 23 ,
1
3 ]. Using these quantities,

the theoretical results from Section 2.5 can be applied. Using
finite histories (k = 2 . . . 10), entropy conservation (Equation 24)
is fulfilled with a maximum error of 7.25× 10−4, where the error
was calculated as

H1−hk−ak
H1

. Based on this analysis, the Shannon
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FIGURE 5 | AIF/PAIF analysis of 2D-Ising model data: Results for single lattice site time series (n = 106 samples) at two temperatures are shown, close to the critical

temperature Tc ≈ 2.27 (black squares), and at a higher temperature far from the critical point, T = 5.00 (black triangles). (A) The AIF is shown in log-log coordinates to

better visualize the qualitative difference between the power-law decay (linear in log-log coordinates) at the critical temperature (T = Tc), and the exponential decay at

higher temperatures (T = 3.00). (B) The PAIF for both temperatures illustrates a dominant coefficient π1. However, the inset shows significant positive PAIF

coefficients and thus, non-Markovian behavior close at the critical temperature (squares).

entropy of a single symbol is H1 = 0.919 bit, and consists of an
entropy rate of hX = 0.669 bit and active information storage of
aX = 0.253 bit.

The 7-state HMM of the golden mean process is analyzed
in Figure 4C. The fourth-order Markov structure of the
implementation is clearly reflected by the PAIF that shows four
positive coefficients. The PAIF captures the correct Markov order
although the model contains seven hidden states and emits two
observable symbols.

Kullback’s Markovianity tests of order 0–2 correctly classified
the 2-state golden mean process as first-order Markovian. The p-
values for orders 0-2 were p0 = 0.000, p1 = 0.697, and p = 0.990,
respectively. For the non-Markovian even process and the fourth-
order Markovian 7-state golden mean process, low-order (0-2)
Markovianity was correctly rejected. The conditional entropy test
correctly identified the Markov properties of all three processes,
i.e., found first- and fourth-order properties for the 2-state and
7-state golden mean processes, respectively, and an orderM > 5
for the even process.

3.4. The Ising Model
We simulated an Ising model on a 2D lattice (50 × 50 elements)
at two temperatures, (i) around the critical temperature Tc =

2
1+

√
2
≈ 2.27, and (ii) at a higher temperature T = 5.00. From

statistical physics, it is known that the system’s autocorrelation
function shows a slow, power-law decay at the critical point, and
an exponential decay far from the critical point where dynamics
are dominated by thermal fluctuations. AIF/PAIF analysis was
performed on time series of 106 samples of a randomly selected
lattice site. The results are shown in Figure 5.

In contrast to the other figures in this manuscript, the
AIF in Figure 5A is shown in log-log coordinates, to better
visualize the difference between exponential and power-law
behavior. The AIF at the critical point Tc shows an almost

linear behavior in log-log coordinates (black squares), indicating
very slow relaxation dynamics, as expected. For the higher
temperature, far from the critical point (T = 5.0, black triangles),
however, we observe a quickly decaying autoinformation trace,
in accordance with results from classical time series analysis.
Figure 5B shows the PAIF in linear coordinates, as in all other
figures. It is observed that in both cases, T = Tc,T = 5.0,
the PAIF profiles seem to be similar. We find two positive PAIF
coefficients π0,π1, and significantly smaller PAIF coefficients
for larger time lags. The inset, however, shows that at the
critical temperature (squares), the PAIF coefficients lie above
the confidence interval, demonstrating non-Markovian, long-
range memory effects where the system undergoes a phase
transition.

3.5. Simulated Ion-Channel Data
Simplified ion channel dynamics were generated by integration
of Equation 23, representing the motion of a particle in a bistable
potential, for instance an ion channel with two metastable
states corresponding to the open (O) and close (C) state,
respectively. To obtain a symbolic time series of O- and C-
states, the continuous variable Xn is thresholded at a value
of zero. Thereby, all positive values Xn > 0 are assigned
to the open state (O), and all negative values (Xn < 0)
are mapped to the close state. The AIF/PAIF analysis of the
thresholded signal simulating electrophysiological ion channel
data is shown in Figure 6. We observe a slowly decaying AIF
(Figure 6A) without any information about the Markov order
of the signal. The PAIF profile shows large coefficients π0 and
π1, followed by vanishing PAIF coefficients for k > 1. Though
Markovian dynamics are expected for the continuous dynamics,
it is not obvious that the Markov property could be detected after
thresholding.
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FIGURE 6 | Simulated ion channel data. (A) A continuous stochastic process Xn is obtained from a simulation of a double-well potential. A bistable behavior

resembling ion channel recordings is observed. (B) Thresholding the continuous variable Xn into an open state (O, Xn > 0) and a close state (C, Xn < 0) yields a

symbolic, binary process. (C) The AIF of the binary process shows a slow decay without revealing the Markov order of the process. (D) The PAIF suggests first-order

Markov dynamics by vanishing PAIF coefficients πk for k > 1.

FIGURE 7 | A 4-state resting state EEG microstate sequence. (A) The AIF shows a monotonous decay for smaller time lags k < 10. The inset shows the AIF for larger

time lags (kmax = 50) and reveals periodicities that could not be predicted at shorter time scales. (B) The PAIF indicates a mainly first-order Markovian structure but

does not allow the computation of time lags as large as the AIF due to the exponentially growing size of the associated distributions.
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3.6. EEG Microstate Sequences
The EEG microstate sequence shows a more complex behavior
than the other presented examples. Figure 7A shows the AIF
of the 4-state sequence, which seems to decay monotonously.
The inset shows further information for longer time lags up to
k = 40. We observe several periodic peaks at these time lags, an
effect that we have discussed in detail in a recent publication (von
Wegner et al., 2017). The PAIF in Figure 7B shows a dominant
coefficient π1. This finding suggests a mainly first-order Markov
mechanism, and does not hint at the periodic behavior found
in the AIF. Moreover, we observe increasing PAIF coefficients
for larger time lags (k > 8). This effect is caused by finite joint
entropy estimates, which suffer from an insufficient sample size,
given the history length k, and the size of the state space, here
L = 4.

4. DISCUSSION

In the present article, an information-theoretical approach for
the early diagnostic steps in symbolic time series analysis is
established. In close analogy to classical time series analysis
of continuous-valued random variables, a combined approach
using two different measures that estimate the dependency
between two time points is used. While autoinformation
measures the statistical dependence between Xn and Xn+k

directly, partial autoinformation removes the influence of the
segment between both time points. The names AIF and
PAIF were chosen to represent the close connection with
the ACF/PACF approach. We have recently used the AIF
to characterize stochastic processes and experimental EEG
data (von Wegner et al., 2017, 2018), and the underlying
functional can be found under the name of time-lagged mutual
information in the literature. Partial autoinformation, however,
is not found in the literature, to the best of the author’s
knowledge. Close connections to the entropy rate and the
active information storage of the process, two well-studied
information-theoretical quantities (Cover and Thomas, 2006;
Lizier et al., 2012), are found and detailed. In particular,
the newly introduced PAIF can be expressed either as the
difference of two entropy rates with history lengths k − 1 and
k, respectively, or as the difference of two active information
storage terms with different history lengths. These relationships
also assure that the PAIF coefficients approach zero in the large k
limit.

The ability of the PAIF to identify the order of a stationary
Markov process is shown analytically by re-writing the PAIF in
terms of conditional entropies. A short proof shows that the
PAIF coefficients of a stationary Markov process of order M
are zero (πk = 0) for k > M. The practical performance of
the method is validated numerically, using test data with known
Markov orders, and by comparison with the results of two other
tests (Kullback et al., 1962; van der Heyden et al., 1998). All test
examples used in this article are correctly classified by the PAIF
approach, in the same way the PACF performs for continuous
autoregressive processes. A close relationship between the PAIF

and the conditional entropy test (van der Heyden et al., 1998) is
established by re-writing both in terms of joint entropies Hk. We
found that while the conditional entropy test addresses the first-
order discrete difference ofHk with respect to k, the PAIF actually
tests the corresponding second-order discrete derivative. This
completes the goal of establishing an information-theoretical tool
analogous to classical PACF analysis.

Our experimental data examples also reveal some important
limitations of the approach. The PAIF coefficients for the 4-state
EEG microstate sequence (n = 153, 225 samples) increase for
time lags above approximately k > 8. Comparison with Markov
surrogate samples shows that this increase is due to the limited
sample size, and is not a feature of the EEG data set (data not
shown). The effect is easily understood by a simple numerical
example. If for the same data set, we wanted to compute the PAIF
coefficients for the same time lags as used in the AIF (Figure 7),
joint probability distributions with Lk bins will occur. Thus, to
extend the PAIF analysis of a L = 4-state process to k = 50,
distributions with 450 > 1030 elements have to be estimated,
clearly exceeding the length of the data sample numerous times.
The example also shows that this is an intrinsic limitation of
the approach, as it always occurs for information-theoretical
quantities involving joint entropies, and is not specific to the
PAIF introduced here.

Finally, the present article exclusively deals with discrete
stochastic processes. Future investigations should include the
corresponding quantities for continuous random variables, and
Gaussian processes in particular. For example, it has been shown
in the past that for Gaussian random variables, Granger causality
is equivalent to transfer entropy (Barnett et al., 2009). By analogy,
it can be conjectured that the PAIF and PACF approaches are
likely to be related, if not equivalent, for Gaussian processes.

It will be interesting to see further applications of the
presented approach to theoretical and experimental data and
to investigate further theoretical connections to other quantities
already in use.
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Time-of-day modulations affect both performance on a wide range of cognitive tasks

and electrical activity of the brain, as recorded by electroencephalography (EEG). The

aim of this work was to identify fluctuations of fractal properties of EEG time series due

to circadian rhythms. In twenty-one healthy volunteers (all males, age between 20 and

30 years, chronotype: neutral type) high density EEG recordings at rest in open and

closed eyes conditions were acquired in 4 times of the day (8.00 a.m., 11.30 a.m., 2.30

p.m., 7.00 p.m.). A vigilance task (Psychomotor Vigilance Test, PVT) was also performed.

Detrended fluctuation Analysis (DFA) of envelope of alpha, beta and theta rhythms was

performed, as well as Highuchi fractal dimension (HFD) of the whole band EEG. Our

results evidenced circadian fluctuations of fractal features of EEG at rest in both eyes

closed and eyes open conditions. Lower values of DFA exponent were found in the time

T1 in closed eyes condition, likely effect of the sleep inertia. An alpha DFA exponent

reduction was found also in central sensory-motor areas at time T3, the day time in which

the sleepiness can be present. In eyes open condition, HFD lowered during the day. In

eyes closed condition, an HFD increase was observed in central and frontal regions at

time T2, the time in which alertness reaches its maximum and homeostatic sleep pressure

is low. Complexity and the persistence of temporal correlations of brain rhythms change

during daytime, parallel to changes in alertness and performance.

Keywords: detrended fluctuation analyses, higuchi fractal dimension, circadian rhythm, amsterdam resting-state

questionnaire (ARSQ), electroencephalography

INTRODUCTION

According to the traditional model of control, physiological systems self-regulate their activity to
preserve steadiness by reducing fluctuations around a homeostatic equilibrium point. Differently
from this view, a wide bulk of evidence has recently been provided that several physiological
time signals exhibit intrinsic fractal fluctuations (Goldberger et al., 2002; Stam, 2005). Indeed,
heartbeat, respiration, gait rhythm, dynamics of neurotransmitter release, electromyography, brain
activity reveal similar temporal patterns over multiple time scales (Hausdorff et al., 2001; Meyer
and Stiedl, 2003; Fadel et al., 2004; Leao et al., 2005; Stam, 2005; Swie et al., 2005; He et al.,
2007, 2010; Milstein et al., 2009; Scafetta et al., 2009; Zappasodi et al., 2015). An object exhibits
fractal properties if similar details can be observed on different scales (Mandelbrot, 1983; Voss,
1988; Feder, 2013). These properties come up from nonlinear feedback interactions between
mechanisms operating on multiple scales, sign of high integrity and adaptability of the whole
system (Di Ieva et al., 2014). Also, a time process X(t) can display fractal properties if it possesses
a scale-invariant structure over time and statistical similarity emerges at different time scales
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of its dynamics. For this process a self-affinity behavior can
be retrieved (Barabasi and Albert, 1999), as X(ct) = cH X(t).
The estimation of the scaling exponent H, the Hurst exponent
(Feder, 2013), has been found to be particularly attractive
for describing the brain dynamics. Indeed, the amplitude
modulation of oscillations of neuronal pools dynamics, revealed
by electrophysiological techniques as electroencephalography
(EEG) or magnetoencephalography (MEG), reveal long-term
spatiotemporal structure in a temporal range from few seconds
to tenth of minutes in resting state conditions at both eyes
closed and eyes open (Linkenkaer-Hansen et al., 2001). The de-
trended fluctuation analysis (DFA) is a widely-used method for
the detection of long-range correlations in time series. Indeed,
amplitude fluctuations of alpha, beta, and theta oscillations obey
a power-law scaling behavior.

The fractal behavior of a time series has been linked to its
“complexity,” that can be seen as the amount of information
required to describe the time series (Mandelbrot, 1985). The
concept of “complexity” refers to a highly structured temporal
structure observed in the brain signal in an intermediate situation
between pure randomness, like in white noise, and the absence
of variability (constancy or pure periodicity), both conditions
evidenced as non-physiological states (Di Ieva et al., 2014;
Zappasodi et al., 2014; Smits et al., 2016). Since the existence
of long term correlation is no guarantee of complexity, the
complexity of a time series can be directly evaluated by its
fractal dimension (Mandelbrot, 1985). Indeed, this measure
quantifies the complexity and the self-similarity of a time series.
The algorithm proposed by Higuchi (Higuchi fractal dimension,
HFD, Higuchi, 1988) has been successfully directly applied to
EEG signals to evidence modulation of complexity in different
physiological conditions, as well as alterations in pathologies (for
a review see Kesić and Spasić, 2016).

Fractal dimension and Hurst exponent quantify different
properties: while the first is a local property, measuring the
“roughness” of a signal (i.e., a “mild” or “wild” randomness),
the latter quantifies a global characteristic, i.e., the long-memory
dependence (long-range correlation) of the time series. For self-
affine processes, where fractal properties can be retrieved, the
local properties are reflected in the global one. Therefore, fractal
dimension and Hurst exponent are linked.

Although the fractal properties have been recently
described in brain time series both in health and disease,
the neurophysiological mechanisms of fractal regulation are
unknown. Recently the circadian pacemaker (suprachiasmatic
nucleus) has been described to play a crucial role in generating
fractal patterns in behavioral activity and heart rate at long
time scales, and modulates their fluctuations at short time
scales (Pittman-Polletta et al., 2013). Indeed, in humans,
temporal fluctuations in physiological parameters and behavioral
performance, on a wide range of cognitive functions, vary
over the 24-h light-dark cycle. This cycle is driven by two
interacting processes: the homeostatic sleep pressure (process
S), which increases with time spent awake, and the circadian
pacemaker (process C), a nearly 24-h endogenous process
that drives at specific times of the day wakefulness and sleep
(Borbély, 1982; Cajochen and Dijk, 2003; Rogers et al., 2003;

Dijk and von Schantz, 2005; Cajochen et al., 2010). The circadian
and homeostatic processes interact to provide stable levels of
vigilance/alertness and cognitive performance during daytime
(16-h) of normal wakefulness, when the circadian timing system
fights the wake-dependent (or homeostatic) arousal decline.
Indeed, alertness reaches its maxima during the early morning,
when homeostatic sleep pressure is low, whereas decreases at
its lowest level during the evening hours, when homeostatic
sleep pressure is high (Van Dongen et al., 2003), even if exist
a mid-afternoon window of sleep propensity (from ∼14:00 to
∼16:00) and an alertness window in the early evening hours
from ∼19:00 to ∼22:00 (Lavie, 1989; Johnson, 1990). However,
individual chronotype, namely “diurnal preference” in the timing
of daily activities (Horne and Ostberg, 1976) under the control
of the circadian clock (Roenneberg et al., 2007), influences peaks
and troughs in alertness and performance. Hence, some people
are more alert and perform better in the morning, whereas others
in the evening, an effect referred to as the “synchrony effect”
(May and Hasher, 1998) depending on individual chronotype.

In awake adults, data collected by sleep deprivation protocol
and forced desynchrony protocol (i.e., sleep–wake cycle induced
to uncouple from endogenous circadian rhythm) showed that
both factors (process C and process S) contribute to a frequency-
specific variation of EEG activity (Finelli et al., 2000; Cajochen
and Dijk, 2003; Marzano et al., 2010). Moreover, resting waking
EEG recordings are considered as an objective measure of
alertness levels (Strijkstra et al., 2003). Specifically, an increase
of EEG power density in the theta (4–8Hz) and alpha (8–
12Hz) frequency range across prolonged periods of wakefulness
has been associated with a decline of alertness and sleepiness
(Drapeau and Carrier, 2004). In a recent EEG study, Meisel et al.
(2017) reported a decline in long term correlation in alpha band
as sleep deprivation progresses. Moreover, HFD has been applied
to detect behavioral microsleep (Peiris et al., 2006) and changes
from awake to drowsy states (Bojić et al., 2010; Pavithra et al.,
2014).

The aim of this work was to identify fluctuations of fractal
properties of EEG time series due to circadian rhythms. To this
aim, high density EEGwas collected in 4 different times of the day
in both closed and open eyes conditions. Given the exploratory
aspect of this study, we did not aim to differentiate the sleep
pressure from endogenous factors, as usually done by using sleep
deprivation or forced de-synchrony protocols but investigate if
modulation of fractal properties over different day times can be
retrieved in EEG at rest in physiological conditions.

METHODS

Subjects
Twenty-one healthy volunteers (all males, age 23.6 ± 1.7)
participated to the study. To avoid any kind of sleep debt
and alterations of the sleep-wake cycle all selected participants
reported no history of sleep, medical or psychiatric disorders and
a good sleep quality (sleep schedule of 7-8 h/night), as assessed
by self-rating questionnaires (Vignatelli et al., 2003; Violani
et al., 2004). Moreover, in all participants, chronotype has been
investigated by the Morningness Eveningness Questionnaire

Frontiers in Physiology | www.frontiersin.org November 2018 | Volume 9 | Article 156754

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Croce et al. Ciracadian Fractal EEG

(MEQ, Horne and Ostberg, 1976), that assesses chronotype based
on diurnal preferences (e.g., preferred time of day to perform
physical and mental work; Horne and Ostberg, 1976). With this
questionnaire, chronotype is categorized as a score (range:16–
86), with high numbers corresponding to morning types (59
and above), low numbers corresponding to evening types (41
and below), and numbers between 42 and 58 corresponding to
intermediate types. All selected participants had an intermediate
chronotype (mean and standard deviation 53 ± 4). Exclusion
criteria included shift workers, athletes and participants that had
traveled crossing time zones in the 3 months before the study.
The protocol was approved by the local Ethical Committee. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Experimental Procedure
For one week before the experiment, participants were asked
to maintain a regular sleep-wake schedule. The night before
the experiment, participants were asked to go to bed at their
usual bedtime and to wake up at ∼ 7:00 a.m. The quality of
the sleep was checked by a wrist-worn actigraph (wActiSleep+,
ActiGraph, Pensacola, FL, ActiGraph). A Sleep Efficiency >85%
was required, to avoid any kind of sleep debt. These data were
analyzed with Actilife (v.6.7.1, Actigraph1, Pensacola, FL), using a
sleep/wake detection validated algorithm (Cole et al., 1992; Sadeh
et al., 1994). Bed and rise times from the sleep diaries helped
to frame the time in bed during which actigraphy data were
analyzed.

The day of the experiment high density EEG recordings were
acquired in 4 times of the day (T1: 8.00 a.m., T2: 11.30 a.m., T3:
2.30 p.m., T4: 7.00 p.m.) in 2 conditions: 10min of eyes open and
10min of eyes closed. The 2 conditions were randomized across
subjects and times. The four times were chosen on the basis of
well-known peaks of levels of vigilance/alertness and cognitive
performance during daytime. Indeed, T0 correspond to the time
were sleep inertia may be present (Jewett et al., 1999), in T2
alertness reaches its maxima and homeostatic sleep pressure is
low, T3 is a mid-afternoon window of sleep propensity and in T4
homeostatic sleep pressure is high, but alertness is high (Lavie,
1989; Jewett et al., 1999; Van Dongen et al., 2003).

During the recordings, subjects were sitting on a comfortable
armchair in a low light room and, in the eyes open condition,
fixed a cross on a screen. Soon after both closed and open eyes
recordings, participants were asked to complete the Amsterdam
Resting-State Questionnaire (ARSQ). The questionnaire was
presented on a screen and consisted of 55 statements about
the feelings and thoughts experienced during the 10min rest.
For each statement, a 5-points rate from completely disagree
to completely agree was used. Questions were grouped into 10
factors: Discontinuity of Mind, Theory of Mind, Self, Planning,
Sleepiness, Comfort, Somatic Awareness, Health Concern, Visual
Thought, and Verbal Thought (Diaz et al., 2013). Finally, a
10min vigilance task (Psychomotor Vigilance Test, PVT; (Dinges
and Powell, 1985) was done. Subjects were asked to fix a

1ActiGraph. Available online at: https://www.actigraphcorp.com/ (Accessed July

24, 2018).

monitor with a red rectangular box and press a button when
a counter appeared to the screen. The response stopped the
counter and was required to be delivered as soon as possible.
The period between the end of the counter and the begin of
the following stimulus was randomly distributed between 2 and
10 s. To quantify the performance, the following parameters were
extracted for each time (Basner and Dinges, 2011): number of
lapses (i.e., number of responses>500ms), number of false starts
(i.e., response shorter than 100ms), response speed (i.e., mean of
the inverse of reaction times).

The EEG activity was recorded by a 128-channel system
(Electrical Geodesic). The impedances were kept below 100 k�.
EEG data were sampled at 250Hz and collected for off line
processing.

Data Analysis
Data were visually inspected to exclude saturated epochs of EEG
signals from further analysis. A semi-automatic procedure, based
on Independent Component Analysis (Barbati et al., 2004), was
applied to identify and remove ocular, cardiac, and muscular
artifacts. Signals were down-sampled to 125Hz and re-referenced
to the common average. Noisy channels were excluded and
replaced by spline interpolation.

Band Power
The Power Spectral Density (PSD) was estimated for each EEG
channel bymeans of theWelch procedure (Hamming windowing
of 8 s, resulting in a frequency resolution of 0.125Hz, 50%
overlap). For each EEG channel and both conditions, band
powers were obtained by the sum of the power spectrum in each
frequency band normalized by the number of frequency bins. The
considered frequency bands were: alpha (from 8 to 13Hz), beta
(from 15 to 25Hz), and theta (from 4 to 7.5Hz).

Detrended Fluctuation Analysis
The DFA was applied to analyze the scale-free decay of temporal
correlations in the amplitude envelope of brain rhythms. Peng
et al. (1994) introduced this method to quantify long-range
temporal correlation with less strict assumptions about the signal

stationarity. The method quantifies the detrended fluctuations
F(n) of the envelope at different time scales n. Firstly, each
EEG signal was band-pass filtered in theta (4–7.5Hz), alpha
(8–13Hz), or beta (15–25Hz) band (Figures 1A,B). A Finite
Impulse Response filter set to 2 cycles of the lowest frequency was
used (filter order: 62 for theta, 31 for alpha, 16 for beta band).
The envelope of the band-passed signals was computed by the
modulus of its analytic signal, obtained by Hilbert transform. The
cumulative sum y of the envelope x was then calculated:

y
(

k
)

=

k
∑

i=1

|x (i)− < x >|

Where, <x> denotes the mean of the envelope x. By applying
scaling analysis to y(k) no a priori assumptions about the signal
stationarity is required (Hardstone et al., 2012).

The cumulative sum was then partitioned into Ns windows of
length s (j = 1, 2, ... Ns). For each window, the local trend was
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FIGURE 1 | (A) Example of whole band EEG signal of one occipital channel in eyes closed condition. (B) Example of DFA calculation. Left: signal shown in (A) filtered

in alpha band (black) and envelope obtained by modulus of analytic signal (red). Right: plot on logarithmic axes of the mean fluctuation per windows size, obtained

from cumulative sum of alpha envelope, against the window size (expressed in seconds). The DFA exponent is the slope of the best-fit line. (C) Example of HFD

calculation. Left: example sequence determination on the portion of EEG signal in the dotted box in A for the length calculation of xm
k
, with k = 5. The values are

calculated as follows:
∣

∣x (m+ i k) − x(m+ (i − 1) k)
∣

∣, for i = 1,2,3,... 18. The length of the curve L(k) is evaluated as average over m of these values. Right: plot of

log(L(k)) against log(1/k), for k = 1,.. kmax (kmax = 8). The curve is said to have fractal dimension β if L(k) ∼ k−β .

calculated by a least-square line fitting procedure (Kantelhardt
et al., 2002). If xj,s(i) is the ordinate of the fitting line of the j-th
segment of length s at time bin i (i = 1,2,...s), the fluctuation of
the j-th segment of length s, i.e., the root-mean-square deviation
from the trend, was calculated as:

RMSsj =
1

2

s
∑

i=1

{

x
[(

j− 1
)

s+ i
]

− xj,s(i)
}2

To obtain the fluctuation function, for each scale s the average
of the root mean square deviation from the trend was obtained

(Kantelhardt et al., 2002):

F (s) =

√

√

√

√

1

Ns

S
∑

j=1

RMSsj

The scaling behavior of the fluctuation function can be obtained
by the log-log plot of F(s) over s (Figure 1B). If a long-range
power-law correlation exists, the following relationship holds:

F(s) ∼ sH

and the plot is a line, with slope equal to H, the DFA exponent or
Hurst exponent (Feder, 2013).
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The inclusion of very short windows in the fitting range of the
fluctuation function introduces correlation between neighboring
samples of the signal. For this reason, we applied the procedure
presented in Hardstone et al. (2012) to estimate the effect of
narrow-band filtering in DFA values for theta, alpha and beta
bands. Briefly, for each band 1000 realizations of white noise were
generated and band-pass filtered. On each signal, the amplitude
envelope was extracted, DFA performed and the lowest fitting
time window estimated from the log-log plot of scale against
fluctuation function. The investigated scale ranges from 0.1 s to
100 s. Since for a white-noise signal a DFA exponent of 0.5 is
expected, the lowest fitting time window was chosen as the value
of the scale after that the trend line of the fluctuation function has
a slope of 0.5. Based on obtained results, we found a lowest fitting
time window of 2 s for alpha band, of about 1.4 s for beta band
and of 4 s for theta band. Therefore, we estimated DFA exponent
with a scale in a range of 2 s to 1min for alpha and beta band and
of 4 s to 1min for theta band.

Higuchi Fractal Dimension
For both conditions and in each time, HFD values of each EEG
channel were computed for the whole band signal (i.e., signal
filtered between 1 and 40Hz). As a global measure of HFD, all
HFD values obtained for the single channels were averaged.

Fractal dimension is considered as a measure of complexity
of a curve. For time series representing this curve, HFD ranges
from 1 for deterministic constant functions to 2 for white noise.
The algorithm proposed by Higuchi was used (Higuchi, 1988;
Accardo et al., 1997). Briefly, the algorithm directly estimates
the mean length of the curve L(k) through a measure unit of a
segment of k samples. From any given time series of N samples:
x(1), x(2), ... x(N), k new time series with initial time sample m
and time step k are derived as:

xmk : x (m) , x
(

m+ k
)

, x
(

m+ 2k
)

, . . . x

(

m+ int

(

N −m

k

)

k

)

The length of each curve xm
k
is calculated as follows (Figure 1C):

Lm
(

k
)

=
1

k







N − 1

int
(

N−m
k

)

k







int
(

N−m
k

)

∑

i=1

∣

∣x
(

m+ i k
)

− x(m+ (i− 1) k)
∣

∣













For each k, the length of the curve L
(

k
)

is evaluated as:

L
(

k
)

=
1

k

k
∑

m=1

Lm(k)

The calculation of the curve length L
(

k
)

is repeated for k from 1
to kmax. The curve is said to have fractal dimension β if:

L(k) ∼ k−β

In this case the plot of log(L(k)) against log(k) should fall on a
straight line with slope equal to –β , so HFD can be obtained by a
least-squares linear best-fitting procedure (Figure 1C).

Since HFD is highly dependent on the value of Kmax,
this parameter has a crucial role in HFD estimation. In our

knowledge, the studies addressing this issue tested different
values directly on their data (for a review see the Appendix A
in Kesić and Spasić, 2016). For this reason, according to previous
studies (Zappasodi et al., 2014, 2015), a value of kmax = 8 was
applied to the whole-band EEG with a sampling frequency of
125Hz.

Statistical Analysis
The aim of the statistical analysis was to test if differences
across times were present in the non-linear fractality measures
depending on the condition (eyes open or closed). Firstly,
the topographies of both Hurst exponent and HFD were
obtained separately for each band in all the 4 times and the 2
conditions. For each subject, each time and each condition, in
the topographical maps the channels of maximum amplitude
have been chosen and the channels around the maxima with
values exceeding the 90% of maximum have been individuated.
Clusters of electrodes have been obtained by conjunctions of
these groups of electrodes. The mean Hurst exponent and
HFD values over these channels were considered for further
analysis. Repeated measure Analyses of Variance (ANOVAs)
were separately performed for Hurst exponent and HFD. A 4 X 2
X N design was applied, with Time (T1, T2, T3, T4), Conditions
(eyes open, eyes closed) and Region (N maxima individuated on
the topographies) as within-subject factors. Greenhouse-Geisser
correction has been applied if the sphericity assumption was not
valid. Post-hoc paired samples t-tests were carried out to assess
significant differences among times. Post-hoc comparisons were
FDR corrected.

DFA exponent values could depend on band power. Indeed,
estimates of DFA exponent can be biased toward lower values
when amplitude of the rhythm reduces, and signal-to-noise ratio
increases and vice-versa toward higher values when amplitude
increases. Therefore, Spearman’s correlations between DFA
exponent and corresponding band powers were calculated to
evidence positive correlations. Moreover, the same ANOVA
design of DFA and HFD was applied on band powers, by
considering regions with the same channels used for the fractal
measures.

Finally, to verify if band power of rest EEG or non-linear
measures (DFA exponents or HFD) predict ARSQ factors,
multiple regression analysis was separately performed on each
ARSQ factor, considered as dependent variables of the model.
Values of each time and both conditions were considered together
(4 times X 2 conditions X 20 subjects, resulting in 160 variables).
Independent variables were all the band powers, DFA exponents
and HFD values in the considered regions. Times and conditions
were also included in the model as categorical variables.

RESULTS

The mean topographies of DFA exponent of alpha and beta
bands and of HFD were similar across the four times, with the
maximal values in specific regions, depending on condition. In
alpha band, maximal values were located in occipito-parietal
and frontal regions, in particular in eyes closed condition, while
in eyes open condition maxima of DFA exponents were also
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observed in bilateral sensorimotor regions (C3 and C4 of the 10–
20 international system, Figure 2). In beta band, the posterior
maximum of DFA exponents in eyes closed and central areas
in eyes open condition were found approximately on the same
electrodes of alpha band. The mean topographies of HFD values
showed maxima in central sensorimotor regions and minima in
parieto-occipital and frontal regions. A maximum of HFD was
observed in the temporo-parietal electrodes of left hemisphere
(T5 and TP9) in eyes open condition. Channels around the
maxima of the posterior, frontal, and bilateral central areas were
chosen to average DFA exponents in alpha and beta bands
(Figure 2) for the ANOVA design. The same channels were
chosen for HFD values, with in additions channels around
the left temporo-parietal maximum. In theta band, no specific
topographies of DFA exponents over the 4 times were observed.
Therefore, to assess whether DFA exponents changed over times,
a global DFA theta value was calculated for each subject and both
condition as the mean over all EEG channels.

Detrended Fluctuation Analysis
Fifth, ninety-fifth percentile of Hurst exponent values ranged
from 0.57 to 0.86 in alpha band (mean ± standard deviation
across subjects and times: 0.73 ± 0.09 and 0.69 ± 0.08,
respectively for closed and open eyes), from 0.57 to 0.85 in beta
band (0.72 ± 0.09 and 0.67 ± 0.07, respectively for closed and
open eyes), and from 0.53 to 0.74 in theta band (0.62 ± 0.06 and
0.60± 0.07, respectively for closed and open eyes). All mean DFA
values were significantly different from 0.5, the DFA exponent
value of uncorrelated white noise (one-sample t-test p < 0.0001
for each band, region, and condition).

In alpha band, repeated measures ANOVA with Time (four
levels: T1, T2, T3, and T4), Condition (two levels: Eyes Closed,
Eyes Open), and Region (three levels: posterior, central, frontal)
as within-subject factors showed significant main effects of Time
[F(3, 60) = 3.492; p = 0.021] and Condition [F(1, 20) = 5.808;
p= 0.026], as well as significant Condition∗Time [F(3, 60) = 4.183;
p= 0.009], and Condition∗Region [F(1.5, 29.8) = 4.218; p= 0.034]
interaction effects, but not significant main effect of Region
(p = 0.301) and interactions Region∗Time (p = 0.101) and
Condition∗Region∗Time (p = 0.718). Looking at the alpha DFA
exponent over time (Figure 3), we noticed that at T1 no
differences were observed between conditions in all regions. The
marked differences were present only at time T2, T3, and T4 for
occipital regions and T2 and T4 for frontal and central regions,
as assessed by paired t-test between eyes closed and eyes open
conditions (p < 0.05, FDR corrected, Figure 3). Moreover, while
in open eyes condition no difference among DFA exponent in the
different times was found, in closed eyes condition DFA exponent
values at time T1 was lower than values at other times in occipital
and frontal regions (paired sample t-test between T1 and the
other times consistently p < 0.05, FDR corrected). In central
regions, only differences between T1 and T2 and between T1 and
T4 were observed.

In beta band, repeated measures ANOVA with Time,
Condition, and Region as within-subject factors showed
significant main effects of Time [F(3, 60) = 4.128; p = 0.010],
Condition [F(1, 20) = 14.319; p = 0.001], Region [F(2, 40) = 9.433;

p < 0.001] as well as significant Condition∗Region
[F(1.3, 27.0) = 4.222; p= 0.039] and Region∗Time [F(6, 120) = 2.234;
p = 0.044] interaction effects. No significant interactions
Condition∗Time was found [F(3, 60) = 2.526; p = 0.066] and
Condition∗Region∗Time (p = 0.374). Also, in this band, DFA
exponent values in the eyes open conditions did not differ
over time. On the contrary, in closed eyes condition, T1 values
were lower than values at other times in all regions (p < 0.05
consistently, FDR corrected). Differences between the conditions
were observed in all regions at T2, T3, and T4 (p < 0.05, FDR
corrected).

Finally, Repeated measures ANOVA on theta DFA values with
Time and Condition showed only a significance of the main
effect Time [F(3, 60) = 4.669; p = 0.005]. The lack of Condition
effect (p = 0.155), or interaction Time∗Condition (p = 0.428),
indicated that in the 4 times the theta DFA exponents were not
different between open closed and eyes conditions. Post-hoc t-test
indicated a difference between T1 vs. T3 and T1 vs. T4 (p < 0.05,
Figure 3).

Higuchi Fractal Dimension
Fifth, ninety-fifth percentile of HFD values ranged from 1.44 to
1.69 (mean ± standard deviation across subjects and times: 1.54
± 0.08 and 1.59± 0.08, respectively for closed and open eyes).

Repeated measures ANOVA with Time, Condition, and
Region (four levels: posterior, central, frontal, left temporo-
parietal) as within-subject factors showed significant main
effects of Condition [F(1, 20) = 21.193; p < 0.001] and
Region [F(3, 60) = 19.608; p < 0.001], as well as significant
Condition∗Time [F(3, 60) = 7.280; p < 0.001], Region∗Time
[F(5.0, 100.6) = 2.933; p = 0.016] interaction effects, but not
significant main effect of Time [F(3, 60) = 2.319; p = 0.084],
and interactions Region∗Condition (p = 0.405) and
Condition∗Region∗Time (p = 0.932). In parieto-occipital
and central regions differences between open and closed eyes
conditions were observed in T1, T2, and T3 times (p < 0.05),
with eyes open HFD values higher than eyes closed HFD values.
This difference was also present in all times in left temporo-
parietal regions and at times T1 and T3 in frontal regions.
Moreover, while in central regions eyes open HFD values did
not significantly changed over times, in the other condition a
reduction was observed over time (Figure 4). In eyes closed
condition, an increase at T2 and T4 with respect to T1 and T3
were observed in central regions and the T1 values were lower
than the values at the other times in frontal regions (Figure 4).

Band Power
Repeated measures ANOVA with Time, Condition, and Region
on alpha band power values revealed significant main effects of
Condition [F(1, 20) = 28.764; p< 0.001], Region [F(3, 60) = 64.231;
p < 0.001], and Time [F(3, 60) = 4.874; p = 0.004]. The
first 2 main effects confirmed that alpha power in closed
eyes condition were higher than in eyes open condition and
that alpha power was higher in parieto-occipital regions. The
lack of interactions Time∗Condition (p = 0.574), Time∗Regions
(p = 0.311), Time∗Condition∗Regions (p = 0.549) and the
presence of the main effect Time, confirmed that during the
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FIGURE 2 | Mean topographies of DFA exponents in alpha and beta bands and of HFD values in eyes closed and open conditions in the 4 times T1: 8:00 am; T2:

11:30 am, T3: 2:30 pm; T4: 7:00 pm. The selection of channels used for averaging the DFA and HFD values are displayed on the right (red: posterior parieto-occipital

region; blue: central sensorymotor regions; gray: frontal region; green: left temporo-parietal region).

day the alpha power uniformly changed in all the considered
groups of electrodes (mean and standard error over conditions
and regions: 6.29 ± 0.10 at T1, 6.38 ± 0.09 at T2, 6.40 ± 0.09 at
T3, 6.42 ± 0.10 at T4). In particular, post hoc tests showed that
the difference was significant only between T1 and T4 (p= 0.036
Bonferroni corrected). The same results were found in beta
band: the main significant effects Condition [F(1, 20) = 8.062;
p = 0.010], Region [F(3, 60) = 49.261; p < 0.001], and Time
[F(3, 60) = 8.643; p < 0.001] and the lack of interactions (p
> 0.1) confirmed a similar increase of power (5.50 ± 0.07 at
T1, 5.60 ± 0.07 at T2, 5.62 ± 0.07 at T3, 5.63 ± 0.07 at T4).
Post hoc tests showed differences of beta band at T1 vs. T2
(p = 0.009), at T1 vs. T3 (p = 0.029), at T1 vs. T4 (p = 0.007).

Finally, repeated measures ANOVA with Time and Condition
on theta band power showed only a significant main effect of
Time [F(3, 60) = 3.492; p = 7.834]. Also, for this band, T1 values
were different by T2, T3, and T4 (p = 0.042, p = 0.018 and
p = 0.011, respectively; mean and standard over conditions: 5.99
± 0.08 at T1, 6.11 ± 0.08 at T2, 6.15 ± 0.08 at T3, 6.16 ± 0.07 at
T4).

In closed eyes condition, no correlations between DFA
exponent and band powers were observed for alpha and beta
bands. A positive correlation was found for theta band. On the
contrary, positive correlations were found between all the band
powers and DFA exponent in all bands in eyes open condition
(Table 1).
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FIGURE 3 | Mean (bars indicate standard error of mean) of DFA exponent values in the different regions for alpha, beta, and theta bands at the 4 times in closed eyes

(gray) and open eyes (red) conditions. Significances of the paired t-test between times are shown (gray for closed eyes and red for open eyes; *p < 0.05, FDR

corrected). The difference between eyes closed and eyes open conditions at one time is evidenced by a star as apex of corresponding time.

FIGURE 4 | Mean and standard error of HFD values in the different regions at the 4 times in closed eyes (gray) and open eyes (red) conditions. Significances of the

paired t-test between times are shown (gray for closed eyes and red for open eyes; *p < 0.05, FDR corrected). The difference between eyes closed and eyes open

conditions at one time is evidenced by a star as apex of corresponding time.

Psychomotor Vigilance Test
The numbers of lapses and false starts did not change over time
and was lower or equal to 1 for each conditions and subject.

Repeated measure ANOVA design on response speed indicated
a significant Time effect. Indeed, T4 speed was higher than T1
(p = 0.012, Bonferroni corrected) and tended to be higher also
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than the T3 speed (p = 0.085). Mean (standard deviation) values
of response speed were (in s−1): 3.574 ± 0.231 at T1; 3.639 ±

0.387 at T2; 3.568± 0.330 at T3; 3.678± 0.288 at T4.

Amsterdam Resting-State Questionnaire
Repeated measure ANOVA with Time and Condition as within
subject factors separately applied to ARSQ factors, revealed
significant effects only for Sleepiness and Somatic Awareness.
In particular, in Sleepiness a significant effect of the main
factor Time [F(3, 54) = 4.992; p = 0.004] and an interaction
Condition∗Time [F(3, 54) = 3.101; p = 0.034] were found, but not
the main effect of Condition (p = 0.877). Post-hoc tests revealed
that, while no differences in times were found in open eyes
condition (mean values ± standard deviation for T1, T2, T3,
and T4: 1.67 ± 0.20; 2.13 ± 0.25; 2.22 ± 0.26; 1.88 ± 0.22), T1
scores were lower than the scores at the other times in eyes closed
condition (T1: 1.27 ± 0.19; T2: 2.02 ± 0.26; T3: 2.26 ± 0.25; T4:
2.19 ± 0.25, paired-sample t-test T1 vs. T2, p = 0.009; T1 vs.
T3, p = 0.006; T1 vs. T4, p = 0.010, Bonferroni corrected). For
Somatic Awareness, only the significance of the main factor Time
was found [F(3, 54) = 3.661; p = 0.009] and neither Condition (p
= 0.475) nor the interaction Condition∗Time (p= 0.862) resulted
significant. Post-hoc tests revealed a difference only between T1
and T4 times (p = 0.050, mean scores between the 2 conditions:
2.14 ± 0.14; 1.98 ± 0.16; 1.85 ± 0.15; 1.69 ± 0.18 at the 4
times).

Relationship Between Spectral and Fractal
Features With ARSQ Factors
As shown in Table 2, different spectral and fractal features
entered the regression model, predicting factors of ARSQ.
Up to the 27% of the variance was explained (minimum
9% for Sleepiness, maximum 27% for Somatic Awareness). A
positive sign of the estimated coefficients indicates a positive

TABLE 1 | Rho (p-values in italics, not corrected for multiple comparisons) of

Spearman’s correlations between DFA exponents and band powers in eyes

closed and eyes open conditions.

Eyes Closed Eyes Open

Posterior alpha 0.111 0.462

0.374 <0.001

Central alpha 0.115 0.422

0.310 <0.001

Frontal alpha 0.079 0.478

0.486 <0.001

Posterior beta 0.184 0.352

0.102 <0.001

Central beta 0.188 0.421

0.094 <0.001

Frontal beta 0.194 0.425

0.085 <0.001

Theta 0.455 0.684

<0.001 <0.001

relationship between the spectral/fractal variables and the ARSQ
factors, i.e., the higher the power band or fractal measure,
the higher the score of ARSQ. A negative sign indicated the
opposite. No variables entered the model for the Comfort
factor.

TABLE 2 | Regression models with ARSQ factors as dependent variables and

spectral/fractal features as independent variables.

Dependent

variables

Independent

variables

Estimated

coefficients

R-values ANOVA

Discontinuity

of Mind

Left temp Beta

Pow

−1.157 F (3, 154) = 11.369;

p < 0.001

Theta Pow 0.776 0.425

Central DFA exp

- alpha

1.428

Theory of

Mind

Left temp Beta

Pow

−1.326 0.438 F (2, 155) = 18.434;

p < 0.001

Theta Pow 0.603

Self Frontal HFD 2.970

Central Beta

Pow

−1.121 0.475 F (3, 154) = 14.973;

p < 0.001

Posterior Beta

Pow

0.651

Planning Central Beta

Pow

−0.796

Posterior Beta

Pow

1.297 0.406 F (3, 154) = 10.154;

p < 0.001

Left temp Beta

Pow

−1.013

Sleepiness Central DFA exp

– beta

3.005 0.308 F (2, 155) = 8.108;

p < 0.001

Time 0.157

Comfort No variables

entered

Somatic

Awareness

Frontal DFA exp

- alpha

−0.755

Posterior Alpha

Pow

−0.178 0.524 F (5, 152) = 11.537;

p < 0.001

Posterior HFD 9.829

Frontal HFD −6.298

Time −0.103

Health

Concern

Central HFD 1.854

Frontal DFA

exp—alpha

−1.463 0.350 F (3, 154) = 7.182;

p < 0.001

Condition −0.216

Visual

Thought

Left temp Beta

Pow

−0.937 F (3, 154) = 8.200;

p < 0.001

Theta Pow 2.101 0.372

Central Beta

Pow

−1.345

Verbal

Thought

Left temp Beta

Pow

−2.051 F (3, 154) = 14.853;

p < 0.001

Central HFD −3.007 0.473

Theta Pow 1.058

Times and conditions were included as categorical variables.
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DISCUSSION

Our results evidenced circadian modulations of fractal features
of EEG at rest in both eyes closed and eyes open conditions.
The investigated fractal characteristics were long term memory
of amplitude modulation of alpha, beta, and theta rhythms in
a time range from few seconds to 1min, as assessed by Hurst
exponent estimated by Detrended Fluctuation Analysis, and
global complexity, as assessed by Higuchi Fractal Dimension.

According to previous results (Linkenkaer-Hansen et al.,
2001; Nikulin and Brismar, 2004, 2005), in our study scaling
exponent values (approximately between 0.6 and 0.8) indicated
the presence of long range temporal correlation of neuronal
oscillations in alpha, beta and theta bands. The presence of high
long-term correlation indicates a more temporally structured
amplitude modulation of the neuronal rhythms, building up
through neural local interactions until they extend throughout
the whole system (Linkenkaer-Hansen et al., 2001). It is not
yet understood if the less temporally uncorrelated modulation
of the rhythm is a sign of a reduced functionality of the brain
areas. It has been suggested that the temporal correlations of
amplitude modulation of oscillations on time scales of seconds
to tens of seconds may be important for the temporal integrity
of cognition, since a reduction of scaling exponent is related
to several neurological impairments and diseases (Hausdorff
et al., 2001; Parish et al., 2004; Linkenkaer-Hansen et al.,
2005; Montez et al., 2009). Moreover, a more whitened state,
characterized by a lower scaling exponent, has been found to lead
more often to percept destabilization (Sangiuliano Intra et al.,
2018).

Topography of DFA exponents confirmed a scalp distribution
coherent with the physiological distribution of cortical rhythms,
in posterior occipital-parietal, central sensory-motor, and
frontal regions. This distribution indicates a topographical
specialization of brain areas. Indeed, all cortical circuits
accumulate information over time to continuously use past
information to process the incoming one. As shown in an
electrocardiographic study (Hasson et al., 2015), the timescale
of accumulation, linked to the scaling exponent, changes
hierarchically from short processing timescale, typical of sensory

regions, to higher-order regions, which show typically long
processing timescales.

No differences in eyes open conditions over day times were
observed in our data. On the contrary, lower values of DFA
in both alpha and beta bands were observed in eyes closed
condition in the first time, between 8.00 and 9.00 a.m. In
this line, the significantly lower values of DFA exponent we
found in the time T1 may be the expression of a lowered
arousal, causing a decrement in cognitive performances in the
first hours of the morning, due to effects of the sleep inertia
(Jewett et al., 1999; Ferrara and De Gennaro, 2000). This
reduction in T1 was observed only in closed eyes condition,
in which it is likely that arousal levels were lower. In line
with this interpretation, we found that the PVT performance
was lower in the time T1, suggesting a reduced vigilance in
this time. A reduction in beta activity upon awakening has
been previously found in EEG recording as sign of sleep

inertia (Marzano et al., 2011). Interestingly, an alpha scaling
exponent reduction was found also in central sensory-motor
areas at time T3 in closed eyes condition. In our data, the
maximum of mean values of sleepiness factor in the ARSQ,
also if not reaching significance, was reached in the T3 time.
These results may be interpreted as a reduced functionality in
the day time in which the sleepiness can be present (Jewett et al.,
1999).

In a recent EEG study, Meisel et al. (2017) found in a sustained
wakefulness protocols, a decline of scaling exponent in alpha
band as sleep deprivation progresses, apparently contrary to our
finding of a DFA exponent increase during the day. However,
the aims of this study were different from ours, as subjects were
sleep deprived. We tried to keep the physiological conditions
as ecological as possible: subjects were outside the laboratory
between 2 consecutive measures, the light exposure was natural,
and, under the supervision of an experimenter, they were in their
habitual environment. The differences between the 2 studies may
be caused also by individual variation in the circadian influence
on fractal neural activity control (21 subjects in our study, 7
subjects in Meisel et al., 2017).

As previously pointed out (Kantelhardt et al., 2002; Hardstone
et al., 2012), power amplitude could bias the values of DFA
exponent, since low amplitude could be associated to low signal
to noise ratio, and scaling exponent could be reduced toward
values more similar to scaling exponent of white noise. On the
contrary, high amplitude, resulting in high signal to noise ratio,
could bias toward higher values of DFA exponents. For this
reason, we investigated also the effect of time on power bands.We
found both in eyes open and eyes closed conditions, an increase
in all bands over time. However, the lack of correlation between
DFA exponent values and alpha and beta band powers in eyes
closed condition confirmed that our results on DFA exponents
are not due to the increase of band power. On the contrary,
in theta band, no difference between eyes closed and eyes
open condition was found and a similar trend between scaling
exponent and power was evidenced. Since a high correlation
between the scaling exponent and the theta power was found, we
cannot exclude that the results in theta bandmay be biased by the
power changes over time.

Our results in band power are in accordance to previous
studies. In protocols with 40 h sustained wakefulness, theta
band exhibited a minimum ∼1 h after the onset of melatonin
secretion and alpha band activity showed a minimum close
to the body temperature minimum (Aeschbach et al., 1999),
therefore minima of daily theta and alpha activity were found in
the first hours of the morning. In these studies, both circadian
effects and endogenous processes interact. In contrast, in forced
desynchronized paradigms, where subjects were kept several days
in an environment free of time cues with an artificial dim light,
the circadian rhythm of plasma melatonin desynchronized and
the contribution of circadian phase (process C) can be separated
by the elapsed time awake effects (process S). In this situation,
effects on EEG band power in wakefulness of both processes
have been described (Cajochen et al., 2002). Specifically, circadian
oscillations of theta, alpha, and beta bands have been found,
with increase during the daytime and decrease during the
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biological night hours. Minimum of beta and theta activity was
in correspondence of the onset of melatonin secretion, located in
fronto-central derivation, and the minimum of alpha activity in
posterior and frontal regions was close to the peak of melatonin
rhythm (Cajochen et al., 2002). Our findings in band power are
in line with these results, since an increase during the day was
observed, with minima in the first T1 time. Wake-dependent
variations in desynchronized protocols are more pronounced
in frontal regions, with an increase of beta band. A reduction
of alpha activity with elapsed time awake was also observed
(Cajochen et al., 2002; for a review see Cajochen and Dijk,
2003).

Our data showed changes during the daytime also onHFD in a
spatial-dependent modality, depending on condition (eyes closed
or open). Indeed, in eyes open condition, fractal dimension
lowered during the day, in particular in occipital, frontal, and
temporo-parietal regions. In eyes closed condition, an HFD
increase was observed at time T2 in central and frontal regions.
Decrease of complexity over time during the day in the open
eyes condition may be interpreted as a circadian modulation of
efficiency of neural activity parallel to changes in arousal and
cognitive performance (Wright et al., 2012). In line with this
interpretation, an increase of complexity in central and frontal
areas was found at T2, the time in which alertness reaches its
maximum and homeostatic sleep pressure is low.

The fluctuations over daytime of fractal features we observed,
tend to implicate that the complexity of brain electrical activity
cannot be entirely described by a single scaling exponent. This
may suggest a multi-fractal nature of brain dynamics. Indeed,
previous studies evidenced multi-fractal nature of the human
sleep EEG activity (Ma et al., 2006; Weiss et al., 2009, 2011),
and showed that multifractality might be an adequate approach
for compact modeling of brain activities and a useful pattern
classification technique to distinguish among different brain
states during sleep (Weiss et al., 2011; Zorick and Mandelkern,
2013). Future studies with an extensive characterization and a
detailed topographic analysis of EEG multi-fractal features in
awake human EEG are needed to systematically address this
point.

A direct causal influence of circadian rhythm to scaling
properties cannot be supported by our data. Indeed, scaling
would be the result of stochastically perturbed oscillatory
entrapment across a broad range of times scales (Bak et al., 1987;
Turcotte, 1999), and circadian rhythms could come out from
a background of stochastically fluctuating biological processes
at different temporal scales. From a theoretical perspective, this
view would overturn the more intuitive notion that very regular
biological oscillations regulate physiology, and regulate also
scaling, in favor of the idea that scaling itself is the background
model for the dynamics of physiological time series and thus also
for their fluctuations at different time scales. In this context, we
can hypothesize that homeostatic sleep pressure, together with
other endogenous and exogenous physiological factors (Muto
et al., 2016), contribute to brain dynamics, characterized by a
fractal, or even better multi-fractal, behavior. As a result, daily
fluctuations of scale exponents and complexity can be found in
brain dynamics.

The question arises as to whether fractal dimension and Hurst
exponent provide additional information to spectral features in
describing the rest conditions. Previous studies reported evidence
that variation in spectral and fractal feature of EEG can be
linked to retroactive self-reports of subjective experiences at rest
(Knyazev, 2013; Diaz et al., 2016). Even if with an exploratory
purpose, we separately performed a regression analysis for
each factor of ARSQ, considered as dependent variable, and
with fractal dimension, scaling exponents and band powers as
independent variables. We found that not only spectral features,
but also fractal characteristics entered the model to explain up
to the 20% of the variance. These relationships are suggestive of
the ability of fractal features to summarize the neuronal activity
in terms of temporal structuring or complexity in relation to
cognition or behavior. In particular, reduction of left temporo-
parietal or central beta power and increase of theta activity was
linked to higher scores of several ARSQ factors, underling the
role of beta desynchronization/theta synchronization of these
rhythms in several cognitive domains (Engel and Fries, 2010).
Positive signs of the estimated coefficients of the regression
models were found for beta DFA exponents andHFD values. This
finding indicates that increase in complexity in specific areas or
a greater persistence of temporal correlations in alpha or beta
bands predict higher score of specific ARQS factor. A negative
coefficient was found only for frontal alpha DFA exponent in
Somatic Awareness and Health Concern. Irrmischer et al. (2018)
found an increase of Somatic Awareness during meditation and
a decrease of alpha scaling exponent most pronounced above
parietal, central, and frontal regions, but also a decrease in Health
Concern was found. A direct link between ARSQ factor and
spectral or fractal features is beyond the aim of this work. The
interesting finding here is that our results underline the fact
that spectral features cannot be considered alone in explaining
highly non-linear phenomena and that fractal characteristics of
the signal have per se physiological meaning.

Even if growing evidence has accumulated that circadian
rhythm dysregulation not only is a risk factor for metabolic and
cardiovascular diseases (Broussard and Van Cauter, 2016; Morris
et al., 2016), but also contributes to neurodegenerative processes
(Musiek et al., 2015), little attention has been paid to circadian
rhythm modulations of brain dynamics in real clinical settings.
Our data add evidence of circadian modulation in spectral and
fractal features in healthy subjects. These results can help to
characterize factors of intra-individual variability in describing
brain dynamics and to personalize interventions or therapies in
clinical applications. Indeed, if complexity of neuronal dynamics
and long-term correlation of brain rhythms, factors related
to the modality of neuronal responses to incoming input or
sensory plasticity (Palva and Palva, 2011; Palva et al., 2013),
changes during the daytime, it would be expected that the correct
information on the time of the day when the individual state
optimizes the individual response could be utilized to indicate
the correct timing for a therapeutic or rehabilitative intervention.
Therefore, the characterization of fractal phenomena can provide
new psychophysical models (Zueva, 2015). In this direction,
future studies are needed to underline alteration of circadian
modulation of fractal features in neurological or psychiatric
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diseases, as well as to understand the link between fractal features,
brain functions and behavior.

In conclusion, in our study differences in fractal features of
rest EEG activity during the 4 daily times have been evidenced.
Complexity and the persistence of temporal correlations of brain
rhythms changes during daytime, parallel to changes in alertness
and performance. The characterization of circadian modulations
of fractal features may in future provide important information
to build meaningful physiological models. Further studies under
condition known to induce desynchrony amongst circadian
oscillators are needed to disentangle the effects of circadian
endogenous factors and homeostatic sleep pressure.
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The aim of the study is to clarify the impact of the strong cyclic signal component on
the results of surrogate data method in the case of resting electroencephalographic
(EEG) signals. In addition, the impact of segment length is analyzed. Different non-
linear measures (fractality, complexity, etc.) of neural signals have been demonstrated
to be useful to infer the non-linearity of brain functioning from EEG. The surrogate
data method is often applied to test whether or not the non-linear structure can be
captured from the data. In addition, a growing number of studies are using surrogate
data method to determine the statistical threshold of connectivity values in network
analysis. Current study focuses on the conventional segmentation of EEG signals, which
could lead to false results of surrogate data method. More specifically, the necessity
to use end-matched segments that contain an integer number of dominant frequency
periods is studied. EEG recordings from 80 healthy volunteers during eyes-closed
resting state were analyzed using multivariate surrogate data method. The artificial
surrogate data were generated by shuffling the phase spectra of original signals. The
null hypothesis that time series were generated by a linear process was rejected by
statistically comparing the non-linear statistics calculated for original and surrogate
data sets. Five discriminating statistics were used as non-linear estimators: Higuchi
fractal dimension (HFD), Katz fractal dimension (KFD), Lempel-Ziv complexity (LZC),
sample entropy (SampEn) and synchronization likelihood (SL). The results indicate that
the number of segments evaluated as non-linear differs in the case of various non-
linear measures and changes with the segment length. The main conclusion is that the
dependence on the deviation of the segment length from full periods of dominant EEG
frequency has non-monotonic character and causes misleading results in the evaluation
of non-linearity. Therefore, in the case of the signals with non-monotonic spectrum
and strong dominant frequency, the correct use of surrogate data method requires the
signal length comprising of full periods of the spectrum dominant frequency. The study
is important to understand the influence of incorrect selection of EEG signal segment
length for surrogate data method to estimate non-linearity.
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INTRODUCTION

Non-linear dynamics is the most appropriate way to describe
complex physiological systems and is therefore widely used in
biomedical applications. During last decades, the interest in
the theory of non-linear dynamics has increased due to raising
interest in brain functioning and the necessity to understand
complex dynamics of the underlying processes (Hornero et al.,
2009; Rodríguez-Bermudez and Garcíıa Laencin, 2015).

The brain is assumed to function as a self-organizing complex
network of interacting dynamical non-linear subsystems. Despite
some cellular processes may be random and characterized by
probability functions, the neural systems may exhibit rather
chaotic non-linear nature. Large networks of interconnected
neurons behave as self-organized large systems with local non-
linear interactions (Hornero et al., 2009). The question, whether
EEG signals should be looked at as a non-linear deterministic
process or a linear stochastic one, is still open. Therefore, before
analyzing EEG signals by non-linear methods, it is required to
assess whether the non-linearity exists in the data. In case non-
linearity is present, the non-linear dynamics theory could also
characterize the intrinsic nature of EEG, helping to understand
its dynamics, underlying brain processes and search for its
physiological significance, without losing or ignoring important
information (Natarajan et al., 2004). The presence of non-
linearity can be confirmed by hypothesis testing.

Theiler et al. (1992) described a statistical approach for
identifying non-linearity in a time series, through the surrogate
data method. A surrogate data is generated from the original data
by shuffling the phase spectra. Null hypothesis that data were
generated by a linear process is tested by comparing non-linear
statistic calculated for original and surrogate data. If the value
for original data is significantly different, the null hypothesis can
be rejected and non-linearity concluded. The probability that the
surrogate data test will reject null hypothesis depends on the
non-linear statistic used (Spasic, 2010).

Surrogate data method is widely used on EEG signals for
testing the null hypothesis of linearity. There are two main
purposes for surrogate data testing. The first purpose is to
test whether the chosen non-linear measure captures non-linear
structure in the data, which cannot be detected with spectral
density function (Breakspear and Terry, 2002; Natarajan et al.,
2004; Spasic, 2010; Bae et al., 2017; Orgo et al., 2017). If the
data does not have any non-linear structure, a linear method
could be used instead. The second purpose is to determine the
statistical threshold of connectivity values in network analysis
(Dimitriadis et al., 2015, 2017; Olejarczyk et al., 2017), which
is being used by a growing number of studies with the method
of surrogate data. However, some factors can cause misleading
results for EEG signal linearity estimation. Surrogate data testing
for a linear stochastic system can indicate false non-linearity in
case the process is non-stationary (Timmer, 1998). A specific
problem has been identified that false detection of non-linearity
may occur in case the data are strongly cyclic (Stam et al., 1998;
Small and Tse, 2002). The problem arises when the length of the
analyzed signal segment deviates from the multiple full periods of
the cyclic component in the signal.

Electroencephalographic (EEG) signal has a strong alpha
frequency component in the frequency range between 9 and
11 Hz. This rhythm is most pronounced in occipital region,
but is also present in central, temporal or even frontal regions.
Alpha rhythm is best revealed during eyes-closed resting state.
Therefore, it might be expected that due to the strong cyclic alpha
component of the resting eyes-closed signal, the surrogate data
method may give false results.

The aim of the study is to clarify the impact of the strong
cyclic signal component on the results of surrogate data method
in the case of EEG signals. In addition, the impact of segment
length is analyzed. For this reason, the degree of non-linearity
was found in eyes-closed resting EEG signal depending on the
analyzed segment length and deviation from full period of the
dominant cyclic component. Five discriminating statistics were
used as non-linear estimators: Higuchi fractal dimension (HFD),
Katz fractal dimension (KFD), Lempel-Ziv complexity (LZC),
sample entropy (SampEn), and synchronization likelihood (SL).

MATERIALS AND METHODS

Subjects
Eighty healthy volunteers (38 female and 42 male) aged
37.0± 14.5 years participated in the study. The experiments were
approved by the Tallinn Medical Research Ethics Committee and
were conducted in accordance with the Declaration of Helsinki.
All subjects signed an informed consent.

EEG Recordings
The EEG was recorded using Neuroscan Synamps2 acquisition
system (Compumedics, Charlotte, NC, United States) from 30
electrodes, positioned according to the extended international
10–20 system. The sampling frequency was 1,000 Hz. Linked
mastoids were used as a reference and electrode impedances were
kept below 10 k�. EEG was recorded for 6 min, during which
subjects were lying in a relaxed position with their eyes closed.

Surrogate Data
Multivariate surrogate data method is used to test whether data
were generated by a non-linear process (Theiler et al., 1992;
Prichard and Theiler, 1994). The null-hypotheses that data were
generated by a linear process and therefore data can be fully
explained by a linear model, is set. Surrogate data is generated
from original data. If the non-linear statistic calculated for
original data significantly differs from the non-linear statistic
calculated for surrogate data, null-hypothesis is rejected and
non-linearity is detected.

Surrogate data is calculated from time series according to
the algorithm by Prichard and Theiler (1994). Fourier transform
is applied and the phase of each frequency component is
independently rotated by a random degree between (0, 2π). After
that, inverse Fourier transform is performed. As a result, the
power spectrum and the autocorrelation function of the time
series is preserved. For multivariate time series, a fixed random
sequence is used to alter the phase of each frequency, ensuring
linear correlations between simultaneously recorded time series.
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To determine whether the value of the non-linear statistic
for the original data set significantly differs from the non-linear
statistics for the surrogate data, z-test is used (Breakspear and
Terry, 2002):

Z =
Qdata −mean (Qsurrogate)

std (Qsurrogate)
(1)

where Qdata is the non-linear statistic calculated for the original
data set, mean (Qsurrogate) is the mean and std (Qsurrogate) is the
standard deviation of linear statistics calculated for the surrogate
data. In the current study, surrogate data was calculated 20 times
for each data segment and the significance level of p < 0.05 was
used. Under the null hypothesis, z-statistic is normally distributed
and when | Z| >1.96 for a two-tailed test, the null hypothesis can
be rejected. For data analysis, we calculated the degree of non-
linearity (DEG), which we define as the percentage of segments
where the null hypothesis was rejected and non-linearity was
detected:

DEG =
nsign
n
· 100% (2)

where n is the number of segments and nsign is the number of
segments, where | Z| >1.96.

Non-linear Statistics
The measures for estimation of non-linearity were selected based
on two main criteria. Firstly, whereas different estimators detect
various aspects of non-linearity, the applied measures should
describe one of the specific features of the signals: self-similarity,
dimension-based morphology, complexity, irregularity or
functional connectivity. Secondly, less time-consuming methods
currently widely used in EEG analysis should be represented.
As a result, five non-linear methods were selected: HFD, KFD,
LZC, SampEn, and SL. HFD and KFD are fractal dimension
methods, LZC is a measure of complexity and SampEn is a
measure of irregularity. As connectivity between neurons and
synchronization of their spiking play crucial role in the brain
functioning, functional connectivity measure SL, although
computationally time consuming, was also selected.

The HFD evaluates the complexity and self-similarity of time
series (Higuchi, 1988). It is calculated directly in the time domain,
making it a simple and fast method. The HFD with a parameter
kmax = 8 was calculated according to the algorithm presented by
Higuchi (1988).

The KFD obtains fractal dimension based on morphology,
measuring the roughness of the time series (Katz, 1988). The KFD
is the ratio of the length of the curve (sum of distances between
two successive points), divided by the maximum distance of any
point under consideration from the first point. In other words,
the ratio of the total length to the straight line corresponding to
the maximum distance from the first point. In addition, a scaling
factor, an average of the distances between two successive points
is used.

Higuchi’s and Katz fractal dimensions are the most common
methods of estimating the fractal dimension of EEG signals
directly in the time domain. Despite both, HFD and KFD
describe the fractal dimension of EEG waveform, the behavior

of the measures is different. HFD has been suggested being the
most accurate, whereas KFD yields the most consistent results
regarding discrimination between brain functional states (Esteller
et al., 2001). Therefore, both are applied in this study.

The LZC evaluates the randomness of finite sequences
(Lempel and Ziv, 1976). First, the EEG signal is transformed
into a finite symbol sequence, according to a chosen threshold.
Next, the sequence of symbols is analyzed from left to right. The
LZC counts the number of times a new pattern is encountered
and its recurrence rate for the given sequence. LZC is simple
to calculate and does not need long data segments. Larger LZC
values correspond to signals that are more complex. Still, the
LZC strongly depends on the signal bandwidth (Kalev et al.,
2015). In the current study, median value of the sequence was
selected as threshold, as it is capable of coping with outliers.
Next, the data was binarized (two symbols) according to the
threshold. Due to artifact free sequences, selecting between
median or mean is not expected to change the outcome
considerably.

The SampEn measures the signal irregularity (Richman and
Moorman, 2000). Signals that are more irregular give larger
SampEn values. The method is quite independent of the signal
length. It is suitable for analyzing short and noisy time series.
The SampEn is the negative natural logarithm of the conditional
probability that two sequences similar for m = 2 points remain
similar at the next point. Parameters for the SampEn were chosen
according to recommendations from previous studies (Richman
and Moorman, 2000; Lake and Moorman, 2010): the embedding
dimension m = 2 and the tolerance r = 0.2 SD, where SD is the
standard deviation of the sample.

The SL is a non-linear measure of functional connectivity
(Stam and Van Dijk, 2002). The SL estimates dynamical
interdependencies between simultaneously recorded time series
using Takens’ theorem (Takens, 1981) of reconstructing EEG
signals into state space. The calculation of the SL is more
thoroughly explained in the article by Stam and Van Dijk
(2002). The SL parameters were calculated according to
the formulas presented in the paper by Montez et al.
(2006) with respect to the time-frequency content of the
signal. Therefore, the following parameters were used: the
embedding lag L = 7, the embedding dimension m = 136, the
number of recurrences nrec = 10, the fraction of recurrences
pref = 0.01, window W1 = 2000 and window W2 = 2999.
Such selection of the parameters ensures that the time-
frequency characteristics of the signals are fully taken into
account. Therefore, small alterations in these parameters are
not expected to change the results of surrogate data method
significantly.

Data Processing
Data processing was done in MATLAB (The Math-works, Inc.)
using signal processing toolbox. Signals were digitally filtered
(1–45 Hz) using zero-phase Butterworth filter and re-referenced
according to the reference electrode standardization technique
(REST) (Yao, 2001). Signals were divided into 5.3-s segments.
Data were visually inspected and segments with artifacts were not
analyzed.
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Surrogate data method makes an assumption of stationarity.
We conducted two stationarity tests: the Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) and the Phillips–Perron (PP) test and no
non-stationarity was detected.

Dependence on the Segment Length Increment for
Alpha Component
The aim of the current section was to determine how DEG
depends on the segment length increment. For that purpose, the
length of the segment was gradually incremented from an integer
number of alpha periods by 2 ms. Therefore, the length of each
segment was determined as:

l = kT +1t, 1t = 0, 2, 4, . . . , 108 ms, (3)

where k is an integer, T is the period of alpha frequency
component and 1t is the segment length increment. The first
segment was approximately 5 s, starting and ending at the alpha
peak amplitude (1t = 0) – consisting of an integer number of
alpha periods. Therefore, the exact length of the first segment
depended on the alpha period. The second segment started
at the same position as the first one, but ended 2 ms later
(1t = 2). Finally, the length of the last segment (1t = 108) was
approximately 5.1 s. For most subjects, the length of the last
segment corresponds to l = (k + 1)T – again an integer number
of alpha periods. As there were 62 data segments for a subject,
we repeated the incrementation procedure for each of the 62 data
segments and DEG was calculated according to formula (2) for
each 1t = 0, 2, 4, . . . , 108 ms, where n = 62.

Alpha peaks were found by zero-phase filtering signals into
alpha frequency band (7.5–13 Hz) using Butterworth filter and
peaks were indicated by local maxima. The channel O1 was
chosen for processing, because of the highest average alpha
power. After finding positions of alpha peaks in channel O1,
whole frequency band (1–45 Hz) was used for calculating DEG.
The dependence on 1t was found for five different non-linear
parameters: HFD, KFD, LZC, SampEn and SL. As SL is calculated
between two channels, O1 and O2 were used.

Dependence on Channel
In different channels, the amount of alpha power, the strong
cyclic component, differs. This component is most pronounced
in occipital region, but is also present in other regions. To analyze
the dependence on the EEG channel, three channels were chosen
according to average mean alpha power: O1 with the highest
alpha power, C3 with average alpha power and T7 with the lowest
alpha power. In addition to O1, analysis for C3 and T7 were
conducted in accordance to 2.5.1, whereas HFD was used as a
non-linear measure.

Dependence on the Segment Length Increment for
Different Frequency Components
It is well known that alpha is the dominant frequency during
eyes-closed resting state EEG recordings, especially in posterior
areas. However, it is important to clarify, whether the surrogate
data method is also affected by the cyclic component of other
EEG frequency bands. For that purpose, the analysis in 2.5.1 was
repeated using HFD, but the segments beginning and the segment

length increment have been matched to the following frequencies:
delta (1–1.5 Hz; 1t = 0, 20, . . . , 1000), theta (4–8 Hz; 1t = 0,
3, . . . , 126) and beta (13–30 Hz; 1t = 0, 1, . . . , 46). For better
comparison, the results for alpha component (7.5–13 Hz; 1t = 0,
2, . . . , 108) are also presented.

Dependence on Segment Length
While incrementing the segment by 1t, the overall segment
length was almost the same, between 5 and 5.1 s. To analyze
the dependence on the segment length, the data were divided
into substantially different segment lengths: around 5, 10, 15, and
20 s. Each segment started from alpha peak and ended with alpha
peak, consisting of an integer number of alpha periods. Each
subject had 10 segments of each segment length, whereas n = 10
in formula (2). DEG was calculated for each subject and segment.

Data Processing
The observations of DEG were obtained for each subject. The
dependence on the 1t and the segment length were statistically
evaluated using one-way analysis of variance (ANOVA) with
the significance level of p < 0.05. To correct for the problem
of multiple comparisons, Bonferroni correction was used by
adjusting the p-value p = p/m, where m is the number of
comparisons.

RESULTS

Average DEG values for end-matched segments according to
alpha frequency (1t = 0) are presented in Table 1. The percentage
of segments where non-linearity was detected varies significantly
depending on the non-linear measure. KFD indicated the highest
degree of non-linearity: the KFD value was significantly changed
in 99% of segments, while LZC revealed non-linearity only in
0.4% of the segments.

Dependence on the Segment Length
Increment for Alpha Component
The calculated DEG values for HFD, KFD, LZC, SampEn and
SL in alpha frequency band are presented in Supplementary
Datasets 1–5. We conducted ANOVA to analyze whether the
segment length increment 1t influences the results of surrogate
data method. ANOVA (p< 0.05/5) yielded statistically significant
results for every non-linear statistic that indicated non-linearity
(DEG> 5%): HFD DEG (Figure 1B), KFD DEG (Figure 1D) and
SampEn DEG (Figure 1H). For example, when 1t = 0, then HFD
DEG was 46.1%, but 1t = 50 (corresponding to half alpha period)

TABLE 1 | The degree of non-linearity at alpha peak.

DEG, %

HFD 46.1

KFD 99.1

LZC 0.4

SampEn 81.5

SL 3.9
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FIGURE 1 | Non-linear measures (A) HFD, (C) KFD, (E) LZC, (G) SampEn, and (I) SL calculated for surrogate data depending on the segment length increment 1t
are presented on the left. The degree of non-linearity DEG depending on the segment length increment 1t for (B) HFD DEG, (D) KFD DEG, (F) LZC DEG,
(H) SampEn DEG, and (J) SL DEG are presented on the right. Statistically significant results are indicated with a pink background.
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FIGURE 2 | The degree of non-linearity DEG depending on the segment
length increment 1t for alpha component in channels O1, C3, and T7.

resulted in HFD DEG 80.0%. LZC DEG (Figure 1F) and SL DEG
(Figure 1J) did not depend on the 1t.

In order to understand the DEG results presented in Figure 1,
we can consider the values of non-linear measures calculated
for original and surrogate data, according to which DEG was
calculated. Incrementing the segment length to 1t = 50 increased
the values calculated for surrogate data for all five non-linear
measures, but the increase was statistically significant only for
HFD (Figure 1A), KFD (Figure 1C), LZC (Figure 1E), and
SampEn (Figure 1G). Since HFD and SampEn calculated for
surrogate data were significantly increased compared to the
values calculated for original data, this resulted in an increase
also in DEG (Figures 1B,H). However, KDF for surrogate data
was significantly decreased compared to KFD for original data,
resulting in a decrease in DEG (Figure 1D). Although LZC
calculated for surrogate data was also influenced by segment
length increment (Figure 1E), LZC was similar for original and

surrogate data, yielding low DEG values, resilient to segment
length increment (Figure 1F).

Dependence on Channel
The calculated HFD DEG values for channels O1, C3 and T7
are presented in Supplementary Datasets 1, 6, 7. According to
ANOVA (p < 0.05/3), HFD depended on the 1t for all studied
channels. The deflection in DEG was the largest in channel O1,
followed by C3 and T7 (Figure 2). These results are in accordance
with the amount of spectral alpha power in those channels.

Dependence on the Segment Length
Increment for Different Frequency
Components
The calculated HFD DEG values for delta, theta, alpha and
beta frequency components are presented in Supplementary
Datasets 1, 8–10. According to ANOVA (p < 0.05/4), HFD
depended on every calculated cyclic component (Figure 3).
The difference between maximum and minimum DEG for
different 1t was the largest for alpha component (80.0% –
45.3% = 34.7%), followed by theta (63.9% − 51.4% = 12.5%),
delta (61.1%−51.1% = 10.0%), and beta component
(60.6%− 51.6% = 9.1%).

Dependence on Segment Length
The influence of segment length (1t = 0) on DEG was
investigated for five non-linear measures: HFD, KFD, LZC,
SampEn, and SL (Supplementary Dataset 11). The results are
presented in Table 2. According to ANOVA (p < 0.05/20), DEG
depended on the segment length for HFD, SampEn, and SL
(marked with ∗ in Table 2). The results for 5-s segments are
slightly different from the results in Table 1, because smaller
number of segments were used.

DISCUSSION

The aim of the study was to clarify the impact of the strong cyclic
EEG signal component on the results of surrogate data method

FIGURE 3 | The degree of non-linearity DEG depending on the segment length increment 1t for (A) delta, (B) theta, (C) alpha, and (D) beta frequency components.
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TABLE 2 | The degree of non-linearity at different segment lengths (∗p < 0.05).

DEG, %

Segment length 5 s 10 s 15 s 20 s

HFD 45.7∗ 41.0∗ 36.4∗ 34.0∗

KFD 99.9 100 100 100

LZC 0.4 0.6 0.2 0.4

SampEn 82.0∗ 95.4∗ 98.5∗ 99.4∗

SL 4.4∗ 6.5∗ 7.0∗ 9.1∗

by Theiler et al. (1992). In addition, the impact of segment
length was analyzed. The major finding of the study was that
if the EEG segment does not contain an integer number of full
alpha periods, the values calculated for surrogate data may be
significantly altered, resulting in a false rejection of linearity. To
the best of our knowledge, similar results have not been reported
earlier.

Previous studies have shown that false detection of non-
linearity may occur when the data are strongly cyclic (Stam
et al., 1998; Small and Tse, 2002). However, the influence
of this problem on EEG signals was not previously known.
Although surrogate data method is widely used for EEG analysis
(Breakspear and Terry, 2002; Natarajan et al., 2004; Spasic, 2010;
Dimitriadis et al., 2015, 2017; Bae et al., 2017; Olejarczyk et al.,
2017), the cyclic behavior of dominant frequency component
is not considered in segmentation. The current study shows
the importance of segmenting data according to the alpha
component for eyes-closed resting state EEG.

Our results demonstrate remarkable non-monotonic changes
in the degree of non-linearity of EEG signals with the fine
tuning of the segment length within a period of dominant EEG
signal frequency for every non-linear statistic that indicated non-
linearity (DEG > 5%): HFD (Figure 1B), KFD (Figure 1D), and
SampEn (Figure 1H). The changes in the degree of non-linearity
are caused by the changes in the non-linear measures calculated
for surrogate data (Figures 1A,C,G), whereas the measures
calculated for original data have no remarkable dependence on
so small alteration of segment length. The impact of segment
length tuning on the results of surrogate data method is maximal
when the segment length contains an odd number of half-periods
of the dominant frequency (Figure 1). The phenomenon can be
explained by spectral leakage in the discrete Fourier transform
while deriving the surrogates, as discrete Fourier transform
assumes periodic signals. Thornhill (2005) showed that even
a small spectral component other than that at the dominant
frequency could be interpreted as non-linearity and causes false
detection of non-linearity for sine waves. However, they showed
that pseudoperiodic data with weaker cyclic behavior were more
robust to small end-mismatches. These results are in accordance
with the results in the current study. Moreover, the current study
proves that the cyclic behavior of EEG has a strong influence
on non-linear measures calculated for surrogate data for large
end-mismatch.

Two measures, LZC (Figure 1F) and SL (Figure 1J), did
not detect significant non-linearity (DEG < 5%). In the case of
LZC, the possible reason is that the measure is highly sensitive

to low frequency EEG component in binarization due to its
high amplitude values. The non-linearity, if contained in the
low amplitude high frequency activity, gets overlooked in the
process of binarization and is not detected by the measure.
SL did not detect non-linear coupling, indicating that SL does
not necessarily give significantly more information compared to
similar linear functional connectivity measures.

The level of alterations caused by fine tuning within a period of
dominant frequency differs at different non-linear discrimination
measures. The degree of linearity changes about two-fold with
HFD, is much lower with KDF and SampEn and becomes
insignificant with LZC and SL. The different impact of fine tuning
of segment length within a period of dominant frequency can be
explained by different sensitivity of various non-linear measures
to a small additional spectral component introduced by the
deviation of the segment length from a full period. The problem
can be solved by selecting the start and end of the segment by
matching the period of the strong cyclic component. A segment
end-matching can be performed by selecting a segment length
equal to integer number of full periods of the dominant frequency
(Stam et al., 1998). In addition, Small et al. (2001) suggested
an alternative surrogate data method: pseudo-periodic surrogate
(PPS) algorithm. However, PPS is not applicable to data where
the non-linearity of interest is distortion of the periodic waveform
(Thornhill, 2005).

The dependence of the degree of non-linearity on the segment
length increment from full alpha periods has the maximal
value for alpha frequency component (Figure 3). The alteration
of the degree of non-linearity with the dominant frequencies
in delta, theta or beta bands are less critical. The possible
reason is the structure of EEG signal with a dominant alpha
frequency. The minimum DEG value in Figure 3 is the smallest
for alpha frequency component. These results show that the
synchronization of the fine tuning of the segment length should
be performed with the dominant frequency component to
decrease the amount of false positive surrogate data results.

The dependence of the degree of non-linearity on the
segment length increment from full period of dominant EEG
frequency is evident in various EEG channels (Figure 2). As
expected, the impact is stronger in the EEG channels with
higher alpha content (O) and weaker in channels with lower
alpha content (T). The influence of segment end-mismatch
on other channels also mostly depends on the spectral alpha
power and lies between the obtained results of O1 and T7
(Figure 2). The results may also be influenced by an additional
strong frequency component (channel C3 in Figure 2), but the
dominant frequency component should be taken into account in
segment end-matching.

The degree of linearity estimated at an integer number of
alpha periods (Tables 1, 2) shows that the degree of non-linearity
varies for different non-linear measures. Different sensitivity to
surrogate data method has also been reported by other author
(Spasic, 2010) when comparing HFD and third order correlation.
Our results suggest that HFD, KFD, and SampEn were more
sensitive to non-linearity, while SL and LZC values changed
significantly in less than 5% of segments for 5-s segments. In
this case, SL has been calculated between O1 and O2 channels.
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The results can vary for different channel pairs, but Orgo et al.
(2017) found that for SL 5-s segments, the average degree of non-
linearity over all channel pairs was similar to that in our current
study (6.1% compared to our 4.4%). In addition, the degree
of non-linearity estimated in the current study is close to the
results reported by Breakspear and Terry (2002), who detected
statistically significant evidence of non-linear interactions in 4.8%
of the 2.048-s segments of eyes-closed resting state EEG.

The findings presented in Table 2, indicating changed non-
linearity with increased segment length, are in principle in
accordance with the results reported by other research groups
(Olbrich et al., 2003; Sun et al., 2012; Orgo et al., 2017). Olbrich
et al. (2003) have reported the dependence of rejection of the
null hypothesis between natural and surrogate data in sleep EEG
on the length of the analyzed segment. They suggested that
the increase of evaluated non-linearity with the segment length
might occur because of the increasing non-stationarity of the
longer time series. In the current study, KPSS and PP test did
not reveal any non-stationarity. Sun et al. (2012) have made a
conclusion that the length of signal segment for analysis of 3–
16 periods is sufficient for detecting non-linearity in the case
of EEG phase synchronization. However, in the current study
we showed that the results of evaluation of non-linearity vary
even with the segment lengths of more than 100 periods. Orgo
et al. (2017) were the first to compare the degree of EEG non-
linear coupling in different frequency bands and segment lengths,
during eyes-closed resting state. Their results showed that the
degree of non-linear coupling increased with the length of the
segment, and it was most dominant in total, alpha, beta and theta
frequency bands.

CONCLUSION

The results of the performed study show that the selection of a
proper segment length in evaluating non-linearity of EEG signals
with surrogate data method is critical to assure the reliability of
evaluation. The results of performed calculations demonstrate
that false rejection of linearity occurred with surrogate data
method when an EEG segment did not contain an integer

number of full alpha periods using HFD, KFD, or sample entropy.
LZC and SL did not detect significant non-linearity and were
therefore not influenced by segment end-mismatch. The major
novel finding is that the correct estimation of non-linearity with
surrogate data method requires a segment length comprising of
full periods of the spectrum’s dominant frequency component. In
addition, the degree of non-linearity estimated with HFD, sample
entropy and synchronization likelihood significantly changed
with the segment length.
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Aim: The aim of this work was to study the neurophysiological effect of repetitive
transcranial magnetic stimulation (rTMS) applied to the left dorsolateral prefrontal cortex
(DLPFC) in 8 patients with major depression disorder (MDD) and 10 patients with bipolar
disorder (BP), considering separately responders and non-responders to rTMS therapy
in each of both groups.

Methods: The Higuchi’s Fractal Dimension (FD) was analyzed from 64-channels EEG
signals in five physiological frequency bands and every channel separately. Changes of
FD were analyzed before and after 1st, 10th, and 20th session of rTMS.

Results: Some differences in response to the rTMS therapy was found across individual
groups. In MDD responders, FD decreased in all bands after longer stimulation (20th
session). Whereas, in BP non-responders, FD decreased after 1st session in all bands as
well as after 10th session in lower frequencies (delta and theta). In MDD non-responders
and BP responders FD increased at the beginning of the therapy (1st and 10th session,
respectively), but the final FD value did not changed in comparison to the initial FD
value, except the FD decrease for theta band in BP responders. Comparison between
groups showed a higher FD in MDD responders than in MDD non-responders in every
band before as well as after stimulation. In contrast to MDD patients, FD was lower in
BP responders than in BP non-responders in higher frequency bands (alpha, beta, and
gamma) in both conditions as well as in lower frequency bands (delta and theta) after
stimulation. Comparing both groups of responders, FD was lower in MDD than in BP in
every band, except alpha. In case of non-responders, FD was higher in BP than in MDD
in all bands in both conditions.

Conclusion: The results showed that FD may be useful marker for evaluation of the
rTMS effectiveness and the therapy progress as well as for group differentiation between
MDD and BP or between responders and non-responders. The changes of FD under
the influence of rTMS allow to unambiguously conclude whether the effect of stimulation
is positive or negative as well as allow to evaluate an optimal time of rTMS.

Keywords: EEG, repetitive transcranial magnetic stimulation, complexity, Higuchi fractal dimension, major
depression disorder, bipolar disorder, depression

Frontiers in Physiology | www.frontiersin.org September 2018 | Volume 9 | Article 138576

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01385
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2018.01385
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01385&domain=pdf&date_stamp=2018-09-28
https://www.frontiersin.org/articles/10.3389/fphys.2018.01385/full
http://loop.frontiersin.org/people/611282/overview
http://loop.frontiersin.org/people/368784/overview
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01385 September 27, 2018 Time: 16:53 # 2

Lebiecka et al. EEG Complexity in Depression

INTRODUCTION

Major depressive disorder (MDD) is a mood disorder that
causes a persistent feeling of sadness and loss of interest
(Sadock et al., 2003; Hersen and Rosqvist, 2008; American
Psychiatric Association, 2013; WHO, 2017). While, bipolar
disorder (BD), called manic depression, is a mental health
condition that causes extreme mood swings that include periods
of abnormally elevated mood (mania or hypomania) and
lows (depression) (Anderson et al., 2012; American Psychiatric
Association, 2013; WHO, 2017). The causes of depression are
divided into two main types: (1) endogenous – resulting from
abnormal functioning of the central nervous system (CNS) at
the cellular or protein level, and these are biological causes e.g.,
following the production of monoamines – neurotransmitters,
such as serotonin, noradrenaline or dopamine, disruption of
the serotonin and associated enzymes transport, formation of
inflammatory processes in the limbic system of the brain; (2)
exogenous – activating or being a “self-dependent” causes of
depression, e.g., somatic diseases such as hormonal disorders,
cancer, surgical procedures, incurable and chronic diseases,
deficiencies of B group vitamins, CNS diseases such as multiple
sclerosis, Alzheimer’s disease, Parkinson’s disease, Huntington’s
chorea, cerebrovascular diseases (especially temporal lobe and
frontal lobe), the use of certain drugs and psychoactive substances
(Kramer, 2002).

Not all patients suffering from depression respond to the
pharmacological treatment. It was demonstrated, that only less
than one third of depression patients reach remission after 12
weeks of initial antidepressant treatment (Trivedi et al., 2006),
while another 30% of MDD patients are eventually diagnosed
with drug treatment resistant disorder (Fitzgerald et al., 2003;
Bewernick and Schlaepfer, 2015; Silverstein et al., 2015). In such
drug-resistant cases other therapeutic approaches are needed.
Numerous studies have shown that repetitive transcranial
magnetic stimulation (rTMS) produced significant clinical effects
in patients with various neurological and psychiatric disorders,
in particularly in depression (Pascual-Leone et al., 1996; Rossi
et al., 2009; Rossi, 2013; Lefaucheur et al., 2014). rTMS can be
regarded as an adjunctive therapy to the usual pharmacotherapy
with the aim of improving or accelerating the efficacy of these
treatments by changing brain activity patterns and promoting
cortical plasticity (Friston, 1996; Draganski and Kherif, 2013;
Dukart et al., 2014). rTMS is usually applied over the dorsolateral
prefrontal cortex (DLPFC), which was proven to be clinically
effective in resistant depression therapy (Fitzgerald et al., 2003;
Avery et al., 2006; O’Reardon et al., 2007; Concerto et al.,
2015; Blumberger et al., 2016; Kito et al., 2016; Health Quality
Ontario (2016); Filipcic et al., 2017; Teng et al., 2017). The
use of two frequencies are recommended to change the local
cortical activity: low frequency (LF) rTMS at 1 Hz to reduce
neural excitability, and high frequency (HF) rTMS at 10 Hz
to enhance neural excitability (Siebner and Rothwell, 2003;
Lefaucheur et al., 2014). Considering asymmetry in frontal cortex
activity in patients with drug resistant depression, HF rTMS is
applied to the left DLPFC, while LF rTMS is targeted to the right
DLPFC (Klein et al., 1999; George et al., 2000; Speer et al., 2000).

The effectiveness of therapy depends on other factors also. The
main experimental factors that introduced variability in reported
rTMS effects are the pulse parameters (Arai et al., 2005; Taylor
and Loo, 2007; Classen and Stefan, 2008), the different ways of
targeting the DLPFC between experimenters and the different
anatomy of the underlying gyri between subjects (Thielscher
et al., 2011). The rate of responders increases significantly when
the number of sessions is greater than 10, the total number of
stimuli per session is greater than 1000, and the stimulation
intensity is greater than 100% of the resting motor threshold
(Gershon et al., 2003; Berlim et al., 2013; Lefaucheur et al.,
2014). A minimum of 10 sessions in 1–2 weeks is usually carried
out. The duration of the effect was rarely described and no
study assessed the long-term effects of rTMS (Lefaucheur et al.,
2014).

Considering high temporal resolution of EEG, its low price
and easy application, this technique was used very widely to
study both the nature of psychiatric disorders and the effect
of rTMS. Many investigators have studied the relation between
the therapeutic effect of rTMS in depression and spectral power
dynamics of various EEG bands (Pozzi et al., 1993; Kwon et al.,
1996; Griskova et al., 2007; Spronk et al., 2008; Valiulis et al.,
2012; Woźniak-Kwaśniewska et al., 2015), however, these results
were not consistent. Moreover, earlier studies demonstrated that
EEG complexity analysis using Higuchi’s fractal dimension (FD)
can be successfully used in many clinical applications (Klonowski
et al., 2000, 2002, 2004, 2005, 2006; Olejarczyk, 2007, 2011;
Olejarczyk et al., 2009; Zappasodi et al., 2014, 2015; Cottone
et al., 2016, 2017). Some authors applied the FD to compare the
complexity of EEG signals in patients with depression and in
healthy controls (Bahrami et al., 2005; Ahmadlou et al., 2012;
Bachmann et al., 2013, 2018; Akar et al., 2015). All these studies
showed a higher FD in both groups of patients with depression
(MDD and BP), which would suggest that FD could be a good
marker of the rTMS therapy effectiveness. Taking into account
the results of these studies, we expected that FD would decrease
under the influence of rTMS.

Despite the increasing use of rTMS in drug resistant
depression treatment, its exact therapeutic mechanism still
remains unknown. The effects of stimulation vary significantly
between the studies and individuals. Some drug resistant
patients respond well to rTMS treatment, while others
remain unaffected. New markers are still needed for more
effective patient selection and evaluation of rTMS therapy
progress.

The aim of this work was to evaluate the effectiveness of the
rTMS applied to the left DLPFC in both groups of patients (MDD
and BP). For this purpose, the Higuchi’s Fractal Dimension (FD),
were analyzed using high-density EEG signals. The differences
between MDD and BP patients as well as between patients
responding positively and patients not responding to rTMS
therapy in each of these groups separately, were studied. The
impact of rTMS was evaluated in individual groups of patients
for whole frequency range as well as for every band separately.
The topographical differences were also considered. Finally, the
dependence of these results on duration of stimulation was
studied.
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MATERIALS AND METHODS

Subjects
This study reuses the data presented in (Woźniak-Kwaśniewska
et al., 2015), which contains additional details on the
recording conditions. The EEG data were collected in
Psychiatry Department of Grenoble University Hospital,
after approval by the local ethical committee (ID RCB:
2011-A00114-37). All participants gave a written informed
consent.

Two groups of right-handed patients who met Diagnostic and
Statistical Manual of Mental Disorder 4th ed. (DSM-IV) criteria
for Major Depressive Episode (American Psychiatric Association,
2000), were examined: 10 patients (6 females, age range 32–
69, mean 48.7 ± 12.6) suffering from BP and 8 patients (6
females, age range 44–64, mean 52.1± 7.8) suffering from MDD.
Each of these groups were also divided into responders and
non-responders (Table 1).

The inclusion criterion was no response to pharmacological
treatment of depression using a minimum of two distinctly
different classes of antidepressant medications for actual
depressive episode (appropriate doses and duration) occurring
at the time of enrolment or earlier. Exclusion criteria were:
age under 18 years, drug abuse, current comorbid major
mental disorders assessed by clinical examination, neurological
illness or convulsive disorders, and previous electroconvulsive
therapy. All patients were on a range of medications. For
bipolar patients, mood stabilizer medication has been unmodified
for at least 2 weeks prior to the entry in the study, and
remained unchanged throughout the course of the study. No
benzodiazepines were administered 2 weeks before and during
rTMS treatment. For MDD patients, pre-treatment with an
antidepressant and/or mood stabilizer medication has been
unmodified for at least 4 weeks prior to the entry in the study,

TABLE 1 | Clinical characteristic of the participants.

Number of
patients

Age Illness duration

MDD Response 4 53,3 ± 5,8 10.3 ± 6.1

Non-response 4 51,5 ± 7.5 10,3 ± 5.7

BP Response 6 49 ± 13 14.8 ± 9.5

Non-response 4 50 ± 10 24 ± 8.7

Total 18 48 ± 9.7 15,1 ± 9,6

and remained unchanged throughout the course of the study.
Only cyanemazine and hydroxyzine were tolerated during the
study.

Demographics characteristics (gender and age) and clinical
characteristics (illness and episode duration, depression severity)
were evaluated for each patient using Montgomery Asberg
Depression Rate Scale (MADRS) (Montgomery and Asberg,
1979), 13-item Beck Depression Inventory (BDI-Short Form)
(Collet and Cottraux, 1986; Bouvard et al., 1992, Beck et al.,
1996) and Clinical Global Impression (CGI). For bipolar patients,
maniac or mixed symptoms were evaluated with Young Mania
Rating Scale (YMRS) (Young et al., 1978). All patients were
assessed at inclusion, before the first EEG recording and after
each 5 rTMS sessions by the same senior psychiatrist (David
Szekely). The response to rTMS treatment was defined as at
least 50% reduction of the baseline MADRS scores. Patients were
qualified as remitters when MADRS score was less than 8. If
YMRS was more than 15, at inclusion or during the course
of rTMS treatment, patients were excluded from the trial. The
absolute changes in MADRS scores between baseline and the end
of rTMS (4 weeks after the first evaluation) were used to calculate
clinical improvement.

The standard clinical protocol recommended at Grenoble
University Hospital was applied. The patients were subjected to
rTMS of the left DLPFC over a period of 4 weeks. The rTMS
therapy consisted of 20 sessions, with 2000 pulses per session
continuously applied at 120% motor threshold. The 64-channel
EEG signals were recording immediately before and after the 1st,
10th and 20th session, with FCz as the reference electrode. During
the EEG acquisition patients were seated in a reclining armchair
with neck and back supported with a pillow, arms relaxed and
eyes closed.

EEG Registration and Preprocessing
Fifteen-minutes resting state with eyes closed pre- and post-
rTMS recording, without artifacts were analyzed. EEG data
pre-processing was performed using EEGlab and SPM8 tools
available in MATLAB software. First EEG data were resampled
at 250 Hz and band-pass filtered between 0.5 and 45 Hz. Such
prepared data were reviewed for large muscle artifacts and
non-stereotypical artifacts. Moreover, the mean of each data
channel was removed before the application of an Independent
Component Analysis (ICA), which is a method that allows
to separate source signals from a multivariate measured
signals assuming that the source signals are independent

TABLE 2 | The results of ANOVA analysis for factor CONDITION (before and after stimulation) in four groups of patients (BP_non-responders, BP_responders,
MDD_non-responders, MDD_responders).

Group ANOVA results Mean ± Std

F-value p-value before after

BP_non-responders F (1,6930) = 75,397 P < 0,0001 1.562 ± 0.001 1.579 ± 0.001

BP_responders F (1,9450) = 11,930 P = 0.0006 1.543 ± 0.001 1.536 ± 0.001

MDD_non-responders F (1, 5040) = 0.683 P = 0.409 1.459 ± 0.001 1.457 ± 0.001

MDD_responders F (1,6930) = 59,239 P < 0.00001 1.518 ± 0.002 1.544 ± 0.002

Frontiers in Physiology | www.frontiersin.org September 2018 | Volume 9 | Article 138578

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01385 September 27, 2018 Time: 16:53 # 4

Lebiecka et al. EEG Complexity in Depression

FIGURE 1 | Higuchi fractal dimension for BP_non-responders (A), BP_responders (B), MDD_non-responders (C) and MDD_responders (D) before and after
stimulation in each of frequency bands. The interaction between factors CONDITION and BAND (all three sessions were included). Significant differences between
conditions for the individual frequency bands, evaluated by post hoc Tukey HSD test, were marked with asterisks.

and non-Gaussian. For example, we can use ICA to remove
electrooculographic (EOG) or electrocardiographic (ECG)
artifacts from EEG signals (Arad et al., 2018). First 10 min
of artifacts-free signals were selected to further analysis.
These signals were segmented into 20 s successive epochs,
which means that each 10 min recording was divided into
30 epochs. The EEG signals were analyzed in whole band
as well as in five frequency bands (delta: 1–3 Hz, theta: 4–
7 Hz, alpha: 8–12 Hz, beta: 13–30 Hz, gamma: 30–45 Hz)
separately.

Higuchi Fractal Dimension
A fractal dimension (FD) is a measure of signal complexity. The
term “fractal” was first introduced in 1975 by Mandelbrot and
was described as a set of points that when looked at smaller scales,
resembles the whole set. There are many available algorithms to
calculate FD, one of them is Higuchi’s fractal dimension (HFD),
which is defined in time domain. FD value is always between 1
(for deterministic curves) and 2 (for stochastic signals) (Higuchi,
1988).

The signal is represented by a sequence X(1), X(2), . . ., X(N),
where N is the total number of samples in the epoch. From the

given epoch k new sub-epochs Xm
k are defined as:

Xk
m : X(m), X(m+ k), ..., X

(
m+ int

(
N −m

k

)
k
)

,

m = 1, 2, ..., k,

where m – initial time, k – interval time.
For each of the sub-epochs Xm

k, the average length Lm(k) is
computed as:

Lk
m =

1
k

 k∑
i=1,int

(N−m
k
) |X(m+ ik)− X(m+ (i− 1)k|

N − 1
int
(N−m

k
)


where N is the total number of signal samples, N−1
int
(N−m

k
) is a

normalization factor.
The length of the segment L(k) for the time interval k is

computed as the mean of the k values, for m = 1, 2,. . ., k, that
is:

L(k) =
1
k

k∑
m=1

Lm(k)
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FIGURE 2 | Higuchi fractal dimension for BP_non-responders (A), BP_responders (B), MDD_non-responders (C) and MDD_responders (D) before and after
stimulation in successive sessions (1st, 10th, and 20th session). The interaction between factors CONDITION and SESSION (all frequency bands were included).
Significant differences between conditions for the individual sessions, evaluated by post hoc Tukey HSD test, were marked with asterisks.

The curve L(k) has a fractal dimension Df :

L(k) ∼ k−Df

The calculation is repeated for k values ranging from 1 to kmax.
In this work, kmax was equal 16. The fractal dimension was
calculated as the slope of the line being the linear regression
coefficient determined by the least squares method.

lηL(k) ∼ Dflη
1
k

Statistical Analysis
The analysis of variance (ANOVA) with factors: CONDITION
(pre- and post-rTMS), GROUP (BP_non-responders,
BP_responders, MDD_non-responders, MDD_responders),
BAND (delta, theta, alpha, beta, gamma), CHANNEL (1–63),
SESSION (session 1st, 10th and 20th) was performed for FD.

In case of significant effects, post hoc tests (Tukey HSD) were
performed. The statistical threshold was set at p < 0.05, with
correction for multiple comparisons by controlling the family
wise error (FWE).

RESULTS

The Higuchi fractal dimension was investigated for each of the
electrodes in both individual frequency bands (delta, theta, alpha,
beta and gamma) as well as in the entire frequency range (0.5–
45 Hz).

Differences Between Conditions After
and Before Stimulation
First, the three-way ANOVA with factors CONDITION, BAND
and CHANNEL was performed to evaluate the effect of
rTMS therapy in four groups of patients (BP_non-responders,
BP_responders, MDD_non-responders, MDD_responders).

The differences between conditions, before and after
stimulation (factor CONDITION), were found in groups:
BP_non-responders, BP_responders and MDD_responders (c.f.
Table 2).

The differences between conditions, before and after
stimulation, for the individual frequency bands: delta, theta,
alpha, beta and gamma in each of four groups are shown in
Figure 1. The interaction between factors CONDITION and
BAND was significant only for BP_non-responders group
[F(4,6930) = 2.627; p = 0.033]. Significant differences between
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FIGURE 3 | Higuchi fractal dimension for BP_non-responders (A), BP_responders (B), MDD_non-responders (C) and MDD_responders (D) in five frequency bands.
Comparison of results between 1st and 10th, 1st and 20th, and 10th and 20th session. The interaction between factors BAND and SESSION (both conditions were
included).

conditions for the individual frequency bands, evaluated by
post hoc Tukey HSD test, were marked with asterisks (c.f.
Figure 1). For BP_non-responders group the decrease in FD
value after stimulation was found mainly in delta, theta and
beta bands (Figure 1A). No significant FD differences after
stimulation were observed in any of the frequency bands in
BP_responders and MDD_non-responders (Figures 1B,C).
For MDD _responders lower values of FD were found after
stimulation for each of frequency bands, except alpha band
(Figure 1D). No significant topographical differences were
found between conditions (factors: CONDITION x CHANNEL
and CONDITION x BAND x CHANNEL) (c.f. Supplementary
Figure S1). FD changed similarly in the whole brain. Thus, the
factor CHANNEL has not been considered in the further analysis
described in subsections 3.2 and 3.3.

Changes Across Consecutive Sessions
Next, the three-way ANOVA with factors: SESSION,
CONDITION and BAND was applied in four groups separately
to study the influence of stimulation time on the effect of rTMS
therapy. Changes in FD values were analyzed before and after the
1st, 10th and 20th session of rTMS stimulation.

The effect of interaction between factors SESSION and
CONDITION was illustrated in Figure 2. Significant differences
between conditions for every session, evaluated by post hoc
Tukey HSD test, were marked with asterisks (c.f. Figure 2). In
BP_non-responders, the FD value significantly decreased after
1st session (Figure 2A). Afterward, the FD value started to
return to its previous state but slightly decreased again after
10th session. Then, after the 20th session a significant increase
of the FD occurred reaching the same level as after the 10th
session. In BP_responders, FD value did not change after the 1st
session. Afterward, the FD value increased in the second session.
However, in the 20th session FD came back to the initial level
(Figure 2B). In MDD_non-responders, the FD value significantly
increased after 1st session (Figure 2C) but after 10th session
the FD value decreased again reaching the initial level. The FD
value did not change after the 20th session. The final FD value
after the last session was slightly higher than at the beginning of
therapy (Figure 2C). The MDD_responders group did not react
to the therapy after 1st and 10th session. Nevertheless, after 20th
session, the FD value significantly decreased after stimulation
(Figure 2D).

The effect of interaction between factors SESSION and BAND
was shown in Figure 3. For BP_non-responders group, the FD
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FIGURE 4 | Higuchi fractal dimension for BP_non-responders group (A) and
for BP_responders group (B) for each band separately, showing changes in
FD values before and after 1st, 10th and 20th session. The interaction
between factors CONDITION, BAND and SESSION (separately for every
group of BP patients). Significant differences between conditions for the
individual sessions and bands, evaluated by post hoc Tukey HSD test, were
marked with asterisks.

value decreased for delta band and increased for beta band
only between 1st and 20th session (c.f. Figure 3A). The FD
for alpha band increased after 1st session but then returned to
the previous level after 10th session. For MDD_non-responders
group, FD values increased for theta band only between 10th
and 20th session (c.f. Figure 3C). For BP_responders, FD
values increased between 1st and 10th session in each of five
frequency bands, but then decreased below the initial level in
the 20th session in delta, theta, alpha and gamma bands (c. f.
Figure 3B). For beta band, the value of FD remained unchanged
between 10th and 20th session. For MDD_responders, decrease
of FD value was found in higher frequency bands (beta
and gamma) between 1st and 10th session (c.f. Figure 3D).
However, between 10th and 20th session FD value increased
again in these bands reaching the previous level. For delta
band, the value of FD increased between 10th and 20th
session.

FIGURE 5 | Higuchi fractal dimension for MDD_non-responders group
(A) and for MDD_responders group (B) for each band separately, showing
changes in FD values before and after 1st, 10th and 20th session. The
interaction between factors CONDITION, BAND and SESSION (separately for
every group of MDD patients). Significant differences between conditions for
the individual sessions and bands, evaluated by post hoc Tukey HSD test,
were marked with asterisks.

The effect of interaction between factors SESSION,
CONDITION and BAND was shown in four groups of
patients in Figures 4, 5. The analysis for BP_non-responders
in each of five frequency bands showed a significant decrease
of FD value after 1st session and a decrease of low frequency
bands (delta and theta) after 10th session (Figure 4A). The
analysis for BP_responders showed a significant increase of FD
value in each of five frequency bands, except beta band, after
the 10th session, followed by decrease of FD value after 20th
session for all bands, reaching lower level than before 1st session
(Figure 4B). For MDD_non-responders group the significant
increase of the FD values was found after 1st session in delta,
alpha and beta bands, and after 10th session in theta and beta
bands (Figure 5A). For each frequency band, the final FD value
did not changed significantly after 20th session in comparison
to the FD value before 1st session. For MDD_responders, no
significant differences after 1st and 10th sessions were found
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FIGURE 6 | Comparison of FD value between MDD_non-responders and
MDD_responders groups (A) and between BP_non-responders and
BP_responders groups (B) in each frequency band separately, for condition
before and after session. The interaction between factors CONDITION, BAND,
and GROUP (comparison between responders and non-responders
separately in groups of MDD and BP patients). Significant differences between
both groups for the individual frequency bands and conditions, evaluated by
post hoc Tukey HSD test, were marked with asterisks.

(Figure 5B). The effectiveness of the therapy appeared only after
the 20th session. The significant decrease of FD value was noted
after the 20th session in each of five frequency bands.

Differences Between Groups of Patients
Finally, to find the differences between groups of patients,
the three-way ANOVA with factors: GROUP, CONDITION
and BAND was performed. The following groups of patients
were compared: MDD-responders vs. MDD-non-responders;
BP-responders vs. BP-non-responders; MDD-responders vs. BP-
responders, and MDD-non-responders vs. BP-non-responders.
In MDD_responders higher value of FD was found for each
of frequency bands in comparison to MDD_non-responders
before as well as after stimulation. For both of groups the
highest value of FD was observed for alpha band. The
significant decrease of FD value in each frequency band
can be observed for MDD_responders group also (compare

FIGURE 7 | Comparison of FD value between BP_non-responders and
MDD_non-responders groups (A) and between BP_responders and
MDD_responders groups (B) in each frequency band separately, for condition
before and after session. The interaction between factors CONDITION, BAND
and GROUP (comparison between groups of MDD and BP patients
separately for responders and non-responders). Significant differences
between both groups for the individual frequency bands and conditions,
evaluated by post hoc Tukey HSD test, were marked with asterisks.

red lines in right panel with left panel in Figure 6A).
FD values were lower in BP_responders than in BP_non-
responders for higher frequencies (alpha, beta, and gamma
bands) after and also before the stimulation (Figure 6B).
Whereas, for delta and theta band FD was lower only
before the stimulation. The significant differences between
MDD_non-responders and BP_non-responders were found for
each frequency band. The lower FD values were observed in
MDD_non-responders for both conditions, after and before
the stimulation (Figure 7A). The results of the comparison of
FD value between BP_responders and MDD_responders were
statistically significant for delta, theta and gamma bands after
the stimulation. The FD was lower for these bands in group
of MDD_responders. Before the stimulation only differences in
alpha band were statistically significant. The FD value was higher
for MDD_responders. For other frequency bands no significant
differences were found between these groups (Figure 7B).

Frontiers in Physiology | www.frontiersin.org September 2018 | Volume 9 | Article 138583

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01385 September 27, 2018 Time: 16:53 # 9

Lebiecka et al. EEG Complexity in Depression

DISCUSSION

The analysis of FD confirmed the effectiveness of rTMS therapy
in MDD and BP. Bahrami et al. (2005) and Bachmann et al.
(2013, 2018) found that FD in BP patients was higher than
FD in healthy controls. Thus, we expected that FD would
decrease in BP after stimulation. The patients from group
of BP_responders reacted negatively to the therapy in the
10th session, but the change was not permanent (Figure 4B).
Changes of FD showed an unfavorable reaction in the initial
phase of therapy, but finally, the therapy was effective because
the FD values after the 20th session were lower for each
of five frequency bands than before the 1st session (c. f.
Figure 4B), what was expected. This may mean that patients
suffering from BP need longer therapy to be effective the
stimulation. However, further studies are required to confirm
these results.

In MDD_responders, FD decreased in each of frequency
bands after 20th session (c.f. Figure 5B). This result is in line
with the conclusions of other authors (Ahmadlou et al., 2012;
Bachmann et al., 2013, 2018; Akar et al., 2015). The authors found
the higher FD values in the MDD group in beta and gamma
bands in the frontal lobe, than in the control group, that means
the decrease of FD after stimulation is desirable in this group of
patients.

In MDD_non-responders, the response to rTMS was opposite
to the expected one at the beginning of the therapy. However, the
final FD value did not changed significantly in comparison to the
initial FD value.

In BP_non-responders the decrease in FD value after 1st
session was found in each of five frequency bands as well as
a decrease of low frequency bands (delta and theta) after 10th
session (Figure 4A). No significant changes were observed in
the last session. Thus, it can mean that the patients from the
BP_non-responders group reacted positively to a shorter rTMS
therapy.

Our results of the analysis of Higuchi fractal dimensions
showed that rTMS stimulation can be an effective therapy
in patients with MDD and bipolar disorder, however, some
differences in response to the therapy across individual groups
were found.

CONCLUSION

In this paper, the impact of rTMS on the complexity of EEG
evaluated by FD was studied for the first time. We demonstrated
that the complexity analysis of EEG data in persons with
depression subjected to rTMS allowed to find the differences
between conditions (before and after stimulation) and between
individual groups of patients (MDD and BP, responders and non-
responders) as well as to evaluate the impact of time stimulation
on these results. The results of other authors (Bahrami et al.,
2005; Ahmadlou et al., 2012; Bachmann et al., 2013, 2018;
Akar et al., 2015) showed that FD is higher in both groups
of patients with depression (MDD and BP) than in healthy

controls. Thus, FD can be a good marker of rTMS efficiency
because its changes allow to unambiguously conclude whether
the effect of stimulation is positive or negative as well as allow
to evaluate an optimal time of rTMS. Nevertheless, this study
has some limitations. A bigger number of patients in each group
as well as group of healthy controls should be examined in
the future studies to confirm these preliminary but promising
results.

Moreover, the FD is only one of many measures of
the complexity of EEG signal. The complexity can be
infer by studying of interactions between signals. The
interactions between the EEG signals can be evaluated by
different connectivity measures and indices based on graph
theory (Olejarczyk et al., 2017a,b; Olejarczyk and Jernajczyk,
2017). Recently, a new field of Network Physiology has
been developed (Bartsch et al., 2015; Liu et al., 2015;
Ivanov et al., 2016). Its objective is an investigation of
interactions not only within the brain but also between
the brain and other organs by the analysis of signals
from different non-linear dynamic systems in the human
organism. This field indicates new directions for future
research.
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Introduction: Patients with schizophrenia show cognitive deficits that are evident
both behaviourally and with EEG recordings. Recent studies have suggested that
non-linear analyses of EEG might more adequately reflect the complex, irregular, non-
stationary behavior of neural processes than more traditional ERP measures. Non-linear
analyses have been mainly applied to EEGs from patients at rest, whereas differences
in complexity might be more evident during task performance.

Objective: We aimed to investigate changes in non-linear brain dynamics of patients
with schizophrenia during cognitive processing.

Method: 18 patients and 17 matched healthy controls were asked to name pictures.
EEG data were collected at rest and while they were performing a naming task. EEGs
were analyzed with the classical Lempel-Ziv Complexity (LZC) and with the Multiscale
LZC. Electrodes were grouped in seven regions of interest (ROI).

Results: As expected, controls had fewer naming errors than patients. Regarding EEG
complexity, the interaction between Group, Task and ROI indicated that patients showed
higher complexity values in right frontal regions only at rest, where no differences in
complexity between patients and controls were found during the naming task. EEG
complexity increased from rest to task in controls in left temporal-parietal regions,
while no changes from rest to task were observed in patients. Finally, differences in
complexity between patients and controls depended on the frequency bands: higher
values of complexity in patients at rest were only observed in fast bands, indicating
greater heterogeneity in patients in local dynamics of neuronal assemblies.

Conclusion: Consistent with previous studies, schizophrenic patients showed higher
complexity than controls in frontal regions at rest. Interestingly, we found different
modulations of brain complexity during a simple cognitive task between patients and
controls. These data can be interpreted as indicating schizophrenia-related failures to
adapt brain functioning to the task, which is reflected in poorer behavioral performance.
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Highlights:

- We measured classical and multiscale Lempel-Ziv Complexity (LZCN and MLZC) of the
EEG signal of patients with schizophrenia and controls at rest and while performing a
cognitive task.

- We found that patients and controls showed a different pattern of brain complexity
depending on their cognitive state (at rest or under cognitive challenge).

- Our results illustrate the value of the MLZC in the characterization of the pattern of brain
complexity in schizophrenia on function of frequency bands.

- Nonlinear methodologies of EEG analysis can help to characterize brain dysfunction in
schizophrenia.

Keywords: schizophrenia, EEG, non-linear analysis, multiscale lempel-ziv complexity, naming task

INTRODUCTION

Patients with schizophrenia suffer from cognitive impairments
in a wide number of domains that include attention, language,
working memory, episodic and semantic memory (Heinrichs and
Zakzanis, 1998; Addington et al., 2003). However, many studies
have shown evidence that the cognitive deficit that underlies
schizophrenia is not generalized, but specific to some functions
(e.g., semantic memory, working memory) (Cohen and Servan-
Schreiber, 1992; Goldman-Rakic, 1994; Kerns and Berenbaum,
2002; Jonides and Nee, 2005). In addition, there have been many
attempts to specify the brain dysfunctions related to the specific
cognitive deficits by analyzing EEG signals. Electrophysiological
studies have traditionally used methodologies of linear analyses,
such as Event-Related Potentials (ERP) or power analysis (Kiang
et al., 2007; Hughes et al., 2012). The absence of abnormalities of
the raw EEG in patients with schizophrenia has led researchers
to study quantitative parameters of EEG (QEEG). Spectral and
coherence analyses of EEG are commonly used in the studies
of QEEG abnormalities in schizophrenia (see Hughes and John,
1999).

Recently, new approaches to the study of EEG signals
have been developed from non-linear system theories that can
be helpful to understand brain dysfunctions associated with
schizophrenia. Non-linear measures might render more adequate
to reflect the complex, irregular and non-stationary behavior
of neural processes. Some have suggested that non-linear
approaches may be more powerful than classical lineal analyses
to relate brain patterns of activation to cognition (e.g., Pereda
et al., 2005; Klonowsky, 2009). EEG signals are the result
of the non-linear combination of electrical activity generated
by interacting oscillators from the cerebral cortex and other
biological sources such as muscles. Consequently, the EEG signals
have complex non-linear structures when looking at them in the
time dimension. Most non-linear analyses have tried to quantify
the complexity of EEG signals and to relate it to functional
aspects of the neural networks. Thus, EEG complexity has been
related to the integrity of neural connectivity, and with the
number of distinct generators contributing to a given EEG signal
(e.g., Lutzenberger et al., 1995). Hence, the more complex the
signal is, the wider the distribution of cortical activation related
to it (e.g., Mölle et al., 1999). Complexity is also related to
the synchrony of oscillations of the generators. Synchronization

between oscillators has been proposed as a general mechanism
for information exchange within neural circuits (e.g., Engel
et al., 2001; Fries, 2005). In general, it has been shown that
synchrony is negatively related to complexity (Escudero et al.,
2015; Ghanbari et al., 2015). While this relationship is far from
being perfect (Ibáñez-Molina et al., 2018), highly synchronized
signals (e.g., epileptic seizures) give rise to low complexity
values (Radhakrishnan and Gangadhar, 1998). In sum, and
although the exact meaning of complexity is still a matter of
debate, complexity seems to be related to a number of variables:
connectivity of neural networks, number of oscillators involved
in the generation of signals, and synchrony of oscillations.
Hence, for a given cognitive function, complexity reflects key
functional aspects of the underlying neural sources. In general,
high levels of complexity in the EEG recording indicate that
the neural generators of the signal tend to be widely distributed
and desynchronized. On the contrary, a low level of complexity
indicates that the neural generators tend to be local and/or
synchronized.

A number of complexity measures have been developed,
some of which [the correlation dimension (D2), the Lyapunov
exponent (L1), the Lempel-Ziv complexity (LZC), and the
multiscale entropy analysis (MSE)] have been applied to EEGs
from psychiatric patients (Sohn et al., 2010; Fernández et al.,
2011; Bachiller et al., 2014). However, there are important
differences among these methods. Thus, for example, while D2
and L1 are chaos-based estimates of complexity, LZC is based
on algorithmic complexity, and MSE quantifies entropy over
multiple time scales. More relevant, D2 and L1 require a large
amount of EEG data, whereas LZC and the MSE are suitable for
short and non-stationary time series.

Most of these measures quantify the degree of randomness
or degrees of freedom of a system. Indeed, at a conceptual
level, complexity has been often interpreted as irregularity,
unpredictability, desynchrony or randomness (see Stam, 2005,
for a review). However, it has been pointed out that complexity
should not be equated to randomness, but to an intermediate
state between randomness and order (Tononi and Edelman,
1998; Stam, 2005; Yang and Tsai, 2013). Yang and Tsai (2013) have
proposed that brain complexity underlies the behavioral ability to
adapt to the constantly changing environment. From this view,
an abnormal brain complexity would give rise to either highly
ordered or highly random behavioral patterns. Both regular and
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random patterns can be indicative of pathology and represent a
deviation from complexity (Goldberger et al., 2002; Yang et al.,
2015). This idea is supported by evidence showing lower values
of brain complexity in some disorders (e.g., Alzheimer’s disease,
Stam et al., 2009), whereas higher values of complexity are found
in other disorders (i.e., schizophrenia) or during normal aging
(Yang and Tsai, 2013).

Over the last years non-linear analyses have proven their
utility to detect changes in brain complexity in some mental
disorders (Yang and Tsai, 2013), with most studies focused on
schizophrenia. (Fernández et al., 2011; Fernández et al., 2013).
Some of these studies have found that patients with schizophrenia
exhibit higher complexity than healthy controls in their EEG
signals (Li et al., 2008; Takahashi et al., 2010; Fernández et al.,
2011), although decreased complexity values have also been
reported (Hoffmann et al., 1996; Lee et al., 2001; Akar et al.,
2016). These apparently inconsistent findings might be explained
by a number of confounding variables, such as the nature of the
complexity estimates employed or the condition under which
patients are tested (e.g., rest, closed eyes or active processing).
Additionally, a relevant issue is that complexity is modulated
by age. While complexity increases with age in healthy people,
the opposite trend has been observed in patients with a mental
disorder (Fernández et al., 2011; Méndez et al., 2012).

In a recent review, Fernández et al. (2013) proposed that
three main variables seem to modulate EEG complexity in
schizophrenia: medication, age, and symptomatology. Thus,
increased complexity in schizophrenia is found in those studies
that include young patients without medication and with
a predominance of positive symptoms. In a previous study
(Fernández et al., 2011), these authors reported increased
complexity in patients with schizophrenia compared with
a control group. However, whereas complexity positively
correlated with age in the control group, patients with
schizophrenia exhibited the opposite pattern (decreasing
complexity with age). With regard to medication, some studies
have shown that antipsychotics reduce complexity (as measured
with MSE) in patients with schizophrenia (Takahashi et al.,
2010), and that antidepressants reduce the usually high values of
complexity in depression (Méndez et al., 2012).

Finally, EEG complexity also depends on the recording
conditions. Several studies have reported that complexity
increases in healthy participants while performing cognitive
tasks (arithmetic, visual and reading tasks, see Stam, 2005, for
a comprehensive review). On the contrary, Ibáñez-Molina and
Iglesias-Parro (2014) have shown that EEG complexity is lower
when healthy participants attend to visual or auditory stimuli
than when they attend to their own thoughts (mind wandering).
Furthermore, whether complexity increases or diminishes with
cognitive demands might rely on the specific brain networks
involved in the cognitive task.

In schizophrenia, most studies have focused on EEGs from
patients at rest (Fernández et al., 2011), though exceptions
exist (Kirsch et al., 2000; Li et al., 2008; Bachiller et al., 2014).
Kirsch et al. (2000) compared EEG complexity (D2) of patients
and controls at rest and while performing the continuous
performance test (CPT). While they did not find differences

between the two groups in the resting state condition, control
participants showed a decrease in complexity when performing
the cognitive task that was not observed in patients. According
to the authors of the study, the healthy controls, but not the
patients, were able to adjust their brain functioning to the
task demands. However, because they recorded EEG from a
unique electrode (in the Cz site), they were not able to explore
changes in complexity on different brain regions under cognitive
processing. Li et al. (2008) compared LZC of the EEG from
patients with schizophrenia and depression with that of controls
at rest and while performing a mental arithmetic task. Patients
with schizophrenia showed higher LZC than controls at most
electrodes. Both groups exhibited a decreased LZC during the
task, although this decrease was smaller in the control group.
More recently, Bachiller et al. (2014) compared spectral entropy
(SE) between a resting condition and a task condition (auditory
odd-ball task) in patients with schizophrenia and controls.
SE quantifies the degree of disorder in a signal. They found
that controls showed a decrease in entropy when performing
the cognitive task, compared to rest, at parietal and central
brain regions, whereas patients showed a reliable lower decrease
than controls. Similar to Kirsch et al. (2000), Bachiller et al.
(2014) failed to find differences in brain complexity between
patients and controls in the resting state condition. On the
contrary, Carlino et al. (2012) found a significant increase in EEG
complexity (D2) during “active” conditions (eyes open, counting
forward and counting backward conditions) compared to an
eyes-closed resting condition, but only in the control group. At
rest, however, the authors found greater complexity in patients
than in controls. In sum, the evidence regarding EEG complexity
while participants are performing cognitive tasks is mixed. It is
possible that differences in the cognitive demands of the tasks,
or in the non-linear measures used in different studies, underlie
these divergences.

In the present study we aimed to gain further insight into
how brain complexity changes under cognitive demands in
patients with schizophrenia and healthy controls. To this end,
we recorded EEGs from participants with schizophrenia and
healthy controls at rest and while they performed a picture
naming task. This cognitive task was selected for two reasons.
First, it is a short and easy task wherein participants have to
attend and name aloud visually presented stimuli. In addition,
and more relevant, the picture-naming task has shown to be
useful as a measure of semantic memory impairments in patients
with schizophrenia (Soriano et al., 2008), which have been widely
reported in this population (Manschreck et al., 1988; Kerns
and Berenbaum, 2002). Specifically, here we compared EEG
complexity in patients and controls in a resting state condition
(seating and with open eyes) and while they were performing
the naming task. Complexity was estimated with the classical
Lempel-Ziv complexity analysis (LZCN) and the modified LZC
to measure different frequency bands (Ibáñez-Molina et al.,
2015). This modified measure was termed Multiscale Lempel-Ziv
complexity (MLZC) and we selected it because of its several
advantages over other non-linear measures: namely, it can be
applied to short time series and non-stationary and noisy signals.
In addition, the MLZC measure allows for the exploration of the
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signal at different time scales. Previous results have shown that
the classical LZC neglects rapid components of the EEG signals
(Ibáñez-Molina et al., 2015; Kalev et al., 2015). The Multiscale
LZC, however, allows for a better characterization of EEG
complexity in different frequency bands. Most rapid components
of the EEG signals reflect local functional configurations in the
cortex, whereas slow oscillations reflect more long-range cortical
interactions (Buzsáki and Draguhn, 2004). However, a word
of caution is necessary regarding the causal role of fast and
slow rhythms, since slow oscillatory activity could reflect the
long-range coordination of faster components or the operation
of a single mechanism that generates the specific rhythm. Despite
this, the MLZC permits a better characterization of the signal
in terms of its oscillatory components and, because it is more
sensitive to rapid rhythms, it might serve as a more suitable tool
to detect local neural interactions than the classical LZC.

Based on previous results (Li et al., 2008; Takahashi et al.,
2010; Fernández et al., 2011), we expected to find higher
EEG complexity in patients, compared to controls, in the rest
condition. We also hypothesized that complexity would vary
in healthy controls while performing the naming task. More
interesting, and given that patients with schizophrenia usually
show poorer performance in naming tasks (Soriano et al.,
2008), we aimed to explore whether their EEG complexity was
modulated by the fact of performing the cognitive task. Finally,
we aimed to examine through the MLZC whether differences
in complexity between patients and controls depend on specific
components (slow or rapid) of the EEG signal.

MATERIALS AND METHODS

Participants
The patients group was composed of 18 participants attending the
Mental Health Day Hospital of the St Agustín Hospital in Linares.
In their clinical record, they were diagnosed with schizophrenia,
schizophreniform or schizoaffective disorder according to
DSM-IV criteria. The patients’ diagnosis was confirmed through
a clinical interview performed by the psychiatrist or clinical
psychologist in charge of the patient. In addition, the Spanish

TABLE 1 | Demographic and clinical characteristics of the study sample means
(and standard deviations).

Patients (n = 18) Control (n = 17)

Age, years 35.26 (8.96) 29.6 (9.42)

Females 3 6

Education 2.39 (0.21) 2.59 (0.22)

Illness duration, years 13.21 (9.47) −

GAF 45.44 (17) −

PANNS

Positive 14.9 (7.9) −

Negative 17.16 (6) −

General 34.05 (8.4) −

∗Groups did not differ significantly on any of the demographic characteristics
(p < 0.05).

version (Peralta and Cuesta, 1994) of The Positive and Negative
Syndrome Scale (PANSS) (Kay et al., 1987) was used to
evaluate patients’ current clinical state; and some additional
demographic information was obtained (see Table 1). At the
time of testing, all patients were taking antipsychotic medications
with good compliance. All the patients were receiving atypical
antipsychotics, usually risperidone, olanzapine, or clozapine.
Before participating, they were informed of the task and study
and asked to sign informed consent forms in accordance with
Ethical Committee of the Hospital.

The control group was composed of 17 healthy adult
participants. They were recruited from the family members of the
clinical and research staff of the Unit. Care was taken that none
of the control participants had a history of psychotic disorders,
or family members with psychotic disorders. In addition,
none of the participants, control or patients, had a history of
substance use disorders, neurological illness, head trauma, or
mental retardation. There were no significant differences between
patients and controls in age or educational level (see Table 1).

The number of participants per group was decided on the
basis of the sample sizes considered in previous studies using
EEG recordings on schizophrenic patients (e.g., Sabeti et al., 2009;
Carlino et al., 2012).

Task
Eighty black and white simple pictures were employed as targets.
Three additional pictures were used for practice. The pictures
were selected from the norms of Puerta-Melguizo et al. (1998).
The order of the pairs was randomized. The STIM2 software was
employed to create the task. Each trial consisted of a sequence of
stimuli, which appeared in the center of a computer screen. First,
a mask was presented for 500 ms and then the picture target was
presented for 100 ms, the mask for another 14 ms, and finally
a tone that signaled the participant to respond. Thus, responses
were delayed, in order to avoid the influence of vocal movements
on the EEG recording. Participants were instructed to look at
the center of the screen and to name the pictures as soon as
they heard the tone. The experimenter registered the participants’
responses. The task took about 10 min.

EEG Recording
EEG data were obtained with a 36 Ag/Ag Cl electrodes cap
(QuikCap), and they were recorded with a sampling frequency of
1000 Hz (22 bits). EEG was recorded at rest and while the naming
task was being performed. Participants were always seated in
a chair opposite the computer screen. A Neuroscan SynAmps
32-channel amplifier was used for data acquisition. EEG data
were applied a band-pass filter with cut-off frequencies of 1 and
30 Hz. The reference electrode was the left mastoid. The influence
of eye movements on the EEG signal was eliminated through
ERPlab. Facial movements were recorded through 4 electrodes
and segments that included them were eliminated. EEG segments
corresponding to errors in the naming task were also excluded
from the analysis. Electrodes impedance was maintained below
5 k� for all participants. The rest segments were selected from
each participant right before the task with a length of 5× 104 ms.
EEG segments from the task of 2 × 103 ms were extracted

Frontiers in Physiology | www.frontiersin.org September 2018 | Volume 9 | Article 121390

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01213 September 7, 2018 Time: 12:26 # 5

Ibáñez-Molina et al. EEG Multiscale Complexity in Schizophrenia

after the appearance of each trial. They were selected so that the
influence of the verbal responses was not included.

Analyses
Behavioral Data
A response was considered an error when the participants
stuttered or hesitated in naming the target, or they misnamed
or failed to name the target. We compared error percentages in
patients and controls. Naming times were not analyzed, since
vocal responses were delayed in order to avoid muscle influences
on the EEG recording.

Classical LZC and Multiscale LZC
Lempel-Ziv Complexity measures complexity as defined by
Kolmogorov (1965); namely, the number of bits of the shortest
computer program that can generate the analyzed time series.
Thus, LZC tests the randomness of a sequence by searching for
patterns in the series (Lempel and Ziv, 1976). Recent studies
have presented it as an effective tool in analyzing biomedical
signals (Zozor et al., 2005), and in fact it has been widely
used to characterize the EEG of several mental and neurological
disorders (Nagarajan, 2002; Aboy et al., 2006). For the present
study we employed the classical LZC (LZCN ) and the MLZC
measure introduced by Ibáñez-Molina et al. (2015). The original
LZC measure estimates the complexity of a time series by a
binarization process in which the signal is transformed into
a binary sequence by using its median as a threshold. It has
been shown that this based-on-median binarization neglects fast
components of the EEG signals (Ibáñez-Molina et al., 2015).
The MLZC can be seen as a generalization of the original LZC
because it uses multiple thresholds for binarization. Thresholds
are median-based smoothed versions of the original signals. By
increasing the width of the window used for the smoothing,
the new versions include less and less fast components. Thus,
when used as thresholds for binarization they capture the missing
fluctuations in the original series. Hence, this procedure allows
us to capture signal variations at different time scales that make
it possible to obtain a spectrum of complexity ranging from fast
to low rhythms. That is, the MLZC considers both temporal and
spectral information from the EEG signals and, consequently, it
permits the evaluation of the complexity of the different brain
rhythms and the detection of complexity variations in a specific
oscillatory band. It is also possible to relate a specific threshold
of binarization to a particular frequency band on the basis of the
sampling rate of the signal, so that the width of the smoothing
procedure can be associated with a particular frequency. Thus,
for example, to capture a rhythm of 1 Hz with a sampling rate of
1000 Hz, we need at least a smoothing with a window length of
1000 points.

Formally, a 0-1 sequence {p(n)} = s(1), s(2)...s(N), was
created by comparison of each data point x(n) in the series with
its Td in the following way:

s(n) =
{

0 if x(n) < Td
1 if x(n) ≥ Td

(1)

The first binary sequence was constructed using the median of
the entire signal as Td (TdN). The other binarizations were created
using smoothed versions of the signal as Tds. Each data point x(n)
had an unique Tdw(n) which was calculated by:

Tdw(n) = median
(
x
(
n−

wk − 1
2

)
, ...., x(n), ...,

x
(
n+

wk − 1
2

))
,

n = 1+
wk − 1

2
, .....,N −

wk − 1
2

(2)

where W = [wk,. . .,wm], k = 1,. . .,m is the vector that contains
window lengths of the smoothing procedure.

In order to obtain the LZC spectrum of all {x(n)},
each Pw(n) was explored according to the following
steps:

(a) EEG segments were analyzed using segments of 2×103 ms
and averaged for each experimental condition. In the rest
condition, long segments (5 × 104 ms) were analyzed
using a moving window procedure. The moving window
length was 2 × 103 ms with an overlap of 2 × 102 ms.
In the task condition, EEG segments were time locked to
stimulus onset for each trial. Hence, at task, a total of 80
segments of 2× 103 ms were analyzed for each participant
and then averaged to obtain a final value of MLZC.

(b) LZC was calculated for each window by means of a
complexity counter Cw(n). During a left to right scan of a
given binary sequence, Cw(n) increased by one unit every

FIGURE 1 | Regions of interest used in the study (ROI). Colors indicate the
electrodes for each specific ROI. Left frontal (blue); Frontal (red); Right frontal
(purple); Left temporal-parietal (pink); Central (yellow); Right temporal-parietal
(orange); Parietal-occipital (green).
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FIGURE 2 | Means and SE (error bars) of Classical LZC for each ROI. Labels in the x-axis indicate each ROI: Left frontal (LF); Frontal (F); Right frontal (RF); Left
temporal-parietal (TPL); Central (C); Right temporal-parietal (TPR); Parietal-occipital (PO).

time a new subsequence of consecutive characters was
encountered.

(c) Each LZCw was obtained when Cw(n) values were
normalized with

LZC =
Cw(n)

n
log2 n

(3)

where the sub index w indicates the window length of the
smoothing that produced Pw(n). Note that LZCN will refer
to the median based LZC.

(d) The final LZCw value of each signal was calculated by the
average of all values obtained with the moving window
procedure.

RESULTS

Analyses of the behavioral accuracy data indicated that patients
committed more errors (10%, SD = 7.1) than controls (6%,
SD = 3.4), though the effect only approached to statistical
significance [F(1,33) = 7.47; MSE = 73.73; p = 0.07].
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FIGURE 3 | Means and SE (error bars) of fast rhythms MLZC for each ROI. Labels in the x-axis indicate each ROI: Left frontal (LF); Frontal (F); Right frontal (RF); Left
temporal-parietal (TPL); Central (C); Right temporal-parietal (TPR); Parietal-occipital (PO).

Regarding electrophysiological data, electrodes were grouped
in seven Regions Of Interest (ROI, see Figure 1). We conducted
three mixed ANOVAs with Group as the between participants
factor, and Cognitive State (rest vs. task) and ROI (1: left frontal
2: frontal 3: right frontal 4: left temporal-parietal 5: central
6: right temporal-parietal 7: parietal-occipital, see Figure 1),
as within-participant variables. Each ANOVA was conducted on
a specific range of scales. The first analysis was performed on
the classical LZCN measure (see Figure 2). The results of this
analysis showed a reliable main effect of ROI, [F(6,198) = 13.43;
MSE = 0.001; p < 0.01]; complexity was significantly lower

in medial Central and Frontal regions than it was in the
rest of regions. The effect of group did not reach statistical
significance (F < 1). However, more importantly, we found
a significant Group × Cognitive State × ROI interaction
[F(6,198) = 2.18; MSE = 0.0003; p < 0.05]. In order to
examine this second-order interaction, we analyzed separately
the effects of ROI and Cognitive State in each group. We found
a reliable ROI × Cognitive State interaction in the control
group [F(6,96) = 26.9; MSE = 0.0008; p < 0.05], which showed
that control participants exhibited greater complexity in Left-
Temporal-Parietal regions while performing the task than at

Frontiers in Physiology | www.frontiersin.org September 2018 | Volume 9 | Article 121393

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01213 September 7, 2018 Time: 12:26 # 8

Ibáñez-Molina et al. EEG Multiscale Complexity in Schizophrenia

FIGURE 4 | Means and SE (error bars) of slow rhythms MLZC for each ROI. Labels in the x-axis indicate each ROI: Left frontal (LF); Frontal (F); Right frontal (RF); Left
temporal-parietal (TPL); Central (C); Right temporal-parietal (TPR); Parietal-occipital (PO).

rest, [F(1,33) = 6.12; MSE = 0.001, p < .05]. On the contrary,
the ROI x Cognitive State interaction did not reach statistical
significance in patients (F < 1): there were no significant
differences in complexity between rest and task in the patients
group.

In addition, we compared the groups at rest and during
task performance: planed comparisons showed that in the rest
condition complexity was higher in patients than in controls in
Right-Frontal [(F(1,33) = 5.53; MSE = 0.002; p < 0.05)] and in
Right-Temporal-Parietal regions, even though this latter effect
was statistically marginal, [F(1,33) = 3.53; MSE = 0.002; p = 0.06].
During task performance, however, there were no significant
differences between patients and controls (F < 1).

The second ANOVA was carried out to investigate the
complexity of the signals in scales ranging from LZC21 to
LZC101 (frequency bands > 10 Hz), since we aimed to
evaluate the complexity predominantly associated with fast
rhythms and low amplitudes (See Figure 3). As in the previous
analysis, the main effect of ROI was reliable [F(6,198) = 7.25;
MSE = 0.0003; p < 0.051], and it reflected that complexity
was lower in Central Region than in the rest of regions. The
effect of Group [F(1,33) = 1.22; MSE = 0.0257; p = 0.28]
and the interactions between ROI and Group (F < 1), and
Cognitive State and Group [F(1,33) = 2.1; MSE = 0.0127;
p = 0.16] did not reach significance, but the interaction of
Group × Cognitive State x ROI, F(6,198) = 2.1; MSE = 0.0001;
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p = 0.05 did. In order to examine this second-order interaction,
we analyzed the effects of ROI and Cognitive State in each
group. Again, we found a significant ROI × Cognitive State
interaction in the control group [F(6,96) = 2.8, MSE = 0.0002;
p < 0.05], while the ROI × Cognitive State interaction was
not significant in the patients group (F < 1). In addition,
planned comparisons showed higher levels of complexity
in the rest condition for patients than for controls in
Left-temporal-parietal [F(1,33) = 4.41; MSE = 0.002; p < 0.05],
and Right-temporal-parietal [F(1,33) = 4.13; MSE = 0.002;
p = 0.05] sites, while no effects were found in the task condition
(all ps > 0.5).

The third analysis (see Figure 4) was applied to scales from
LZC121 to LZC201 to explore slow rhythms (frequency bands in
an approximate range of 5–8 Hz). It revealed a main effect of ROI
[F(6,198) = 15.95; MSE = 0.0004; p < 0.01] and a similar pattern
of complexity across regions to that found in previous analyses;
The effect of Group (F < 1), and the interactions between
ROI and Group [F(6,198) = 1.80; MSE = 0.0004; p = 0.10],
and Cognitive State and Group [F(1,33) = 2.07; MSE = 0.0117;
p = 0.16] did not reach significance, but the interaction of
Group x Cognitive State x ROI was significant [F(6,198) = 2.19;
MSE = 0.0002; p < 0.05]. Interestingly, the pattern of results
differed from that of the fast scales, indicating that the complexity
of EEG signals was similar in patients and in controls in the rest
condition (F < 1), but complexity in patients tended to be lower
than in control participants in the task condition. Although this
tendency did not reach statistical significance, it was marginally
significant at the central region [F(1,33) = 3.18; MSE = 0.003;
p = 0.08].

Finally, and because the ANOVAs failed to capture the
rest to task changes in complexity in patients and controls
(see Figures 2, 4 in nearly all the regions), we explored this
general pattern by categorizing the rest vs. task changes as ‘up’
(Task-Rest > 0) or ‘down’ (Task-Rest ≤ 0), and then performing
a non-parametric chi-squared test on each region. The results of
this analysis (see Table 2) revealed that the differences between
the groups in complexity changes from rest to task are especially
evident in fast rhythms.

TABLE 2 | Non-parametric analyses of complexity changes from Rest to Task in
patients vs. controls on each region of interest.

LZCN χ2 (gl = 1),
p-value

LZC21−101 χ2

(gl = 1), p-value
LZC121−201 χ2

(gl = 1), p-value

FL 3.54, 0.06 1.37, 0.24 2.44, 0.12

F 4.80, 0.03∗ 1.37, 0.24 0.77, 0.38

FR 4.80, 0.03∗ 3.44, 0.06 1.45, 0.23

TPL 0.31, 0.58 3.73, 0.05 1.70, 0.19

C 0.72, 0.39 6.41, 0.01∗ 3.73, 0.05

TPR 2.62, 0.10 6.56, 0.01∗ 0.72, 0.39

PO 0.70, 0.40 4.06, 0.04∗ 2.91, 0.09

∗Groups differed significantly in the Task – Rest qualitative variable (p < 0.05). Task
vs. Rest complexities were characterized by a categorical variable with the value
‘up’ in the case that the transition from rest to task was positive, and the value
‘down’ if the transition was negative. Differences between the control and patients
groups were analyzed for each region of interest by χ2 tests.

DISCUSSION

EEG complexity is being increasingly used to explore brain
dynamics in healthy and pathological states, since complexity
indexes might more adequately reflect the complex, irregular,
non-stationary behavior of neural processes than more
traditional ERP measures. The present work aimed to explore
possible differences in EEG complexity between patients with
schizophrenia and controls under conditions involving different
cognitive demands. Overall, our results showed two important
patterns: (1) patients exhibited higher complexity in frontal
regions than control participants at rest; and (2) while control
participants showed an increment in complexity from rest to
task, there were no reliable differences in complexity between
rest and task in the patients group.

Regarding the higher complexity in frontal regions for patients
at rest, our findings are in accordance with those from most
recent studies with patients with features similar to the ones
displayed by our patients’ sample. Thus, although there are
some divergent results (Li et al., 2008; Takahashi et al., 2010;
Fernández et al., 2011; Akar et al., 2016), higher complexity
has been mainly observed in young, drug-naive patients with
active symptomatology, whereas lower complexity than controls
has been observed in studies with medicated chronic patients
(Fernández et al., 2013). Because our patients were recruited from
a Mental Health Day Hospital, although they were medicated,
most of them were young adults with active psychotic symptoms
(see Table 1). In addition, higher complexity at rest has also been
found in other mental disorders such as depression (Méndez
et al., 2012), while lower complexity has been found in Alzheimer
Disease (AD) (Jeong, 2004; Stam et al., 2009). As we mentioned,
higher complexity values would reflect more and more widely
distributed neural nodes oscillating at a lower synchrony. Hence,
high complexity in schizophrenia (and other severe mental
disorders as depression) could be indicative of isolation or
disconnection of brain nodes (Friston et al., 1995) as well as
disorganization of spiking activity (Takahashi et al., 2010).

The finding of lower complexity in patients with
schizophrenia in some of previous studies could be due to
the elevated requirements of some measures (classical measures
as D2 and L1 require stationary dynamical systems). Distinct
tolerance to noise or requirements related to length of time-series
are other variables that could explain the lack of agreement in
results. In the context of mental disease, Sabeti et al. (2009)
compared the discriminative power of several measures and
found that Higuchi fractal dimension, Lempel-Ziv complexity
and Entropy indexes were the most informative in discriminating
between patients with schizophrenia and controls.

The second and more remarkable finding in the present
study is that we observed (with the classical LZCN measure) an
increase in EEG complexity in Left-Temporal-Parietal regions
during task performance only in controls, with the group of
patients showing comparable complexity at rest and during task
performance. Although it had been suggested that changes in
complexity during cognitive processing might depend on the
specific brain regions involved in the task (Elbert et al., 1994),
research regarding this modulation has been scarce. In the
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present study the cognitive task was a visual naming task.
Although it might seem low-demanding at first sight, picture
naming involves a number of cognitive processes including visual
perception, semantic memory and phonological retrieval (Race
and Hillis, 2015). Studies employing functional neuroimaging
or lesion data converge in the idea that semantic memory
is generally dependent on the left hemisphere, specifically on
ventral and lateral regions of the posterior temporal lobe (Chao
et al., 1999; Hamberger, 2015; Race and Hillis, 2015). The lack
of observable changes in brain complexity during the task in
patients was also associated with impairment in performance
in the naming task in patients. Together, these findings would
support the idea that patients encountered difficulties to adapt
their brain functioning to the task demands.

In addition, the use of the MLZC provides relevant data
regarding differences in complexity between patients and
controls in fast and slow components of the EEG. As we
mentioned, the classical LZC neglects rapid components of the
EEG signals (Ibáñez-Molina et al., 2015; Kalev et al., 2015). In
contrast, the Multiscale LZC, allows for a better characterization
of EEG complexity in different frequency bands. A study by Yang
et al. (2013) has also spotlighted the importance of frequency
bands in the estimation of complexity in AD. In this study,
they found that increased severity of AD was associated with
decreased MSE complexity as measured by short-time scales, but
with increased MSE complexity as measured by long-time scales.
In a similar vein, Kalev et al. (2015) have shown that MLZC is
able to capture differences in complexity between patients with
depression and controls in the high frequency scales, whereas the
classical LZC did not differentiate between the groups because
it underestimated high frequency components of the EEG signal.
Our results also illustrate the value of the MLZC in the estimation
of complexity in different frequency bands. While the classical
LZC estimate indicated that patients exhibited higher values of
complexity at rest in some brain regions, separate analyses for
rapid and slow scales pointed to a more complex pattern of
results. Specifically, patients showed higher values of complexity
during rest only for fast rhythms. On the contrary, control
participants tended to present higher values of LZ during the
task in slow rhythms. Although the functional meaning of these
results is not evident to us, they support the idea that complexity
should be separately assessed for different rhythms. To fully
understand complexity for rapid and slow oscillatory rhythms,
there are two aspects to consider: (1) the more complex a signal
is, the more variability it exhibits, and (2) while the variability
for fast rhythms reflects local functional configurations in the
cortex, for slow oscillations complexity captures more long-range
cortical interactions (Buzsáki and Draguhn, 2004). Hence, one
could speculate that fast oscillations reflecting local dynamics
of neuronal assemblies are more heterogeneous for patients at
rest. This might result from an irregular by-default functioning
at a local level. On the contrary, the higher complexity of the
slow rhythms in controls might result from a more flexible
establishment and switching between a large variety of long
range cortical interactions directed to adapt themselves to the
task at hand. Finally, the non-parametric analyses of rest-task
changes showed that differences between patients and controls

from rest to task were especially evident in fast frequencies,
which is in line with the findings by Kalev et al. (2015) in
depression. These results could be indicating that differences
between patients and controls in cognitive functioning would rely
more on local neural configurations than on the dynamics of
whole-brain networks. The fact that the non-parametric analyses
revealed differences between patients and controls in parietal and
occipital electrode locations in fast scales, could be interpreted
as reflecting abnormal processing in primary visual areas. This
finding is in line with experiments showing that schizophrenic
patients exhibit abnormal beta-gamma induced rhythm during
visual perception (Uhlhaas et al., 2006; Uhlhaas and Singer,
2010; Grützner et al., 2013). However, we should note that this
explanation is tentative and the present results are novel and need
replication.

Some limitations of the study need to be considered.
First, and most important, the small sample prevented us
from analyzing the relationship between demographic and
symptomatic characteristics of patients and EEG complexity.
As previously mentioned, age and symptomatology influence
complexity measures (Fernández et al., 2013). Second, all
patients were on antipsychotic treatment, which could have
impacted on their EEG patterns. Finally, we evaluated brain
complexity of participants while performing a naming task.
Cognitive tasks vary in a number of variables: processing system
(attention, language, memory...), perceptual domain (visual,
auditory. . .), and difficulty, among others. Therefore, it would
be highly speculative to extrapolate results from a visual naming
task to other cognitive tasks. Future research should address
how changes in brain complexity are modulated by cognitive
demands.
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Spinal cord stimulation (SCS) has been shown to improve the consciousness
levels of patients with disorder of consciousness (DOC). However, the underlying
mechanisms of SCS remain poorly understood. This study recorded resting-state
electroencephalograms (EEG) from 16 patients with minimally conscious state (MCS),
before and after SCS, and investigated the mechanisms of SCS on the neuronal
dynamics in MCS patients. Detrended fluctuation analysis (DFA), combined with
surrogate data method, was employed to measure the long-range temporal correlations
(LRTCs) of the EEG signals. A surrogate data method was utilized to acquire the genuine
DFA exponents (GDFAE) reflecting the genuine LRTCs of brain activity. We analyzed
the GDFAE in four brain regions (frontal, central, posterior, and occipital) at five EEG
frequency bands [delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (30–45 Hz)]. The GDFAE values ranged from 0.5 to 1, and showed temporal
and spatial variation between the pre-SCS and the post-SCS states. We found that
the channels with GDFAE spread wider after SCS. This phenomenon may indicate that
more cortical areas were engaged in the information integration after SCS. In addition,
the GDFAE values increased significantly in the frontal area at delta, theta, and alpha
bands after SCS. At the theta band, a significant increase in GDFAE was observed in the
occipital area. No significant change was found at beta or gamma bands in any brain
region. These findings show that the enhanced LRTCs after SCS occurred primarily
at low-frequency bands in the frontal and occipital regions. As the LRTCs reflect the
long-range temporal integration of EEG signals, our results indicate that information
integration became more “complex” after SCS. We concluded that the brain activities at
low-frequency oscillations, particularly in the frontal and occipital regions, were improved
by SCS.

Keywords: spinal cord stimulation, minimally conscious state, electroencephalogram, long-range temporal
correlations, detrended fluctuation analysis
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INTRODUCTION

Disorder of consciousness (DOC) is a state of prolonged altered
consciousness (Eapen et al., 2016). Patients with DOC can be
subdivided into minimally conscious state (MCS) and vegetative
state (VS) according to their behavioral signs of awareness.
Patients with MCS show inconsistent, but discernible signs of
consciousness such as command-following or other purposeful
behaviors (Giacino et al., 2002).

It has been suggested that spinal cord stimulation (SCS)
is an effective brain intervention technique for patients with
MCS (Georgiopoulos et al., 2010; Mattogno et al., 2017). SCS
has several advantages over deep brain stimulation such as its
simplicity, its lesser degree of invasiveness, and its programmable
parameters (Bai et al., 2017a). To date, the underlying
mechanisms of SCS and its effects on neural responsiveness
remain poorly understood (Visocchi et al., 2001; Yamamoto
et al., 2012). The effects of SCS in MCS patients can be assessed
by several electroencephalography (EEG) measurements (Bai
et al., 2017a,b) including entropies, detrended fluctuation analysis
(DFA) (D’Rozario et al., 2013), neuronal oscillation coupling
(Köster et al., 2014), and integrated information based features
(Gallimore, 2015). Entropy is an important measure of both the
randomness and the disorder of a dynamic system (Carhart-
Harris et al., 2014). Both sample entropy and permutation
entropy have been shown to be effective at distinguishing states of
consciousness (i.e., wakefulness, deep sevoflurane, and isoflurane
anesthesia) (Wang et al., 2014; Liang et al., 2015). Approximate
entropy has been found to decrease during the transition from
wakefulness to sleep. During wakefulness, it has been shown to be
higher in adults than in children (Lee et al., 2013). The coupling
strength of narrow-band neuronal oscillations in brain networks
has also been shown to be correlated with consciousness (Buzsaki
and Draguhn, 2004). Previous studies have suggested that
the synchronization of neuronal oscillations is correlated with
sensory, motor, and cognitive events (Varela et al., 2001; Jacobs
and Kahana, 2010). Based on the synchronization phenomenon
in neuronal activities, many measures, such as phase-amplitude
coupling, coherence, and phase synchronization, have been
proposed for consciousness assessment (Liang et al., 2016; Bai
et al., 2017b; Pal et al., 2017). Our previous study has suggested
that bicoherence, global synchronization (Bai et al., 2017a), as
well as global and local networks (Bai et al., 2017b), can be altered
by SCS with 70 Hz in MCS patients.

In addition to the features mentioned above, it has also been
hypothesized that consciousness emerges from the critical state of
brain activity. The hierarchy of long-range temporal correlations
(LRTCs) implies the long-term memory of a brain system (Zhang
et al., 2018). In the temporo-spatial theory of consciousness
(TTC), LRTCs are postulated to be a core mechanism of
consciousness (Northoff and Huang, 2017). They exist in “scale-
free” systems based on fractal theory (Richard et al., 2012).
“Scale-free” systems involve two phenomena: self-similarity and
self-affinity. Self-similarity means that a small part of the fractal
structure is similar to the entire structure, while self-affinity
indicates that the properties of a fractal scale are different along
various dimensions (Mandelbrot, 1999). These two phenomena

cannot be easily characterized by their respective means and
standard deviations (Eke et al., 2000). Therefore, “scale-free”
systems can only be measured by the power–law function, with
only a mathematical function, without a typical scale (Richard
et al., 2012). Accordingly, DFA is widely used to analyze the
scale-free time series (Palva et al., 2013) with three correlation
properties of the signals: (1) uncorrelated scaling (DFA > 1),
correlated scaling (0.5 < DFA < 1), and anti-correlated scaling
(0 < DFA < 0.5) (Hu et al., 2001). The correlated scaling
(0.5 < DFA < 1), also known as LRTC, indicates long-range
temporal dependency characteristics of the time series. Many
studies have investigated the LRTCs of the neural signals under
general anesthesia (Krzeminski et al., 2017; Zhang et al., 2018),
during sleep (Tagliazucchi et al., 2013; Allegrini et al., 2015), and
in states of self-consciousness (Huang et al., 2016). These studies
have found that the brain dynamics present robust LRTCs during
conscious states. Whereas, the LRTCs are disrupted during
unconscious states. Given that the LRTCs can reflect complex
neural information processing, we hypothesize that the effect
of SCS can be measured by LRTCs in the long-range temporal
dependency framework. Based on this hypothesis, this study
combines the DFA and the surrogate data method to measure the
genuine LRTCs. We then investigate the temporo-spatial changes
of genuine LRTCs of the EEG signals in MCS patients during SCS.

MATERIALS AND METHODS

Subjects
The eligibility criteria for the subjects were: (1) patients had
been diagnosed as MCS by the JFK Coma Recovery Scale-
Revised (CRS-R) (Kalmar and Giacino, 2005); (2) patients were
in stable clinical states; and (3) there were no confounding
complications (e.g., infections). This study was approved by the
ethics committee of the PLA Army General Hospital. Informed
consent to participate in the study was obtained from legal
representatives of the patients.

Data Recording and Preprocessing
EEG recording was conducted at least 3 weeks after the SCS
surgical procedure. Treatments other than SCS that could modify
neural excitability were avoided during EEG recording. The
SCS stimulation protocol follows our previous study (Bai et al.,
2017a), summarized as follows: The SCS stimulator (Prime
Advanced, Medtronic Inc., Minneapolis, MN, United States) was
placed under the anterior chest wall. The stimulation frequency
was set at 70 Hz, based on clinical experience. The amplitude
and duration of the pulses were 3 V and 210 µs, respectively.
The stimulator produced a periodic voltage difference between
the two stimulation electrodes, with a duration of 20 min. The
electrodes sent pulses to stimulate the specific level of the spinal
cord. All subjects were in the supine position, and in a wakeful
state, throughout the study. If the subjects showed to be in a
sleep state (i.e., prolonged eye closure or sleep waveforms, such
as spindles or K-complex waves appearing in the EEG), the study
would be paused. The JFK CRS-R arousal facilitation protocol
would then be performed to arouse the subjects.
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A 10 min EEG was recorded both before and after SCS.
A 32-channel EEG cap (BrainAmp 64 MRplus, Brain Products,
Germany) with Ag/AgCl electrodes was used for EEG recording.
Electrode positioning was based on the international 10–20
electrode placement system, as shown in Figure 1. The sampling
rate of the system was 1 kHz. A conductive EEG gel was used
to remove cutin and oil from subjects’ scalps. The electrode–skin
impedance of subjects was decreased to less than 5 k� before the
recording.

The EEG signal preprocessing was conducted with EEGLAB
(version 12.0.2.5b) in a MATLAB environment (Version, 2014a,
MathWorks Inc.; Natick, MA, United States). Continuous data
segments with significant noise were rejected based on visual
inspection. The 50 Hz power frequency artifact was removed
by the notch filter. The EEG data was filtered into 1–45 Hz
and downsampled to 100 Hz using symmetric finite impulse
response filters (MATLAB function firls.m) and the MATLAB
function resample.m, respectively. The relevant components of
the artifacts, such as eye movements and muscle activities, were
identified and removed by the independent component analysis
function in EEGLAB. After pre-processing, the EEG signals were
divided into five frequency bands: delta (1–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz).

Genuine DFA Exponent (GDFAE)
We combined the DFA and the surrogate data method to evaluate
the effect of SCS at different oscillation bands. DFA is a classic
measure of the LRTCs of EEG activity (Peng et al., 1995). It
quantifies the fluctuations of a time series based on the power-
law method. DFA can systematically remove the trend of each
order from the data. Thus, it has a robust effect against noise.

FIGURE 1 | Schematic of space participation of five regions for 32-channel
EEG. The seven channels in the red ellipse constituted the frontal region (F).
The seven channels in the green ellipse were divided into the central region
(C). The yellow ellipse comprised nine channels represents the parietal region
(P). The blue ellipse comprised nine channels represents the occipital region
(O). T3 and T4 in the gray circles were classified into the temporal region.

The surrogate data method has been widely applied to constrain
spurious detection in non-linear analysis (Dolan and Spano,
2001). In this study, surrogate data tests were utilized to acquire
the GDFAEto reflect the genuine LRTCs of brain activities. The
flow chart of the algorithm and the step-by-step results are shown
in Figures 2, 3, respectively.

The GDFAE can be obtained in three steps. The detailed
process is as follows:

Step 1: Calculating the original DFA exponent of the EEG
data.
(1) Remove the mean value xave of the amplitude
envelope of the EEG time series x (t) to obtain a series
independent of the global linear trend. The cumulative
sum of the detrended amplitude y

(
k
)

is calculated as:

FIGURE 2 | Flow diagram for GDFAE calculation.
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FIGURE 3 | Step-by-step illustration of DFAE calculation. (A) Delta band preprocessed EEG signals totaling 6 min (3 min before SCS and 3 min after SCS) from
participant No. 2 at channel FP2. The red dash line denotes the SCS. (B) Delta band EEG signals of 30 s were extracted from the two states (blue line) and
amplitude envelope (black line). (C) Detrended cumulative amplitude, without the global linear trend, of both states. (D) LDCA of time window of length 6.3 s (top),
3.2 s (middle), and 2.0 s (bottom); the thick dash line parallel to the timeline represents the time windows, the length of each piece on behalf of the length of the time
window–green for 6.3 s, pink for 3.2 s, and orange for 2.0 s. (E) The fitting of the logarithmic fluctuation function for both real EEG signals and surrogate EEG data
performed for the pre-SCS state; red asterisks and hollow blue circles represent the real and the surrogate EEG respectively. The big asterisks correspond to the
same color time window in panel (D). The red and black lines are the linear regression fitted lines. To obtain a reliable exponent, the log times (windows) in the gray
area were excluded from the linear regression. The windows which are too narrow (in the lower left corner) exhibit inherently steeper scaling, whereas windows too
large (i.e., those in the upper right corner) may induce the lacking of data for reliably estimating the variability. The right part is the corresponding slope (DFAE) value
of the function. The blue circles represent DFAEsurr and the red asterisk represents DFAEoriginal . This significance test shows that this channel, in this state, is a
spurious DFA channel. Thus, the GDFAE = 0. (F) The fitting of the logarithmic fluctuation function for the post-SCS state. Similar to panel (E), but the significance
test showed that it is a genuine DFA channel in this state (GDFAE = DFAEoriginal = 0.9251).
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y
(
k
)
=
∑k

i=1
[
x
(
k
)
− xave

]
, where xave =

1
N
∑N

i=1 x (i), N
indicates the length of x (t). The new time series y

(
k
)

is
called the global detrended cumulative amplitude (gDCA).
To clarify the DFA procedure, sequences of 30 s were
extracted and calculated for the presentation. The extracted
data of 30 s from both states (pink rectangle in Figure 3A)
and their amplitude envelopes, are shown in Figure 3B.
The gDCA for both states (pre- and post-SCS) were thus
obtained (Figure 3C).
(2) The gDCA y

(
k
)

was divided into several non-
overlapping subsequences of length l. Each subsequence
corresponded to a time window, and the length of the time
windows was defined as eight times larger than the filter
order and eight times smaller than the recording length
(Hardstone et al., 2012). The least squares method (LSM)
was applied to fit the trend of each time window as a
straight line yn

(
k
)
= aik+ bi, where ai and bi were the

undetermined coefficients. In each time window, yn
(
k
)

was
subtracted from the primary y

(
k
)

to remove the local trend.
The fluctuation function F

(
l
)

was quantified as a square
deviation function, that is, the average root mean square
of the locally detrended cumulative amplitude (LDCA) as
follows:

F
(
l
)
=

√√√√ 1
N

N∑
k=1

[
y
(
k
)
− yn

(
k
)]2 (1)

All fluctuation functions F
(
l
)

of the time windows of
different length l were calculated, where l is defined
equidistantly on a logarithmic scale. Figure 3D shows the
LDCA of a time window with lengths of 6.3 s (top), 3.2 s
(middle), and 2.0 s (bottom).
(3) The fluctuation function F

(
l
)

and window length l were
transformed into a logarithmic coordinate, and LSM was
used to estimate the linear trend and slope α of the fitted
line. α is also commonly referred to as the Hurst scaling
exponent H (Colombo et al., 2016) or the DFA exponent
(Krzeminski et al., 2017). The DFA exponent of the original
EEG was abbreviated as DFAEoriginal. In Figures 3E,F, the
green, pink, and orange asterisks correspond to the time
windows of 6.3, 3.2, and 2.0 s in (D), respectively.
Step 2: Calculating the surrogate data set for the original
EEG signals.
First, the real recorded EEG signals x (n) were transformed
into the frequency domain X

(
k
)

by the discrete Fourier
transform as follows: X

(
k
)
=
∑N−1

n=0 x (n) e−j2πkn/N .
Second, a uniform random sequence v

(
k
)

was produced.
The phase spectra of X

(
k
)

was replaced by the random
sequence v

(
k
)

with the amplitude spectra of X
(
k
)

remaining unchanged, that is, S
(
k
)
=
∣∣X (k)∣∣ ejv(k).

The existing spurious temporal correlations in the
signal were replaced, but the spectrum shape was
preserved. Finally, the surrogate data were obtained
through the inverse discrete Fourier transform
s (n) = 1

N
∑N−1

k=0 S
(
k
)

ej2πkn/N(Schreiber and Schmitz,

1996, 2000). For the frequency band of each channel, 30
groups of surrogate data were produced.
Step 3: Obtaining the GDFAE at each frequency band.
The surrogate DFA exponents were calculated for each
band and termed DFAEsurr . The Wilcoxon signed-rank
test (signrank.m) was applied to eliminate any spurious
DFA exponents. The DFAEsurr was tested with DFAEoriginal.
Their difference sequence was tested with the hypothesis
that the element in the sequence comes from a distribution
with a median of 0. The significance threshold was set to the
95% confidence level. If the null hypothesis was rejected at
the 5% level (p < 0.05 and h = 1), the DFAEoriginal would be
different from the distribution of 30. Thus, the DFAEoriginal
was the exact GDFAE. Otherwise, the DFAEoriginal would
have been considered a spurious LRTC value. This can also
be described as follows:

GDFAE =
{

DFAEoriginal : h = 1, p < 0.05
null : otherwise (2)

The GDFAE describes the robust correlation characteristics
of a time series (Colombo et al., 2016). When GDFAE=0.5,
the signals are white noise with no autocorrelation.
When GDFAE=1, the signals are 1/f noise. When 0.5 <
GDFAE < 1, the signals are temporally anti-correlated.
When 0.5 < GDFAE < 1, the recorded EEG signals are
positive temporal correlations, that is, LRTCs. Thus, the
neural activity at a given time could potentially have been
influenced by the neural activities which had occurred
several minutes before (Maxim et al., 2005; He, 2011).
Figures 3E,F present the surrogate analysis of two EEG
periods. The logarithmic function and the corresponding
window length for the real EEG (red asterisks) and the
surrogate data (blue circle) are fitted in the red and black
lines, respectively. The right part of Figure 3E shows the
distribution of the DFAE for the real EEG (DFAEoriginal)
and the surrogate EEG (DFAEsurr). DFAEoriginal is not
distinctly different from the distribution of DFAEsurr . This
indicates that this EEG segment lacks genuine LRTCs
(GDFAE = 0). Conversely, Figure 3F shows the GDFAE,
which has genuine LRTCs.

In the DFA measurement, selecting the size of the windows
for linear fitting is crucial (Kantelhardt et al., 2001). If the length
of each window is too large, there will not be enough windows
for calculation, and the results may be inaccurate. Although
this problem can be alleviated by overlapping windows, window
length must be no larger than 10% of the signal length (Hardstone
et al., 2012). Conversely, if the length of each window is too
short, more scaling will be observed in the fluctuation function.
With the increasing length of the windows, the scaling behavior
will converge asymptotically. The lengths of the windows (l)
are represented equidistantly on a logarithmic scale (see in
Figure 3E). The latter, because of the fluctuation functions [F

(
l
)
]

and the corresponding l, will be transformed into a logarithmic
coordinate to obtain slope α. Linear fitting was performed only
for windows in which the fluctuation function depicted a straight
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line to get a reliable exponent α. To eliminate the edge effect, we
used an automated process (Fell et al., 2000). First, a histogram
of the first derivative for each pair of the adjacent fluctuation
data was plotted. Second, the majority of the derivative values
were grouped together. Finally, the 90th percentile value of the
distribution was chosen as the threshold for fitting (Krzeminski
et al., 2017).

Statistical Analysis
This study evaluated the changes in LRTCs after SCS in MCS
patients. We analyzed the GDFAE in different brain regions, at
different frequency bands, before and after SCS. Considering the
multi-factor effects, a three-way repeated analysis of variance
(three-way ANOVA; anovan.m) was applied to analyze the
interactions and the main effects of the three factors: (I) brain
states (two levels: pre- and post- SCS), (II) frequency bands
(five levels: delta, theta, alpha, beta, and gamma), and (III) brain
regions (four levels: frontal, central, parietal, and occipital). After
obtaining the interactions and the main effects of the three
factors, a post hoc test with the Bonferroni correction was used to
determine the significant difference of the GDFAE values between
the two states in each brain region, at each frequency band.

RESULTS

According to the eligibility criteria, 16 MCS patients were
enrolled in this study. Their demographic data and clinical
diagnoses are presented in Table 1. According to our previous
study, the EEG channels were divided into five regions. The
frontal region (F): FP1, FP2, Fz, F3, F4, F7, and F8; the central
region (C): FC1, FC2, FC5, FC6, Cz, C3, and C4; the parietal
region (P): CP1, CP2, CP5, CP6, Pz, P3, P4, P7, and P8 (Figure 1);
the occipital region (O): PO3, PO4, PO7, PO8, Oz, O1, and O2;
the temporal region: T3 and T4. Since the temporal region only

TABLE 1 | Patient demographics.

Subject CRS-R Etiology Post_injury (months)

1 8 Hemorrhage 18

2 9 Hemorrhage 5

3 10 Traumatism 9

4 10 Hemorrhage 12

5 7 Ischemia-hypoxia 4

6 8 Ischemia-hypoxia 3

7 7 Hemorrhage 10

8 9 Traumatism 3

9 7 Hemorrhage 5

10 7 Hemorrhage 4

11 7 Ischemia-hypoxia 3

12 7 Hemorrhage 11

13 10 Ischemia-hypoxia 4

14 8 Traumatism 13

15 8 Ischemia-hypoxia 4

16 9 Hemorrhage 6

CRS-R, coma recovery scale-revised.

included two channels, we excluded the temporal region from the
analysis of the changes in LRTCs.

The EEG spectra of all channels were calculated to reveal the
changes in EEG oscillation after SCS. To illustrate this, Figure 4
shows the power spectra of one subject in which the power was
concentrated at the delta and theta bands. The spectra of the
different channels was diverse. The power of the high frequency
bands (beta and gamma) increased after SCS in most channels
such as FP1, FP2, and F7. In some of the channels, such as FC1,
FC2, and CZ, it did not. The color bar was set from−25 to 20 dB
to highlight the differences between the two states (pre- and post-
SCS). The maximum power differential between the pre-SCS and
the post-SCS state was 15 dB.

Then, the DFAEoriginal and DFAEsurr of each channel, at
each frequency band, were calculated to obtain the GDFAE.
If the DFAEoriginal deviated from the distribution of DFAEsurr ,
this indicated that the EEG data in this state had genuine
LRTCs. Figure 5 shows the distribution of the genuine and
spurious LRTCs at each frequency band for one subject, both
before and after SCS. The quantity of genuine LRTCs channels
increased after SCS. However, the significant increases in spatial
distribution were not consistent for each frequency band. The
proportions of genuine LRTC channels at each frequency band
are presented in Table 2. The results indicate that at all five
frequency bands, the spatial distribution of the genuine LRTCs
broadened after SCS.

To explore how SCS modulated the LRTCs at different
frequency bands, the averaged GDFAE values of the 32 channels
for each subject, at each neural oscillation band (delta, theta,
alpha, beta, and gamma), were calculated. The descriptive
statistics for the averaged GDFAE in the pre-SCS and post-
SCS states are presented in Figure 6. The mean and standard
deviation values in Figure 6 are listed in Table 3. The value of
the averaged exponents in both states ranged from 0.5 to 1. The
GDFAE values at the delta, theta, and alpha bands were larger
than those at the high-frequency bands (i.e., beta and gamma).
The mean values of the averaged GDFAE increased significantly
in the post-SCS state compared to those from the pre-SCS state,
especially at the delta (p = 0.039), theta (p = 0.021), and alpha
(p = 0.032) bands. The results of the multiple comparison test are
shown in Figure 6. Furthermore, the standard deviation of the
GDFAE was smaller at the alpha band than it was at the other
frequency bands.

To analyze the effect of SCS on different spatial regions,
the GDFAE values of the five frequency bands were analyzed
(including four brain regions). The topoplot function in EEGLAB
was applied to obtain a two-dimensional topographical map of
the GDFAE value. The spatial distributions of the averaged non-
zero GDFAE values of the 16 subjects at each frequency band
are presented in Figure 7. Non-zero GDFAE values ranged from
0.5 to 1, indicating that the EEG dynamics were presented in
the LRTCs. Moreover, the LRTCs were stronger in the post-SCS
state at the delta, theta, and alpha frequency bands (Figure 7).
Lastly, the spatial distribution showed an increase in the frontal
and occipital regions.

The GDFAE statistics for all 16 patients are shown as box
plots in Figure 8. Three-way ANOVA and a multiple comparison
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FIGURE 4 | The power spectrum of 32 channels in the corresponding position of one participant (No. 1 in Table 1). The spectrum was computed with the
short-time Fourier transform with a Hamming window. The blue represents the lower power and the dark red represents the higher power. The black line in each
spectrum block represents the interposition of the SCS.

FIGURE 5 | Surrogate data results for one participant (No. 7 in Table 1). (A,B) are the spatial distribution of the genuine and spurious DFA channels at five frequency
bands, at pre- and post-SCS states. The solid red circle represents the genuine DFA channel and the black crosses represent the spurious DFA channel.
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TABLE 2 | The proportion of the significant GDFAE in pre- and post-SCS stage, at different frequency bands [Median (min–max)].

Delta Theta Alpha Beta Gamma

Pre-SCS 0.91 (0.84–1.00) 0.87 (0.75–0.97) 0.92 (0.91–0.94) 0.92 (0.78–1.00) 0.88 (0.75–1.00)

Post-SCS 0.94 (0.91–1.00) 0.93 (0.72–1.00) 0.93 (0.81–1.00) 0.93 (0.81–1.00) 0.93 (0.88–1.00)

FIGURE 6 | Descriptive statistics for the averaged GDFAE for all patients. This includes the bar (mean) and the error bar (standard deviation) of the averaged GDFAE
at five frequency bands, at pre- and post-SCS states. The asterisk denotes a p-value less than 0.05 in multiple comparison test, with Bonferroni correction.

TABLE 3 | Descriptive statistics for average GDFAE of each participant in pre- and post-SCS stages, at different frequency bands (mean ± SD).

Delta Theta Alpha Beta Gamma

Pre-SCS 0.809 ± 0.052 0.770 ± 0.042 0.750 ± 0.034 0.643 ± 0.033 0.642 ± 0.052

Post-SCS 0.835 ± 0.070 0.797 ± 0.049 0.769 ± 0.024 0.653 ± 0.044 0.653 ± 0.050

FIGURE 7 | (A) Spatial distribution topographic of the non-zero GDFAE at each frequency band in pre-SCS state. (B) Topographic of the post-SCS state.
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FIGURE 8 | Box plot of the GDFAE for all 16 patients. Each graphic includes both states of all four regions at one frequency band. The symbol “∗∗∗” denotes a
p-value less than 0.001, “∗∗” denotes a p-value less than 0.01, and “∗” denotes a p-value less than 0.05.

test (multcompare.m) with the Bonferroni correction were used
to test significance. The three-way ANOVA analysis showed the
interactions and the main effects of the three factors [state (I),
frequency band (II), and brain region (III)]. The interactions of
I∗II and I∗III were both significant (p < 0.001 and p < 0.05,
respectively). This indicated that the changes in the GDFAE after
SCS were related to the brain regions and frequency bands. In
other words, the variation between the pre- and the post-SCS
GDFAE in different brain regions or at different frequency bands
varied in degree. The main effects of factor I were significant
(p < 0.001), indicating that the GDFAE values in pre- and post-
SCS states were significantly different. A multiple comparison
test analyzed the difference between the pre- and post-SCS for
the different brain regions and frequency bands. We used the
Bonferroni correction for the number of frequency bands and
brain regions to account for the repetition of testing. Figure 8
shows that the GDFAE significantly increased at delta, theta
and alpha bands after SCS. At the delta band, the significant
increase was in the frontal region (p < 0.001). At the theta
band, a significant increase was found in the frontal (p < 0.05)
and occipital regions (p < 0.001). A significant increase at the
alpha band was also observed in the frontal region (p < 0.001).
However, no significant increase or decrease was found at the
beta or gamma bands in any brain region. The indices in the box
plots were not normally distributed (Lilliefors test). Therefore,
all indices were expressed as medians (min–max), and are listed
in Table 4. The p-values of the significance test for the GDFAE
statistics are shown in Table 5.

DISCUSSION

This study investigated the dynamic brain activity changes in pre-
and post-SCS state of MCS patients. The GDFAE was employed
to assess the LRTCs of EEG signals, recorded from 16 MCS
patients. We analyzed the GDFAE changes in different brain

regions, at different frequency bands. The results indicated that
the LRTCs in the post-SCS state were more enhanced than those
in the pre-SCS state, in some regions and frequency bands. The
main findings are as follows: (i) The proportion of the non-zero
GDFAE in the post-SCS state was higher than that of the pre-
SCS state [i.e., the quantity of channels with GDFAE increased
at all frequency bands in the post-SCS state (Table 2)]. This
indicated that the long-range temporal integration became more
widespread after SCS. (ii) The GDFAE value increased after SCS,
especially at the lower frequency bands (delta, theta, and alpha).
The increased GDFAE suggested that the LRTCs in this neural
oscillation had become stronger after SCS. (iii) The LRTCs of the
frontal region significantly increased in the post-SCS state at the
delta, theta, and alpha frequency bands. The occipital region also
showed a significant increase at the alpha band (Figure 8 and
Table 5). The dominant enhancement of LRTCs in the frontal
region and at the alpha frequency band could provide more
evidence for the potential mechanisms of SCS in modulating the
brain activities of MCS patients.

This study utilized the DFA method. In addition to DFA,
other measures and theories have been proposed to analyze
the EEG signals. Among them, entropy is an important non-
linear method. Both the fluctuation of the entropy and the DFA
exponents of the EEG signals can indicate the complexity of the
brain system (Lee et al., 2004; Morabito et al., 2012). However,
when applied to pathologic signals, DFA is recommended
over entropy due to its capability to discriminate and predict
the occurrence of a pathological state (e.g., epileptic seizure)
(Cirugeda-Roldán et al., 2012).

According to the DFA methodology, the LRTCs in EEG
signals are related to conscious behaviors. The larger fluctuation
corresponded to the strengthening of the long-term memory of
the underlying neural processes. When the LRTCs are weakened,
the information integration tends to break down or decline
(Thiery et al., 2018). For example, Krzeminski et al. (2017) found
a breakdown in LRTCs at the alpha frequency band during
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TABLE 4 | Descriptive statistics for GDFAE in different brain regions in pre- and post-SCS stages, at different frequency bands [Median (min–max)].

Delta Theta Alpha Beta Gamma

Pre-F 0.81 (0.77–0.86) 0.76 (0.72–0.80) 0.74 (0.71–0.77) 0.68 (0.60–0.73) 0.62 (0.60–0.70)

Post-F 0.86 (0.79–0.91) 0.78 (0.74–0.83) 0.77 (0.75–0.80) 0.65 (0.62–0.71) 0.64 (0.60–0.70)

Pre-C 0.81 (0.75–0.85) 0.77 (0.74–0.81) 0.75 (0.71–0.78) 0.63 (0.60–0.68) 0.64 (0.60–0.69)

Post-C 0.83 (0.75–0.90) 0.78 (0.75–0.84) 0.76 (0.73–0.79) 0.66 (0.61–0.70) 0.63 (0.60–0.70)

Pre-P 0.81 (0.77–0.86) 0.77 (0.73–0.81) 0.75 (0.71–0.80) 0.60 (0.60–0.68) 0.62 (0.60–0.66)

Post-P 0.83 (0.74–0.89) 0.78 (0.75–0.82) 0.77 (0.74–0.80) 0.64 (0.61–0.67) 0.63 (0.60–0.69)

Pre-O 0.79 (0.76–0.83) 0.76 (0.73–0.80) 0.73 (0.70–0.79) 0.62 (0.59–0.66) 0.60 (0.57–0.67)

Post-O 0.81 (0.76–0.87) 0.81 (0.76–0.86) 0.77 (0.73–0.80) 0.62 (0.60–0.66) 0.63 (0.60–0.70)

Pre-F, pre-SCS stage in frontal region; Post-F, post-SCS stage in frontal region; Pre-C, pre-SCS stage in central region; Post-C, post-SCS stage in central region; Pre-P,
pre-SCS stage in parietal region; Post-P, post-SCS stage in parietal region; Pre-O, pre-SCS stage in occipital region; Post-O, post-SCS stage in occipital region.

TABLE 5 | p-Value of the significance test for the GDFAE statistics in Figure 8.

Delta Theta Alpha Beta Gamma

F 1.108e-04 0.035 3.149e-05 0.782 1.000

C 0.100 0.275 0.461 0.996 0.937

P 0.442 0.758 0.761 1.000 0.215

O 0.756 2.469e-07 0.178 0.995 0.929

general anesthesia. The DFA exponents decreased from the value
associated with wakeful state to that of general anesthesia. The
authors hypothesized that the brain activity exhibited robust
LRTCs, and thus could be disrupted during general anesthesia.
A similar phenomenon has also been observed during sleep
with a decrease in long-term memory in the default mode and
attention networks (Tagliazucchi et al., 2013). Insomnia has also
been found to be related to LRTCs. Individuals who experienced
worse sleep quality tended to have stronger LRTCs during
wakefulness (Colombo et al., 2016). Furthermore, the LRTCs
could be controlled by engaging an intrinsic neuroregulation
through a closed-loop neuro-feedback stimulation–the LRTCs
were found to be stronger during stimulation (Zhigalov et al.,
2016). Based on the studies mentioned above, the fluctuations in
the LRTCs were related to neural behaviors. Thus, in our results,
the increased LRTCs may indicate that a more “complex” cortical
information integration is restored after the SCS. From the
perspective of complexity, various studies have shown that loss
of consciousness is correlated with a decrease in complexity, such
as in general anesthesia (Alonso et al., 2014; Liang et al., 2015;
Schartner et al., 2015; Hudetz et al., 2016) and sleep (Priesemann
et al., 2013). We concluded that the SCS increases brain dynamics
in MCS patients.

After SCS, not only did the value of GDFAE increase,
but the non-zero (genuine) proportion of DFA increased as
well. To obtain the genuine proportion of DFA, the DFA was
combined with the surrogate data method. The crux of the
surrogate data method is to eliminate the non-linear correlation
by reconstructing the power spectrum while maintaining the
same linear feature. The advantage of surrogate data is that
it preserves the linear stochastic structure and the amplitude
distribution of the original series (Lucio et al., 2012). The
two most commonly used algorithms for generating surrogate
data are the amplitude-adjusted Fourier transform (AAFT)

and the iterated AAFT (Rath and Monetti, 2008). The AAFT
is considered a robust surrogate data-generated method and
requires less computation than other methods (Pritchard et al.,
2010). Using the AAFT, a GDFAE can be achieved that can
reflect genuine LRTCs. If the DFAE is not genuine, there
will be no LRTCs. Our results showed that the genuine
LRTCs are spread more widely after the SCS. Also, more
cortical areas were engaged in information integration after
the SCS.

The results of this study have also revealed that most
of the increased LRTCs occurred at the delta, theta, and
alpha frequency bands. This suggests a frequency specificity
for the LRTCs in MCS patients. Several other pathological
investigations have found that the frequency-specific of LRTCs,
such as the theta-band LRTCs, decreases in patients with major
depression disorder (Linkenkaer-Hansen et al., 2005). Alpha-
band LRTCs have also been shown to decrease in patients with
Alzheimer’s disease (Montez et al., 2009). In propofol-induced
unconsciousness, no frequency-specific LRTCs were observed
(Krzeminski et al., 2017). It has been speculated that cross-
frequency interactions play a key role in this phenomenon. The
temporal dynamic changes at one frequency band may affect
other bands, given that the lower frequency oscillations (i.e.,
delta, theta, and alpha bands) in MCS patients are typically
different from those of healthy subjects (Fingelkurts et al.,
2012).

The spatial statistics showed that the GDFAE significantly
increased in the frontal region at the delta (p < 0.001), theta
(p < 0.05), and alpha (p < 0.001) band. The frontal cortex region
is responsible for the higher cognitive functions (Frith and Dolan,
1996; María et al., 2010), providing an area for various networks
to play out different scenarios (Mesulam, 2002). Yampolsky et al.
(2012), suggested that the frontal cortex is vital for awareness
and attention. The present study found that the LRTCs increased
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primarily in the frontal region after SCS, at both the delta and
alpha bands. As higher cognitive functions are correlated with
the prefrontal region, we hypothesized that SCS could affect
these MCS functions by enhancing the temporal integration.
The LRTCs also significantly increased in the occipital region
at the theta band (p < 0.001). It has been suggested that the
occipital cortex is involved in language processing (Bedny et al.,
2011). Tosoni et al. (2015) have found that the occipital cortex
is related to coherent visual motion and responding. Therefore,
the significantly enhanced LRTCs in the occipital region after SCS
indicate that SCS may impact MCS patients’ brain functions, such
as language processing and visual functions.

LIMITATIONS

This study has two limitations. First, the GDFAE indices had
a range of 0.6–1 (from the pre-SCS to the post-SCS state).
Krzeminski et al. (2017) found that the DFA was 0.9 in a wakened
state and 0.6 under general anesthesia at the alpha oscillation in
electrocorticographic data recordings. In our study, after the SCS,
the DFA exponents of some patients passed 0.9, but these patients
remained in MCS. We could not confirm whether the high DFA
(>=0.9) meant that the patients had been conscious after the SCS.
However, the relative changes in the GDFAE indices revealed the
tendency for change in the complex brain system. Furthermore,
an arbitrary quantification based on one parameter to assess the
complex brain system is limited. Further studies should consider
the multi-dimensional features to analyze the mechanism of the
SCS (Kim et al., 2018). The multi-dimensional features should be
considered to analyze the mechanism of the SCS in further studies
(Kim et al., 2018). Second, as the brain activities of MCS patients
have pathological oscillations, the dynamics of the system are

different from those in a normal brain. The finding that LRTCs
are correlated with consciousness has been established from
studies of healthy brain tissue. Similar conclusions should be
interpreted cautiously for MCS patients.

CONCLUSION

The SCS showed a strong effect on EEG signals in patients with
MCS whose long-range temporal integrations of brain activity
had significantly increased (at low-frequency bands) in the
frontal and occipital regions. Considering its close relationship
with level of consciousness, we suggest that the GDFAE could
serve as a new tool to explore the mechanisms of SCS in MCS
patients.
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Analysis of heart rate variability (HRV) can be applied to assess the autonomic nervous
system (ANS) sympathetic and parasympathetic activity. Since living systems are non-
linear, evaluation of ANS activity is difficult by means of linear methods. We propose to
apply the Higuchi fractal dimension (HFD) method for assessment of ANS activity. HFD
measures complexity of the HRV signal. We analyzed 45 RR time series of 84 min
duration each from nine healthy and five diabetic subjects with clinically confirmed
long-term diabetes mellitus type II and with diabetic foot ulcer lasting more than
6 weeks. Based on HRV time series complexity analysis we have shown that HFD: (1)
discriminates healthy subjects from patients with diabetes mellitus type II; (2) assesses
the impact of percutaneous auricular vagus nerve stimulation (pVNS) on ANS activity
in normal and diabetic conditions. Thus, HFD may be used during pVNS treatment, to
provide stimulation feedback for on-line regulation of therapy in a fast and robust way.

Keywords: Higuchi fractal dimension, heart rate variability, autonomic nervous system, vagus nerve stimulation,
diabetes

INTRODUCTION

Analysis of HRV represents a common tool for assessment of autonomic cardiac regulation and
provides information about pathophysiological changes in various diseases (Task Force of the
European Society of Cardiology the North American Society of Pacing Electrophysiology, 1996;
Ashkenazy et al., 1999; Klonowski, 2007; Pierzchalski et al., 2011; Bian et al., 2012; Jiang et al., 2013;
Shaffer and Ginsberg, 2017). Based on evaluation of HRV, it was recently suggested that auricular
vagus nerve stimulation (VNS) positively influences the ANS by activating its parasympathetic
branch (La Marca et al., 2010; Kampusch et al., 2013, 2015a,b) and deactivating its sympathetic
branch (Clancy et al., 2014; Murray et al., 2016). Estimation of sympathetic and parasympathetic
activity of ANS is necessary for an accurate adjustment of auricular VNS, the task that is difficult
to achieve and potentially vulnerable to erroneous interpretation with standard linear methods
(Skinner et al., 1992; Yeragani et al., 1993; Wagner and Persson, 1998; Klonowski, 2007; Sharma,
2009; Sassi et al., 2015).

Abbreviations: ANS, autonomic nervous system; HFD, Higuchi fractal dimension; HRV, heart rate variability; pVNS,
percutaneous auricular vagus nerve stimulation; SD, standard deviation.
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Herein, we propose to apply a HFD algorithm (Higuchi, 1988),
for assessment of ANS activity based on HRV. HFD is simple,
fast and it is applicable in real-time calculations. In contrary to
the linear methods, HFD can be directly applied to HRV series
in time domain and it is suitable for short time series analysis,
i.e., of 100–200 data points of a non-stationary signal. HFD needs
to be provided with only one input parameter kmax, specifying
a maximal distance between the points compared in the time
series. As the HFD measures the complexity of the curve that
represents the analyzed signal on a plane, it always attains values
between 1 and 2. The value of 1 corresponds to a regular time
series (simple curve has Euclidean dimension equal 1) while for
Gaussian-type noise HFD may attain different values: 1.5 for
Brownian, 1.8 for pink, and 2.0 for white noise (Klonowski, 2007,
2011).

Up to date, the Higuchi algorithm was widely used in analysis
of biomedical signals (Skinner et al., 1992; Klonowski, 2007, 2011;
Sharma, 2009; West, 2010; Di Ieva et al., 2015; Kesić and Spasić,
2016) but only several papers presented HFD evaluation of HRV
(Yeragani et al., 1993; Diosdado et al., 2010; Pierzchalski et al.,
2011; Kamath, 2013; Sassi et al., 2015; Kesić and Spasić, 2016;
Tavares et al., 2016; Wajnsztejn et al., 2016; Gomes et al., 2017).
Hence, the aim of our research was to assess whether, based on
HRV time series analysis, HFD would: (1) discriminate healthy
subjects from patients with diabetes mellitus type II; (2) assess
the impact of pVNS on ANS activity in normal and diabetic
conditions.

MATERIALS AND METHODS

Data
We retrospectively analyzed 56 RR time series, of 84 min
duration each, from an open-label pilot study registered at
ClinicalTrials.gov (no. NCT02098447). The study was approved
by the local ethics committee of the Medical University of
Vienna (no. 1924/2013) and by the Austrian Agency for Health
and Food Safety. The RR time series were recalculated from
ECG recordings obtained from nine healthy and five diabetic
subjects, aged 40–80 years, with clinically confirmed long-term
diabetes mellitus type II, and diabetic foot ulcer (ulcus cruris)
lasting for more than 6 weeks (Table 1). Subject’s exclusion
criteria were: participation in another clinical trial over the
last 5 weeks before the experiment; addiction to substance
abuse; autonomous nervous system dysfunction (except diabetic
polyneuropathy); medical treatment with vasoactive substances;
history of heart arrhythmia or presence of an active implantable
device. Women in childbearing age were not included if
pregnant or nursing. All diabetic subjects had a history of
diabetes in average(SD) of 14(5) years. The ECGs were acquired
by means of a MP36 recording system with a three-lead
Einthoven II derivation (BIOPAC Systems, Inc., Goleta, CA,
United States) and a sampling rate of 1 kHz, for further
calculation of heart rate and HRV signals. The measurements
were obtained between February 24, 2014 and April 3, 2015.
The heart rate was calculated using proprietary MATLAB
algorithms with manual control (normal-normal RR series,

TABLE 1 | Demographic characteristics of healthy and diabetic subjects (p-values
for differences in age and BMI are given) included in the study (Ref.
ClinicalTrials.gov no. NCT02098447).

Healthy subjects (n = 9) Diabetic subjects (n = 5)

Sex (male/female) 4/5 4/1

Age (y.o.) 50.7 ± 7.2 53.8 ± 11.1 (p = 0.63)

BMI (kg/m2) 23.8 ± 3.3 34.6 ± 7.5 (p < 0.001)

extrasystoles, and artifacts excluded manually). All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

Each of the healthy and diabetic subjects underwent four
sessions of pVNS mediated via four needle electrodes, with one
acting as the reference electrode, in vagally innervated regions
of the right auricle (Kampusch et al., 2013, 2015a,b; Kaniusas
et al., 2015). Each session consisted of five consecutive phases:
B- baseline measurement (10 min), S1- first pVNS (22 min),
P1- baseline measurement after the first pVNS (20 min), S2-
second pVNS (22 min), P2- baseline measurement after the
second pVNS (10 min). All measurements were performed at
comparable daytimes.

Eleven out of 56 RR time series were excluded because of
significant artifacts. The artifacts were caused by a low quality of
the raw data (7 time series) or presence of cardiac arrhythmia
in the signal (4 time series). Therefore, further analysis was
performed on 45 RR time series (28 for healthy and 17 for
diabetics).

In order to standardize the length of the series, every RR
record was linearly resampled with 1 Hz. Low frequency of
resampling was used to preserve the original characteristics of
the signal. Higher sampling frequencies would change the shape
of the original RR curve by introducing additional samples and
extending the total length of the signal, subsequently affecting
the estimation of real HFD values by introduction of low
frequencies.

Higuchi Fractal Dimension Algorithm
Calculations were performed by means of an in-house
implementation of the HFD algorithm in MATLAB R2016b (The
Mathworks Inc., Natick, MA, United States; Academic License,
IBBE PAS). HRV signals were analyzed within windows of 100
data points displaced by a 50 consecutive samples across the
signal, which resulted in 99 HFD values for each of the RR time
series. The window of 100 data points reflected approximately
1.5 min windows in RR time series. Consecutively, every phase
in each of the time series consisted of the following number of
HFD values: B- 11 HFD values; S1- 25 values; P1- 24 values; S2-
25 values; P2- 14 values.

Estimation of the Optimal kmax
Parameter
In order to find an optimal kmax parameter, allowing clear
differentiation between healthy and diabetic subjects, the HFD
was calculated in all of the 45 RR time series, for kmax ranging
from 2 to 50 (Figure 1). Calculation for kmax above 50 was not
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FIGURE 1 | Fluctuation of aggregated average ± SD of HFD values for
healthy and diabetic subjects, calculated for kmax parameter from 1 to 16.
Clear differentiation between subjects obtained for kmax = 5, by means of
two-sided Wilcoxon ranksum test (p < 7.97e–25).

possible due to the window length of 100 samples – maximal
distance between compared samples was less than 1/2 of the
window length. Optimal kmax was chosen based on a clear
separation of the mean of the aggregated HFD values for healthy
and diabetic subjects, and on the minimization of the two-sided
Wilcoxon ranksum test p-value for comparison of medians of
the HFD values. Subsequent analyses were performed for HFDs
calculated with the chosen parameter kmax = 5. (cf. 3.1, Figure 1)

Aggregated Distributions of HFD
Values – Overall
In each of the RR time series, 99 HFD values were calculated.
HFDs aggregated from the time series were tested by Shapiro–
Wilk normality test, to confirm non-normal distribution of
the values. Afterwards, the aggregated HFD distributions were
computed in healthy and diabetics from 2,772 and 1,683 HFD
values, respectively. Fifth, 25th, 75th, and 95th percentiles, means,
medians, SDs, skewness, and kurtosis were calculated separately
in both HFD distributions, for subsequent comparison.

Average HFD Values Across the Time
Series
Mean representative vectors of HFDs were calculated in respect
to time (t) in healthy and diabetics, for comparison by means of
Wilcoxon matched-pairs signed rank test. For visual presentation
of the results, the average ±95% confidence intervals of the
aggregated HFD values from healthy and diabetics were plotted
in function of time. Pearson’s linear correlation coefficient was
calculated between the average HFDs(t) and the time course
of the experiment in both groups. Results were considered
significant if correlation exceeded 50% with a p-significance value
<0.05.

Average HFD Values Within the
Experimental Phases
To assess whether the HFDs for healthy and diabetics are
changing overtime between B, S1, P1, S2, and P2 phases,
average ± SD of aggregated HFD values were calculated for each
phase of the time series in each of the subjects separately. As a
result, each of the subjects was represented by 5 average ± SD
HFD values. Afterward, two-way analysis of variance (ANOVA)
was applied to reveal significant differences between the average
HFDs in healthy and diabetic groups, in respect to the phase of
experiment. Bonferroni’s multiple comparison test was used in
search of differences between specific phases of the time series.
Whiskers-box plots of the aggregated HFDs within the phases
were generated for visual representation of the results.

Aggregated Distributions of HFD Within
the Experimental Phases
To check whether pVNS changes the shape of HFD distribution
overtime, 5th, 25th, 75th, and 95th percentiles, means, medians,
SDs, skewness and kurtosis were calculated for the HFD
aggregated distributions from B, S1, P1, S2, and P2 phases
separately, for subsequent comparison. Afterwards, 10 bins-wide
histograms of the aggregated HFD distributions were computed
within the phases, for healthy and diabetic subjects separately. To
objectively assess the magnitude of the changes caused by pVNS,
contrast histograms were calculated as a ratio of difference to sum
of bins heights between previously computed histograms for S1

TABLE 2 | Numerical characteristics of HFD aggregated distributions for experimental phases B, S1, P1, S2, P2 in healthy and diabetic subjects.

Healthy subjects Diabetic subjects

Overall B S1 P1 S2 P2 Overall B S1 P1 S2 P2

5th percentile 1.29 1.34 1.30 1.28 1.29 1.26 1.42 1.45 1.44 1.37 1.44 1.37

25th percentile 1.38 1.42 1.39 1.37 1.38 1.33 1.60 1.65 1.64 1.59 1.59 1.51

75th percentile 1.59 1.57 1.61 1.59 1.59 1.55 1.85 1.92 1.85 1.83 1.85 1.80

95th percentile 1.76 1.75 1.75 1.76 1.78 1.70 2.00 2.00 1.98 1.98 2.00 1.99

Mean 1.49 1.50 1.51 1.49 1.50 1.45 1.72 1.77 1.74 1.71 1.72 1.65

Median 1.48 1.49 1.49 1.48 1.48 1.43 1.73 1.77 1.76 1.72 1.72 1.63

SD 0.14 0.12 0.14 0.15 0.15 0.15 0.17 0.17 0.16 0.18 0.17 0.19

Skewness 0.42 0.75 0.33 0.42 0.52 0.37 –0.30 –0.64 –0.53 –0.38 –0.12 0.18

Kurtosis 2.80 3.48 2.42 2.48 2.83 3.35 2.44 2.99 2.87 2.59 2.27 2.17
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FIGURE 2 | Mean ± 95% confidence intervals of HFD values during the
course of experiment, for healthy and diabetic subjects separately.

FIGURE 3 | Whiskers-box plot for HFD values aggregated in respect to the
phase of experiment, for healthy (H) and diabetic (D) subjects separately.
Whiskers represent the range of min-max HFD values. B, S1, P1, S2, P2 –
phases of the experiment. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

and B; P1 and S1, S2 and P1, P2 and S2, and P2 and B phases in
both groups.

Statistical Analysis
All calculations and statistical analyses were performed by means
of MATLAB R2016b.

RESULTS

Estimation of the Optimal kmax
Parameter
The aggregated HFD values for healthy and diabetics were found
as the most statistically different for kmax = 5, by means of
a two-sided Wilcoxon ranksum test (p < 0.001). Hence, the

optimal kmax parameter, allowing clear differentiation between
the healthy and diabetes group, was chosen as 5.

Aggregated Distributions of HFD
Values – Overall
Shapiro–Wilk normality test revealed that HFD values,
aggregated jointly from healthy and diabetic subjects, do
not form a normal distribution (W = 0.9745, p < 0.05).
Characteristics of HFD aggregated distributions (i.e., 5th, 25th,
75th, and 95th percentiles, means, medians, SDs, skewness, and
kurtosis) are presented in Table 2.

Average HFD Values Across the Time
Series
Wilcoxon matched-pairs signed rank test revealed statistical
differences between the average HFD(t) values in healthy and
diabetics (W = 4,950, 99 pairs, p < 0.0001). The mean(median)
difference between the groups was 0.226(0.230). Absolute
Pearson’s linear correlation coefficient between the average
HFD(t) values and the time course of experiment was larger in
diabetics (r = –0.56, p < 0.0001), than in healthy (r = –0.44,
p = 0.0002; Figure 2).

Average HFD Values Within the
Experimental Phases
Two-way ANOVA showed significant differences between the
average HFD’s from different experimental phases, in healthy and
diabetic subjects. The differences were visible between the healthy
and diabetic group [F(1,43) = 60.79, p < 0.0001], and due to the
experimental phases [F(4,172) = 10.80, p < 0.0001]. Bonferroni’s
multiple comparisons test showed significant differences in mean
HFD values between B and P2, S1 and P2, and S2 and P2
phases both in healthy (p < 0.05, p < 0.01, and p < 0.05,
respectively) and diabetics (p < 0.001, p < 0.01, and p < 0.05,
respectively). The mean HFD values were significantly different
between healthy and diabetics in all phases (largest p < 0.05)
except P2 in diabetic subjects, which was not different from B,
S1, and P2 in healthy (Figure 3).

Aggregated Distributions of HFD Within
the Experiment Phases
Table 2 presents numerical characteristics of HFD aggregated
distributions for experimental phases B, S1, P1, S2, P2 (5th, 25th,
75th, and 95th percentiles, means, medians, SDs, skewness and
kurtosis) in healthy and diabetic subjects. Figure 4 shows 10
bins-wide histograms of the aggregated HFD distributions for the
phases and Figure 5 shows contrast histograms for comparison
of the distributions between S1 and B; P1 and S1, S2 and P1,
P2 and S2, and P2 and B phases, for healthy and diabetics. The
characteristics and the histograms were calculated in total from
4,455 HFD values. Overall mean(median) ± SD HFD values
were found as 1.49(1.48) ± 0.14 and 1.72(1.73) ± 0.17 for
healthy and diabetic subjects, respectively. In diabetic subjects,
skewness of aggregated HFD distributions was observed to
change from negative (–0.64) to positive (0.18) between the
experimental phases (Pearson’s correlation coefficient r = 0.98;
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FIGURE 4 | Histograms of aggregated HFD distributions from B, S1, P1, S2, P2 experimental phases, for healthy and diabetic subjects separately.

FIGURE 5 | Contrast histograms of HFD distributions for comparison of S1 and B; P1 and S1, S2 and P1, P2 and S2, and P2 and B experimental phases, for
healthy and diabetic subjects separately.
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R2 = 0.96, p < 0.01). The opposite, but not monotonic (and
not significantly different from zero slope) effect was observable
in the healthy group (r = 0.54; R2 = 0.29, p = 0.35). Moreover,
kurtosis of the distributions was found consistently dropping
over the experimental phases only in diabetics.

DISCUSSION

This study advances knowledge in HRV analysis in healthy and
diabetic subjects. By means of our implementation of Higuchi’s
method, overall mean ± SD of aggregated HFD values were
found higher for diabetics than for healthy subjects (Figure 1
and Table 2). Significant differences in mean values of HFD
aggregated distributions were found between the B, S1, and P2
phases in both groups. It is also worth to highlight that the mean
HFD from P2 in diabetics was found not different from that in B,
S1, and P2 phases in healthy (Figure 3). The results indicate no
significant influence of pVNS on mean HFD during or directly
after the stimulation in both groups. However, the effect seems
to be delayed in time and its overall permanence was more
explicit in diabetics than in healthy subjects. Moreover, skewness
of the aggregated HFD distributions was rising significantly from
negative to positive between the phases in diabetics, while a clear
trend was not observable in healthy.

Our findings agree with the changes observed in spectral
analysis of the RR time series, like the total power (TP – total
variability), high frequency power (HF – parasympathetic
activity), low frequency (LF – mixed sympathetic and
parasympathetic activity) power, and the LF/HF ratio
(sympathovagal balance) in the presented subject population
(Kampusch et al., 2015b, unpublished data). TP, HF, LF, and
LF/HF significantly differ between healthy and diabetic subjects
at baseline and converge due to stimulation. Increases in those
parameters could be shown due to stimulation in healthy and
diabetics, indicating an increased parasympathetic activity and
changed sympathovagal balance, like also observed in HFD
analysis here. Further studies are required to understand in
detail the interrelation of the evaluated HFD parameters with
ANS measures. However, our findings are in accordance with
previous reports regarding the HFD or detrended fluctuation
analysis (Ashkenazy et al., 1999) of the HRV signal in normal
conditions, congestive heart failure and heart transplanted
patients (Cerutti et al., 2007), single or multiple lesions stroke
(D’Addio et al., 2009), in arrhythmia (Pierzchalski et al., 2011),
during meditation (Diosdado et al., 2010; Kamath, 2013), guided
breathing exercises (Tavares et al., 2016), in children with ADHD
hyperactivity disorder (Wajnsztejn et al., 2016), in healthy
subjects immediately after physical exercises (Gomes et al., 2017),
or in diabetes (Malpas and Maling, 1990).

Our results indicate a slight pVNS-induced shift of HFD
values from assembled close to 2 (chaotic signal) to lower values,
in diabetics. The shift was observed mostly for the HFDs above
the 50th percentile of distribution and was confirmed by the
change in the distribution’s skewness and kurtosis (Table 2
and Figure 4). Moreover, a relative increase in HFDs below
1.6 is observable in P2, compared to B in diabetics. The

FIGURE 6 | Receiver operating curve calculated from average HFD values
within the experimental phases, for each healthy and diabetic subject (in total
140 HFD values for healthy and 85 for diabetic subjects).

effect is connected with a smaller decrease for HFDs above
1.6 (Figure 5). In contrary, pVNS seems to affect the whole
distribution of the HFD values equally in healthy. The shape of
the HFD distribution was not changed here substantially over the
experiment (Figure 4), however, a slight increase in the higher
HFDs associated with a decrease in HFDs of lower range is
observable between P2 and B (Figure 5).

As higher HFD values correspond to the presence of higher
frequencies in the signals Fourier spectrum (Yeragani et al., 1993;
Klonowski et al., 2006) our observations would suggest that
pVNS may increase the parasympathetic (see above) and decrease
the sympathetic activity of ANS in diabetic conditions, which
is in line with (Clancy et al., 2014) for healthy subjects. Such
observation implies VNS-induced stabilization of ANS balance
in diabetic subjects. It is worth to note that due to neuropathy a
lower parasympathetic and lower sympathetic activity is generally
observed in diabetes, compared to normal conditions (Task Force
of the European Society of Cardiology the North American
Society of Pacing Electrophysiology, 1996). Moreover, we found
diabetic subjects showing larger SD of HFD values in all of the
experimental phases (“more chaotic” RR signal), so pVNS seems
to have a “fine-tuning” effect on ANS activity. The effect in
healthy is much weaker, since pVNS seems to alter their ANS
activity within the range of auto regulation capabilities.

Limitations of our study include the necessary predefinition
of the input parameter kmax, in advance. Herein, we have
experimentally set kmax to 5. Higher kmax values would provide
underestimation, while lower provide overestimation of HFD
(HFD close to 1 or to 2, respectively). In both situations the
distinction between the healthy and diabetic group might be
not possible (Figure 1). Further, with respect to the included
subject groups, a significant difference in BMI of healthy and
diabetic subjects (Table 1) needs to be considered as a potential
co-founding factor when analyzing ANS function. We have
performed analysis of HRV time series recalculated from original
ECG signals. It was previously shown that HFD may provide
similar results when applied to raw data (Pierzchalski et al., 2011).
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Hence, it would be worth to compare HFD analysis with
spectral analysis performed on the same HRV time series,
or to apply both analyses to the original ECG signals from
diabetic and healthy subjects. Additionally, physical activity and
medication were not documented during the study for diabetic
subjects.

Hence, our results indicate that HFD provides high resolution
insight into ANS activity during pVNS based on HRV time series
analysis. Simplicity of HFD makes the assessment of ANS activity
prospectively possible in on-line systems and may bring accuracy
(Figure 6) to both diagnostic systems and therapeutic closed-loop
pVNS systems.

CONCLUSION

We have shown that the HFD assesses the ANS activity and
differentiates healthy from diabetic subjects, based on HRV
signals. Moreover, HFD provides fast and robust distinction
between action of parasympathetic and sympathetic ANS
activity. Because of its simplicity, HFD may be easily used in
pVNS systems to provide direct stimulation feedback for on-
line regulation of therapy. Hence, our results have potential
implication for patients’ care and technological advancement of
pVNS therapy.
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Kesić, S., and Spasić, S. Z. (2016). Application of higuchi’s fractal dimension from
basic to clinical neurophysiology: a review. Comput. Methods Programs 133,
55–70. doi: 10.1016/j.cmpb.2016.05.014

Klonowski, W. (2007). From conformons to human brains: an informal overview
of nonlinear dynamics and its applications in biomedicine. Nonlinear Biomed.
Phys. 1:5. doi: 10.1186/1753-4631-1-5

Klonowski, W. (2011). Personalized neurological diagnostics from biomedical
physicist’s point of view and application of new non-linear dynamics methods
in biosignal analysis. Int. J. Biol. Biomed. Eng. 5, 190–200.

Klonowski, W., Olejarczyk, E., Stepien, R., et al. (2006). “Monitoring the depth
of anaesthesia using fractal complexity method,” in Complexus Mundi, ed. M.
Novak Miroslav (Singapore: World Scientific), 333–342.

La Marca R, Nedeljkovic, M., Yuan, L., Maercker, A., and Elhert, U. (2010). Effects
of auricular electrical stimulation on vagal activity in healthy men: evidence
from a three-armed randomized trial. Clin. Sci. 118, 537–546. doi: 10.1042/
CS20090264

Frontiers in Physiology | www.frontiersin.org August 2018 | Volume 9 | Article 1162118

https://doi.org/10.1142/S0218348X99000104
https://doi.org/10.1103/PhysRevE.85.021906
https://doi.org/10.1063/1.2437155
https://doi.org/10.1063/1.2437155
https://doi.org/10.1016/j.brs.2014.07.031
https://doi.org/10.1016/j.brs.2014.07.031
https://doi.org/10.3233/978-1-60750-044-5-794
https://doi.org/10.3233/978-1-60750-044-5-794
https://doi.org/10.1177/1073858413513928
https://doi.org/10.5935/MedicalExpress.2017.03.02
https://doi.org/10.5935/MedicalExpress.2017.03.02
https://doi.org/10.1016/0167-2789(88)90081-4
https://doi.org/10.1063/1.4812645
https://doi.org/10.3109/03091902.2013.828106
https://doi.org/10.1111/aor.12621
https://doi.org/10.1111/aor.12621
https://doi.org/10.1016/j.cmpb.2016.05.014
https://doi.org/10.1186/1753-4631-1-5
https://doi.org/10.1042/CS20090264
https://doi.org/10.1042/CS20090264
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01162 August 18, 2018 Time: 18:55 # 8

Gomolka et al. Fractal Dimension of HRV During pVNS

Malpas, S. C., and Maling, T. J. (1990). Heart-rate variability and cardiac autonomic
function in diabetes. Diabetes Metab. Res. Rev. 39, 1177–1181. doi: 10.2337/
diabetes.39.10.1177

Murray, A. R., Atkinson, L., Mahadi, M. K., Deuchars, S. A., and Deuchars, J.
(2016). The strange case of the ear and the heart: the auricular vagus
nerve and its influence on cardiac control. Auton. Neurosci. 199, 48–53.
doi: 10.1016/j.autneu.2016.06.004

Pierzchalski, M., Stepien, R. A., and Stepien, P. (2011). New nonlinear methods
of heart rate variability analysis in diagnostics of atrial fibrillation. Int. J. Biol.
Biomed. Eng. 5, 201–208.

Sassi, R., Cerutti, S., Lombardi, F., Malik, M., Huikuri, H. V., Peng, C. K.,
et al. (2015). Advances in heart rate variability signal analysis: joint position
statement by the e-cardiology ESC working group and the european heart
rhythm association co-endorsed by the asia pacific heart rhythm society.
Europace 17, 1341–1353. doi: 10.1093/europace/euv015

Shaffer, F., and Ginsberg, J. P. (2017). An overview of heart rate variability
metrics and norms. Front. Public Health 5:258. doi: 10.3389/fpubh.2017.
00258

Sharma, V. (2009). Deterministic chaos and fractal complexity in the dynamics of
cardiovascular behavior: perspectives on a new frontier. Open Cardiovasc. Med.
J. 3, 110–123. doi: 10.2174/1874192400903010110

Skinner, J., Molnar, M., Vybiral, T., and Mitra, M. (1992). Application of chaos
theory to biology and medicine.itle. Integr. Physiol. Behav. Sci. 27, 39–53. doi:
10.1007/BF02691091

Task Force of the European Society of Cardiology the North American Society
of Pacing Electrophysiology (1996). Heart rate variability: standards of
measurement, physiological interpretation, and clinical use. Circulation 93,
1043–1065. doi: 10.1161/01.CIR.93.5.1043-1065

Tavares, B. S., de, Paula Vidigal G, Garner, D. M., Raimundo, R. D., de, Abreu
LC, and Valenti, V. E. (2016). Effects of guided breath exercise on complex

behaviour of heart rate dynamics. Clin. Physiol. Funct. Imaging 37, 1–8.
doi: 10.1111/cpf.12347

Wagner, C., and Persson, P. (1998). Chaos in the cardiovascular system: an update.
Cardiovasc. Res. 40, 257–264. doi: 10.1016/S0008-6363(98)00251-X

Wajnsztejn, R., Carvalho, T. D., De, and Garner, D. M. (2016). Higuchi
fractal dimension applied to RR intervals in children with attention deficit
hyperactivity disorder. J. Hum. Growth Dev. 26, 147–153. doi: 10.7322/jhgd.
119256

West, B. J. (2010). Fractal physiology and the fractional calculus: a perspective.
Front. Physiol. 1:12. doi: 10.3389/fphys.2010.00012

Yeragani, V. K., Srinivasan, K., Vempati, S., Pohl, R., and Balon, R. (1993). Fractal
dimension of heart rate time series: an effective measure of autonomic function.
J. Appl. Physiol. 75, 2429–2438. doi: 10.1152/jappl.1993.75.6.2429

Conflict of Interest Statement: JS, EK, and SK own shares and receive honoraria
from SzeleSTIM GmbH.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

The handling Editor declared a past co-authorship with one of the authors, WK.

Copyright © 2018 Gomolka, Kampusch, Kaniusas, Thürk, Széles and Klonowski.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Physiology | www.frontiersin.org August 2018 | Volume 9 | Article 1162119

https://doi.org/10.2337/diabetes.39.10.1177
https://doi.org/10.2337/diabetes.39.10.1177
https://doi.org/10.1016/j.autneu.2016.06.004
https://doi.org/10.1093/europace/euv015
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.2174/1874192400903010110
https://doi.org/10.1007/BF02691091
https://doi.org/10.1007/BF02691091
https://doi.org/10.1161/01.CIR.93.5.1043-1065
https://doi.org/10.1111/cpf.12347
https://doi.org/10.1016/S0008-6363(98)00251-X
https://doi.org/10.7322/jhgd.119256
https://doi.org/10.7322/jhgd.119256
https://doi.org/10.3389/fphys.2010.00012
https://doi.org/10.1152/jappl.1993.75.6.2429
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


ORIGINAL RESEARCH
published: 18 May 2018

doi: 10.3389/fphys.2018.00546

Frontiers in Physiology | www.frontiersin.org May 2018 | Volume 9 | Article 546

Edited by:

Sladjana Z. Spasić,
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Beat to beat variability of cardiac tissue or isolated cells is frequently investigated by

determining time intervals from electrode measurements in order to compute scale

dependent or scale independent parameters. In this study, we utilize high-speed video

camera recordings to investigate the variability of intervals as well as mechanical

contraction strengths and relative contraction strengths with nonlinear analyses.

Additionally, the video setup allowed us simultaneous electrode registrations of

extracellular potentials. Sinoatrial node tissue under control and acetylcholine treated

conditions was used to perform variability analyses by computing sample entropies and

Higuchi dimensions. Beat to beat interval variabilities measured by the two recording

techniques correlated very well, and therefore, validated the video analyses for this

purpose. Acetylcholine treatment induced a reduction of beating rate and contraction

strength, but the impact on interval variability was negligible. Nevertheless, the variability

analyses of contraction strengths revealed significant differences in sample entropies

and Higuchi dimensions between control and acetylcholine treated tissue. Therefore, the

proposed high-speed video camera technique might represent a non-invasive tool that

allows long-lasting recordings for detecting variations in beating behavior over a large

range of scales.

Keywords: heart rate variability, beat to beat variability, video motion analysis, sinoatrial node, acetylcholine,

sample entropy, Higuchi dimension

INTRODUCTION

Heart rate variability (HRV) refers to variations in the time intervals between two consecutive heart
beats and serves as a diagnostic and prognostic tool for cardiac as well as non-cardiac diseases,
e.g., heart failure, aging, Parkinson’s disease, diabetes, and sepsis (Goldberger et al., 2002; Devos
et al., 2003; Kudat et al., 2016; de Castilho et al., 2017; Elstad et al., 2018; Sessa et al., 2018). These
variations are mainly attributed to dynamic changes of neuroendocrine inputs on ion channel
activity in the sinoatrial node SAN, but a certain degree of beat to beat variability is inherently
present at the level of the isolated heart, within the isolated SAN and also at the level of single
sinoatrial pacemaker cells (Lombardi and Stein, 2011; Papaioannou et al., 2013; Yaniv et al., 2014a;
Zaniboni et al., 2014).
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There is a large number of quantitative algorithms to
investigate these interval variations in autorhythmic cardiac
tissue, cell clusters, or single cells, including spectral, linear, and
nonlinear methods. Power-law behavior of beat to beat intervals
BBIs analyzed by the power spectral method has been shown for
neonatal rat cardiomyocytes in cultured tissue layers measured
by microelectrode arrays (Ponard et al., 2007). Long-range
correlations were also detected in extracellular electrograms of
human embryonic stem cell-derived cardiomyocyte clusters by
using again spectral methods (Mandel et al., 2012). Furthermore,
fractal-like behavior has been reported for rabbit sinoatrial node
tissue and for a small percentage of single sinoatrial node
cells by using power law and detrended fluctuation analysis
(Yaniv et al., 2014a) and in small clusters of chick embryonic
cardiomyocytes (Ahammer et al., 2013). So far, investigations
have focused on variabilities in the time domain of both, electrical
and contraction signals. The underlying processes are tightly
linked via the excitation-contraction-coupling (Eisner et al.,
2017) and hence, the time structure of the electrical process
substantially shapes not only the frequency of contraction but
also its magnitude. Thus, it is reasonable to assume that also
the variability of the contraction strength shows long-term
correlations.

Therefore, in this study we propose the investigation of
contraction strengths and their variabilities additionally to
interval variabilities in SAN tissue. In detail, we evaluated
beat to beat interval variabilities and beat to beat contraction
strength CS variabilities of murine atrial preparations that
contained the SAN region by means of high-speed camera video
recordings. Each image of a video represented a time stamp
and contractions of the tissue were recorded as changes in
average gray values. Simultaneous measurements of extracellular
potentials using a cardiac-near-field electrode validated beat
to beat intervals of video recordings. Measurements of
the spontaneous activity of tissue samples were performed
before and after the administration of acetylcholine ACh, the
predominant transmitter of the parasympathetic nervous system.
Its effects on atrial tissue are already well investigated and
include a decrease in beating rate and force of contraction
(Kitazawa et al., 2009).

Our main objectives were to determine the suitability of
video recordings to register BBIs and CSs and to analyze
changes of nonlinear measures in the variabilities of these two
parameters due to ACh treatment. Sample entropy and Higuchi
dimension are popular estimators capturing intrinsic nonlinear
patterns in time series of measured signals (Higuchi, 1988;
Richman and Moorman, 2000). We hypothesized that ACh
significantly affects sample entropies and Higuchi dimensions
of BBI and CS variabilities. To distinguish actual values
from white noise, surrogate data series were constructed and
analyzed.

In summary, this high-speed camera video recording-
technique provides a promising tool to thoroughly investigate
beat to beat behavior regarding absolute values of beating rate and
contraction strength as well as their variabilities in autorhythmic
tissue.

METHODS

Tissue Preparation
Hearts from 22 C57/BL6 wildtype mice (aged 12–20 weeks)
of both sexes in equal number were used for this study. The
preparation of atria including the intact SAN region was carried
out as previously described (Torrente et al., 2015). Briefly, mice
were heparinized and anesthetized with ketamine (100 mg/kg)
and xylazine (10 mg/kg) and the hearts were quickly removed.
The atria including the intact SAN region were dissected from
the ventricles and fixed with needles on a silicone ground of an
experimental chamber. For this study, an extracted SAN tissue
of one mouse represented a single experiment. Therefore, the
number of experiments corresponds to the number of mice.

The experimental procedure and number of used animals
were approved by the ethics committee of the Federal Ministry
of Science, Research and Economy of the Republic of Austria
(BMWFW-66.010/0101-WF/V/3b/2016). The experiments were
conducted according to the Directive of the European Parliament
and of the Council of September 22, 2010 (2010/63/EU).

Video Acquisition
The experimental chamber containing the intact SAN tissue
was mounted on the stage of an upright microscope (Olympus,
BX51W1, 4x objective, light source TH4-200) and the tissue
was superfused with oxygenated standard external solution
(containing in mM: NaCl 137, KCl 5.4, CaCl2 1.8, MgCl2 1.1,
NaHCO3 2.2, NaH2PO4 0.4, HEPES/Na+ 10, D(+)-glucose 5.6,
pH 7.4 adjusted with NaOH) which was kept at a constant
temperature of 23◦C. Recordings were started 20min after the
onset of superfusion in order to allow the tissue to establish
and maintain a stable beating rhythm. Close to the primary
pacemaking site of the tissue, a small image region of interest ROI
showing distinct contractions was selected for recording. After
recording of the first video (Con), acetylcholine (ACh, 3 µmol/L)
was added to the perfusion solution and after 5min superfusion
time the second video was recorded. A number of nine tissue
samples yielded 18 videos.

Tissue samples under investigation showed a beat to beat
interval of about 500ms (∼2Hz). In order to measure such
intervals, it is necessary to sample the temporal course of the
beating with enough data samples per second. The Nyquist-
Shannon sampling theorem with a sample rate that is the twofold
of the highest frequency in the signal is not applicable, because
the content of harmonic frequencies are not of interest. More
important is, that the sample rate determines a minimal jitter
between consecutive time stamps. This jitter must be small,
because it influences the nonlinear analysis including variability
measures. For an accuracy of e.g., 1%, a number of 100 data
samples is needed between two succeeding beats. Particularly,
this would yield a sample rate of 200Hz. Please note that video
acquisitions using standard frame rates of 30Hz would yield an
accuracy of only∼6.67% for a beating rate of∼2Hz. We decided
to set the accuracy to 0.2% and consequently a sample rate of
1 kHz was used.
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Video recordings of beating tissue samples were taken by
using a high-speed camera system (MotionBlitz, GMCLTR1.3CL-
SSL, Mikrotron, Germany) and a video camera (EoSens CL,
MC1362, Mikrotron). This system implemented a hardware
recording unit and therefore, avoided erroneous jitter effects of
software trigger events such as e.g., USB camera solutions do
usually show. The resolution of the camera was set to 1,280 ×

1,024 pixels. A ROI with a pixel size of 160 × 160 was selected
to get maximal gray level changes during beating of the tissue.
Figure 1A shows a sample image.

The size of the ROI was empirically optimized by inspections
of the temporal signals gained. Larger ROIs yielded too large
and inconvenient video files and smaller ROIs yielded too low
signal to noise ratios. Regions with thick tissue layers (trabeculae,
crista terminalis) moving into the ROI turned out to yield the
highest signal to noise ratios. With a sample rate of 1,000 fps
and a recording duration of 5min, a number of 300,000 single
uncompressed images (each of them with 160 × 160 = 25,600
pixels) where taken and stored on hard disk in an avi container
format. One avi file needed 21 GB of memory. The Mikrotron
system saved the individual images in RGB format although
the used camera was a gray value camera. Gray value cameras
usually give higher signal to noise ratios than color cameras
which is important for high-speed acquisitions with very small
exposure times. Thus, images were converted in a first step
to 8 bit, lowering the memory demand to 7, 6 GB per video.
The whole measuring setup was tested against electrical and
optical inferences coming from ambient light sources such as
the laboratory light or the microscope light source itself. Fourier
analyses of videos capturing a static scene revealed no residual
frequency components of power supply frequencies or other
additional noise components.

Electrical Recordings
For comparison of video and electrical measurements we carried
out 13 separate control experiments in order to simultaneously
record video as well as extracellular electrical signals. After
positioning of the microscope’s objective and choosing a ROI, a
cardiac-near-field CNF electrode (Hofer et al., 2006) was placed
close to the ROI (Figure 1A). This ensured that the electrical and
optical measurement sites corresponded in the spatial domain.
For evaluation of beat to beat intervals, only one of the four CNF
channels was used. Electrical signals were amplified (gain 100),
anti aliasing lowpass filtered (4th order Bessel, cutoff frequency
20 kHz) and recorded with custom software (LabVIEW, National
Instruments, Austin, Texas) at a sampling rate of 100 kHz
(NI USB-6210, National Instruments, Austin, Texas). Signals
were digitally filtered (Butterworth lowpass, 4th order, cutoff
frequency 1.5 kHz and Butterworth highpass, 4th order, cutoff
frequency 1.5Hz). A sample electrical recording can be seen
in Figure 1B. Subsequent time stamps of individual beats were
computed by setting a threshold well above the noise level to
the decreasing slopes of the signal (denoted by red plus signs in
Figure 1B). For signals with lower signal to noise ratio the same
threshold criterion was used in the first temporal derivative of the
signal where the steep downslope during electrical activation was
more pronounced.

Time Signal Generation From Videos
Time signals of the beating tissues were reconstructed by
computing the average gray value Gi of each image i of a video
which can be seen in Figure 1C.

Gi =
1

NP

∑NP

p= 1
gi,p, (1)

with gi,p the gray value in the range [0, 255] of pixel p in the
image i, i = 1, 2, 3, . . . ,NI , NI the number images in a video
(NI = 300, 000), and p = 1, 2, 3, . . . ,NP,NP the number of pixels
in an image (NP = 25, 600).

This yielded a temporal time signal comprising 300,000 data
points with a data compression of (25,600 to 1). The algorithm
for finding the time stamps of contractions was designed around
finding subsequent local minima (denoted by red plus signs
in Figure 1C). The original signal was slightly smoothed by
applying a moving average filter with 25 data points to improve
the shape of the minima and to ensure that minima are right
between the adjacent declining and rising slopes. A threshold
was set between the doubled noise value of the baseline and
the smallest minimum in the video. Further on, only values
smaller than that threshold were investigated. Then, a minimum
was computed by simply looking for the smallest value between
two threshold points. Very rarely a minimum consisted of two
neighboring points with exactly the same value in which case the
second value was taken as the minimum. Finally, a beat to beat
interval BBI was defined as the temporal interval between two
succeeding minima (beats).

BBIb = tb − tb−1, (2)

with tb, the absolute time of the beat b (minimum) in a video,
b = 2, 3, . . . ,NB, and NB the number of beats in a video. This
algorithm (named PointFinder) was implemented in the software
IQM (Kainz et al., 2015) and is available from the authors or from
the IQM project page (https://sourceforge.net/projects/iqm/). A
sample result of BBIs is shown in Figure 2A.

The number of data points in such a graph was equal to the
number of beats NB − 1 during the recording interval of 5min
and therefore, was not constant from video to video. The sample
graph in Figure 2A consists of actually 660 data points because
the specific tissue sample contracted 661 times in 5min. Roughly,
this reflects another data compression of 450 to 1. Overall the
method has a compression rate of about 11.6 million to 1.

On further inspection of Figure 1C, it is obvious that not only
interbeat intervals can be computed from these local minima.
Additionally, the height of a minimum measured from the
baseline, which is the horizontal line containing the points of
relaxed tissue only, can be computed. Such a height reflects
the mechanical contraction strength CS of the tissue. Stronger
contraction of cells in the tissue yielded a higher light absorption
and hence darker images in the video and consequently lower
minima in the average graphs such as in Figure 1C. We
created correlation plots of subsequent height changes vs.
subsequent interbeat intervals (actual plots are described in
section Correlation of Contraction Strengths and Beat to Beat
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FIGURE 1 | Microscopic sample image and sample recordings. (A) Sample image of a tissue preparation including the intact atria and the region of the sinoatrial node

SAN. The left atrium cannot be seen in the image. RA, right atrium; CT, crista terminalis; IAS, interatrial septum; IVC, inferior vena cava; SVC, superior vena cava; CNF,

cardiac-near-field electrode. The region of interest ROI (red rectangle) with a size of 160 × 160 pixels was set to a region yielding high changes of average gray values.

This was usually the case when regions of a thick tissue layer (e.g., trabeculae) moved into the ROI during contractions. (B) Sample electrical recording lasting about

4 s (down-sampled to 5 kHz for the graphical representation). Four subsequent beats are depicted and the red plus symbols indicate data points for computing beat

to beat intervals BBIs. A single beat is zoomed out. (C) Sample average gray values G according to Equation (1) from about 2,000 (out of 300,000) images. Red plus

symbols mark data points that defined the BBIs and in addition with the baseline points (red dots) the contraction strengths CSs. Interval as well as contraction

strength variations are clearly visible for these four contractions. (D) Finding correct baseline points is crucial for the determination of the CSs. This signal sample

shows some beats (red plus symbols) and baseline points (red dots). The first two baseline points were found very well, in contrast to the last two baseline points.

Accordingly, CSs for these two points cannot be accurately computed.

Intervals). A correlation between these two variables was given
in most cases, which is in accordance with previously published
data (Torres and Janssen, 2011). Nevertheless, correlations were
not perfect and some experiments showed only weak or negative

correlations. Consequently, we decided to additionally evaluate
variations of contraction strengths.

First, in order to obtain the CS, it was necessary to determine
the baseline, although it drifted during the time course of 5min.
To avoid drifting and offset errors we computed a separate
baseline value for each minimum. The actual baseline value was

computed by the median of all points in between the actual
minimum and the preceding minimum and thus we obtained
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FIGURE 2 | Beat to beat intervals BBIs and contraction strengths CSs, 1CSs, rCSs computed from optical (video) recordings. (A) BBIs computed according to

Equation (2). This tissue sample yielded actually 660 data points (number of beats NB = 661). (B) Contraction strengths CSs computed according to Equation (3) for

the same tissue sample with 660 data points. (C) Differences of contraction strengths 1CS computed as the differences of the average gray values Gs of the beating

signal according to Equation (4). (D) Relative contraction strengths rCSs computed by integration of the 1CS values according to Equation (5).

moving baseline values (for every minimum a separate baseline
value, some sample baseline values are depicted graphically in
Figure 1C with red points). This ensured that baseline drifts,
unavoidable during a recording time of 5min, did not contribute.
Consequently, CS was computed by

CSb =
∣

∣Gb − baselineb
∣

∣ , (3)

with CSb the contraction strength of the beat b, Gb the average
gray value of the image detected as the “beat image,” baselineb
the corresponding baseline value, b = 1, 2, 3, . . . ,NB, and NB

the number of beats in a video. A sample signal can be seen in
Figure 2B.

Although the signals seemed to be reliable, it turned out
that this moving median algorithm produced some variation
errors due to residual noise components of the baseline.
Additionally, but only occasionally, for one mouse treated
with acetylcholine (#5 in Figure 6), subsequent contractions
showed some consecutively fast repeating bursts instead of
full contractions. For such short burst intervals, the median
algorithm yielded erroneous baseline values leading to too small
CS values. A graphical representation of such errors is shown in
Figure 1D. An alternative algorithm for finding the baseline may
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be feasible, but we present a convenient way that does not need
baseline detection at all.

In this approach we eliminated the baseline (offset), since
we actually were interested in variabilities of these temporal
signals and not in absolute values. Discrete differentiation of
the time signal (average gray values according to Equation (1)
and exemplarily depicted in Figure 1C) revealed differences of
contraction strengths 1CSs and eliminated the hassle of finding
baseline points.

1CSb = Gb − Gb−1, (4)

with b = 2,3,. . . , NB.
Subsequent discrete integration generated back the changing

content of the contraction strength signal but without the
baseline and was termed relative contraction strength rCS.

rCSb = 1CSb + rCSb−1, (5)

with b = 2, 3, . . . ,NB and rCS1 = 0.
Integration usually gives the anti-derivative plus an unknown

constant, which was in our case the baseline (offset). Discrete
differentiation followed by integration was actually carried out
with software IQM (Kainz et al., 2015) using the mathematics
feature for one dimensional signals.

Sample graphs of 1CS and rCS can be seen in Figures 2C,D.
BBI, CS and rCS data series for each experiment (Con and ACh
treated) are provided as “Data Sheet 1” csv file in the supplement.

Sample Entropy and Higuchi Dimension
Sample entropy SampEn and Higuchi dimension DH are two
well-known and successfully applied nonlinear descriptors for
time signal variations (Higuchi, 1988; Richman and Moorman,
2000). Approximate entropy ApEn is also widely used, but is not
suitable for this particular study because the number of beats
changed from video to video. SampEn is proportional to the
conditional probability that a sequence which is similar for m
points remains similar for m+1 points. A tolerance distance r
is defined so that repetitions must not be exact. Usually, r is
defined as a multiple of the standard deviation SD of the signal
and therefore, SampEn is a scale invariant measure (Richman and
Moorman, 2000). Self matches are not included.

The discrete time signals
{

x (1) , x (2) , . . . , x(NB)
}

(x stands
for values from CS or rCS signals) with length NB were taken and
(NB –m+ 1) sequences were created:

Xm (i) = [x (i) , x (i+ 1) , . . . , x (i+m− 1)]. (6)

The parameter m was set to two (m = 2). Distances in between
these data series were computed using the maximum metric:

d
[

Xm (i) ,Xm

(

j
)]

= max
k=1,2,..,m

{
∣

∣Xm

(

i+ k− 1
)

− Xm(j+ k− 1)
∣

∣

}

(7)

The normalized sums of distances smaller than the tolerance
distance r = 0.15SD were computed for each i, j with 1 ≤ i, j ≤
NB −m+ 1 and i 6= j:

Cm
i (r) =

number of Xm(j) where d[Xm (i) ,Xm

(

j
)

] ≤ r

NB −m+ 1
. (8)

The normalized number of sums can be computed using

Bm (r) =
1

NB −m

∑NB−m

i= 1
Cm
i (r). (9)

Finally, SampEn was computed with

SampEn (m, r,NB) = − ln

(

Bm+1(r)

Bm(r)

)

. (10)

Higuchi proposed a method to compute the fractal dimension
of a signal by using sums of differences with varying inter data
point intervals (delays) (Higuchi, 1988). The Higuchi dimension
is frequently applied in contemporary neurophysiology and
neuropathology (Kesić and Spasić, 2016) and is well known
for its accuracy, speed and robustness including high linearities
of the double log plots. Phase space reconstructions are not
involved and therefore, the number of data points available can
be restricted. Initial data points are set to m = 1,2,. . . , k with a
delay interval k = 1,2,. . . , 30. Following data point series were
constructed:

Sm
(

k
)

: x (m) , x
(

m+ k
)

, x
(

m+ 2k
)

, . . . , x(m+

⌊

NB −m

k

⌋

k)

(11)

The lengths Lm(k) of these series, depending on the initial data
pointsm and k were computed according to:

Lm(k) =
1

k

{(

∑

⌊

NB−m
k

⌋

i=1

∣

∣x
(

m+ ik
)

− x(m+ (i− 1) k)
∣

∣

)

NB − 1
⌊

NB−m
k

⌋

k

}

(12)

The symbol
⌊ ⌋

stands for the floor function. For each k, the
mean length was determined by

L
(

k
)

=
1

k

∑k

m= 1
Lm(k). (13)

Finally, a double logarithmic plot of L(k) vs. k was constructed
and the slope of a linear regression was used to compute DH .
Values of k above 30 were not used because they introduced
noticeable deviations of data points from the linear regression.
Signals were processed as they were recorded without editing.
Algorithms were implemented in the Software IQM (Kainz et al.,
2015) and are available from the authors or from the IQM project
page.

Statistics
Statistics was computed with public domain software R, version
3.3.3 and RStudio software version 1.0.136 (RStudio, 2016; R
Core Team, 2017). Due to small sample sizes, differences of
paired samples were statistically analyzed with a two-sided
median test using the R function sintv2 (Wilcox and Rousselet,
2018). This method performs very well in terms of controlling
the probability of a Type I error (Wilcox, 2016). Data acquisition
via video and electrode setup did not start synchronously
(lag of 1–3 beats). Cross correlation (unbiased estimate,
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MATLAB R© R2017b) was used to remove this start dependent
asynchronism between the optical and electrical signal.
Correlation of CSs with BBIs was computed using Spearman’s
rank correlation coefficient rs. Coefficients of determination
R2 were computed for double log plots to estimate Higuchi
dimensions.

Surrogate analysis was performed to provide further evidence
of long-range nonlinear correlations in the optically measured
signals and to demask possible white noise components indicated
by some relatively high SampEn and DH values. Each optically
recorded signal was shuffled 50 times using IQM (Kainz
et al., 2015). A total number of 5,400 surrogate data series
were constructed considering nine SAN tissues, two nonlinear
measures (SampEn,DH), two treatments (Con, ACh), three signal
types (BBI, CS, rCS), and 50x shuffling. Following evaluation
types were carried out:

SurrEval-1: Each individual experimentally gained value was
tested against the normally distributed surrogate values applying
a two-sided one sample Student’s t-test.

SurrEval-2: The experimentally gained values were tested
against the respective means of the shuffled signals by a two-sided
median test using the R function sintv2.

SurrEval-3: The respective means of shuffled control against
means of shuffled ACh signals were tested by a two-sided median
test using the R function sintv2.

RESULTS

Linear variance measures of the beat to beat interval are
dependent on absolute values and are only well suited for linear
stochastic processes. Nonlinear signals with random correlations
or Random walk like signals can be well investigated with scale
independent measures such as the sample entropy SampEn or the
Higuchi dimension DH .

Double Log Plots for Higuchi Dimensions
Double log plot linear regressions for estimating the Higuchi
dimensions revealed very high coefficients of determination
R2 within a range of [0.959–0.999]. Sample linear regressions
can be seen in Figures 3A,B for control and ACh treated cases.
With this high linearity, the application of the fractal concept
seems to be very appropriate and robust. Nevertheless, we
found a marginally lower R2 for some signals (4 out of 18)
which was visible as a slight wobbling of data points around the
straight line (see a sample graph in Figure 3B, blue dots). This
occurred for control as well as ACh treated cases. The reason was
that the specific signals showed subsequent alternating values
which could be interpreted as binary oscillations or negative
correlations. Fractal dimensions of period doubling signals
cannot be directly calculated, but it is known that periodic
components in time series yield distinct and periodic differences
in the double log plot (Galvez Coyt et al., 2013).

Correlation of Optically and Electrically

Recorded Beat to Beat Intervals
Optically (video) recorded values of BBIs correlated very well
with electrically recorded values. Representative BBI value pairs
showing just negligible differences can be seen in Figure 4A. A
sample regression plot of a whole 5min recording can be seen in
Figure 4B. The slopes for all 13 experiments were in the range
of [0.977–1.067] and the coefficients of determination R2 were in
the range of [0.984–0.999].

Additionally, we computed sample entropies and Higuchi
dimensions for these 13 control samples. Results can be seen
in net plots for each individual experiment in Figure 5A.
Traditional box plots including the data values can be seen in
Figure 5B.

SampEn values are very close and statistically not different
(p = 0.46, df = 12). For DH values a p-value of 0.05 (df = 12)

FIGURE 3 | Higuchi dimension DH double log plots. Data from optical recordings. (A) Typical double logarithmic plots of DH showing very linear regressions for the

control and the acetylcholine treated cases. (B) Another sample of double logarithmic plots showing occasional deviations from the linear regression, in this particular

case for acetylcholine (blue dots).
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FIGURE 4 | Opto-electrical correlation. (A) Some representative beat to beat intervals BBIs computed from simultaneously measured electrical and optical (video)

recordings. (B) Regression of electrically and optically gained BBIs from one experiment (i.e., one mouse). The linear slope is very close to one and the coefficient of

determination R2 is very high.

indicates a possible effect. Since the corresponding median
difference was very small (only in the third decimal place), we
show scatterplots of data point pairs in Figure 5C. The minimal
deviations from the straight line (no effect) suggest no practical
relevance.

Correlation of Contraction Strengths and

Beat to Beat Intervals
Scatterplots ofCSs vs. BBIs in milliseconds are shown in Figure 6.
Control tissue (red) and ACh treated tissue (blue) showed
mostly positive correlations. A few correlations are weak and/or
negative.

Additionally, scatterplots and correlations of relative
contraction strengths rCSs vs. BBIs were computed. Actual
plots are not shown, because the correlations were quite similar
compared to Figure 6.

Acetylcholine Induced Changes of Beat to

Beat Intervals and Contraction Strengths
The median beat to beat interval of the control group was 512ms
and increased to 614ms after applying ACh. Net and box plots
can be seen in Figure 7 (left column). The significant increase in
the beating rate of ∼20% (3µM ACh) is in line with previously
published data (Glukhov et al., 2010).

The median beat to beat contraction strength of the control
group was 20.85 and decreased to 13.24 after treatment with
ACh. Net- and box plots can be seen in Figure 7 (right column).
The significant decrease of CS of ∼37% is in accordance with
previously published data (Kitazawa et al., 2009).

Acetylcholine Induced Changes to Sample

Entropies and Higuchi Dimensions
Figure 8 depicts net- and box plots of nonlinear measures of
BBIs. Median values of SampEn decrease from 1.58 (Con) to

0.92 (ACh) and are not significantly different (p = 0.11, df = 8,
Figure 8B, left column). This is also the case for DH (p = 0.97,
df = 8, Figure 8B, right column) which decreased from 1.98
to 1.97.

SampEn surrogate evaluation according to SurrEval-1
revealed that all experimentally gained values (BBIs for Con
and ACh) were significantly lower than the shuffled ones with
p < 0.001, df = 49. This agrees with SurrEval-2 showing that
all experimental values were also significantly lower than the
means of the corresponding shuffled ones with p < 0.001, df = 8,
see Table 1. Furthermore, according to SurrEval-3 the means
of SampEn values for shuffled signals showed no indication for
statistical significance between Con and ACh, p = 0.82, df = 8,
see Figure 8C.

SurrEval-1 for DH yielded similar results with p < 0.001,
df = 49, except for some experimental values >2 in the third
decimal (two cases for Con and three cases for ACh) where
obviously the shuffled values could not further increase. This is
well reflected by SurrEval-2 with a borderline p = 0.05, df = 8
for Con and a non-significant p-value for ACh (Table 1). As
expected, SurrEval-3 reveals no significant difference between the
groups Con and ACh, p= 0.77, df = 8, see Figure 8C.

Figure 9 shows net and box plots of nonlinear measures of
the proposed CSs. Median values for SampEn show a significant
difference between Con and ACh (p < 0.001, df = 8), namely
a decrease from 1.60 (Con) to 0.72 (ACh) which can been seen
in Figures 9A,B, left column. Median values for DH tend to
decrease slightly (Figure 9B, right column) as indicated by a
borderline p-value of p = 0.05 (df = 8). In detail median values
decrease from 1.97 (Con) to 1.91 (ACh).

For SampEn, all three CS surrogate evaluations yielded
consistent results regarding nonlinear patterns in the measured
signals, since shuffled values were always statistically higher
(SurrEval-1: p < 0.001, df = 49, and SurrEval-2: Table 1) and
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FIGURE 5 | Sample entropy SampEn (left column) and Higuchi dimension DH (right column) of beat to beat intervals BBIs determined optically and electrically. (A) Net

plots showing 13 SampEn and DH values for BBIs. (B) Box plots of these 13 experiments, p-values with df = 12, median test. (C) Scatterplots of these 13

experiments. Dashed lines represent theoretical correlations with the slope of one.

the difference between Con and ACh vanished compared to the
experimental case (SurrEval-3: Figure 9C). Now, SurrEval-1 for
DH yielded no exception with p < 0.001, df = 49 and all three
surrogate evaluations are again consistent (SurrEval-2: Table 1
and SurrEval-3: Figure 9C).

Finally, Figure 10 depicts net and box plots of nonlinear
measures of the proposed rCSs. For SampEn, the decrease and
the significance of rCS is similar to CS with median values
from 1.76 (Con) to 0.49 (ACh) and with p < 0.001, df = 8
(Figures 10A,B, left column). The decrease of DH values is

slightly more pronounced for rCS compared to CS with median
values from 1.98 (Con) to 1.91 (ACh) and now exceeds the 95%
statistical significance level with p = 0.03, df = 8 (Figure 10B,
right column).

Surrogate analyses for rCs are again consistent for both,
SampEn and DH , indicating nonlinear long-range correlations.
Shuffled values are always statistically higher (SurrEval-1: p <

0.001, df = 49, and SurrEval-2: Table 1) and the difference
between Con and ACh vanishes compared to the experimental
case (SurrEval-3: Figure 10C).
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FIGURE 6 | Scatterplots of contraction strengths CSs vs. beat to beat intervals BBIs in milliseconds. Data from optical recordings. Red dots correspond to control

tissue, blue dots to ACh treated tissue. For each individual plot the experiment (mouse) number #, in brackets the actual Spearman’s rank correlation coefficient rs and

the degrees of freedom df are depicted.

DISCUSSION

Beat to beat intervals are commonly investigated in order to
detect nonlinear correlations in time signals. This study proposes
an optical method, particularly, a high-speed video technique
to detect mechanical contractions of the heart tissue. Usual
video recordings with frame rates of about 30 fps or software
triggered acquisitions are a convenient way for spectral analyses
or computing beating frequencies (Kojima et al., 2006; Chan

et al., 2009; Fassina et al., 2011; Hsiao et al., 2013; Ahola et al.,
2014). But obviously, video frame rates must be higher for high
beating rates (De Luca et al., 2014) or accurate detections of
beating events (Stummann et al., 2008). Our high-speed video
recordings allowed us to extract beat to beat intervals BBIs as
well as the contraction strengths CSs and the relative contraction
strengths rCSs, because the average gray value of an image was
directly proportional to the mechanical contraction. Variation
analyses with two distinguished nonlinear measures, the sample
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FIGURE 7 | Medians of beat to beat intervals BBIs (left column) and contraction strengths CSs (right column). Data from optical recordings. The control group is

depicted in red and the values for the ACh treated group in blue. (A) Net plots of all experiments, showing individual and pairwise values. (B) Box plots of all

experiments show statistically significant differences between Con and ACh groups, p < 0,001, df = 8, median test.

entropy SampEn and the Higuchi dimension DH , revealed that
this video technique is able to produce consistent results for BBIs
as well as for CSs and rCSs.

The detection of the baseline (relaxed tissue) may be prone
for errors such as measurement noise or optical drifts during
the recording and thus, we proposed the second contraction
parameter rCS. This is basically the varying contraction content
of the signal, without the absolute value, drift or offset.
SampEn, DH and other scale independent nonlinear measures
or fractal dimensions are not dependent on absolute values
and consequently, rCS is an appropriate and very promising
parameter for variance analyses.

To our knowledge, studies of BBV using isolated SAN
tissue are very limited. Since no consensus exists to classify
possible physiological artifacts (e.g., ectopic beats) in this in vitro
preparation, we analyzed the original signals without any editing
that could lead to a loss of valuable information.

We observed that ACh changed the beating behavior of the
sinus node tissue by significantly reducing beating frequency
as well as contraction strength, which is in accordance to
previously published data (Kitazawa et al., 2009). Application

of SampEn and DH , two frequently used nonlinear measures
for time signal variations, revealed a significant change of
variabilities in the contraction strength but not in the beat to
beat interval. The observed reduction of nonlinear measures
indicates that the contraction process estimated by CS and rCS
becomes more regular in the SAN tissue after ACh application.
The spontaneous activity of pacemaker cells in the SAN tissue
is based on two tightly linked clocks referred to as calcium
and membrane clock (Lakatta and DiFrancesco, 2009). Both
clocks exhibit inherent random components which arise from
stochastic opening and closing of transmembrane ion channels
(Krogh-Madsen et al., 2017) in the case of the membrane
clock and from spontaneous stochastic calcium release via
sarcoplasmic ryanodine receptors (Yaniv et al., 2014b) in the
case of the calcium clock. The spontaneous calcium release in
turn activates the sodium-calcium exchanger thereby triggering
the action potential upstroke and subsequently a massive
calcium release from sarcoplasmic reticulum, thus coupling
excitation with contraction. ACh is an important modulator
of SAN beating frequency as well as of contraction strength,
particularly in the adjacent atrial tissue (Okada et al., 2013).
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FIGURE 8 | Sample entropy SampEn (left column) and Higuchi dimension DH (right column) of beat to beat intervals BBIs. Data from optical recordings. The control

group is depicted in red and the ACh treated group in blue. (A) Net plots of all experiments, showing individual and pairwise values. (B) Box plots of all experiments.

Differences are not statistically significant (SampEn p = 0.11, df = 8, DH p = 0.97, df = 8, median test). (C) Mean SampEn and DH values of shuffled (50x) data series.

TABLE 1 | Median test of sample entropy SampEn and Higuchi dimension DH values from optical recordings against means of 50x shuffled data series according to

SurrEval-2.

Nonlinear measure BBI Con BBI ACh CS Con CS ACh rCS Con rCS ACh

SampEn <0.001(0.36)

[0.25, 0.41]

<0.001(1.05)

[0.31, 1.32]

<0.001(0.72)

[0.23, 1.11]

<0.001(1.50)

[1.17, 1.63]

<0.001(0.47)

[0.34, 1.05]

<0.001(1.73)

[1.25, 2.02]

DH 0.05(0.02)

[0.00, 0.03]

0.27(0.03)

[−0.01, 0.08]

<0.001(0.03)

[0.01, 0.04]

<0.001(0.09)

[0.01, 0.15]

<0.001(0.02)

[0.01, 0.08]

<0.001(0.11)

[0.02, 0.27]

p-values, median differences and confidence intervals (df = 8) are given for BBI, CS, rCS, and for control and ACh treatment. p-values, (median difference), [confidence interval], median

test according to SurrEval-2, df=8.
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FIGURE 9 | Sample entropy SampEn (left column) and Higuchi dimension DH (right column) of contraction strengths CSs. Data from optical recordings. The control

group is depicted in red and the ACh treated group in blue. (A) Net plots of all experiments, showing individual and pairwise values. (B) Box plots of all experiments.

The difference in SampEn is statistically significant, p < 0.001, df = 8, median test. The difference in DH is statistically borderline (p = 0.05, df = 8). (C) Mean

SampEn and DH values of shuffled (50x) data series.

Activation of muscarinic receptors by ACh causes multiple
effects on the membrane and the calcium clock via G-protein
coupled signaling ultimately reducing beating frequency and
contractility (Harvey and Belevych, 2003). This is in line
with our results. The physiological mechanisms underlying the
observed increase in contraction strength regularity by ACh
in our study are currently unknown. Theoretically, a reduced
randomness in membrane and/or calcium clock as well as in
the contraction process itself could account for our observation.
It is noteworthy that in our study ACh increases CS regularity

but not BBI regularity. This may be due to the fact that
the beating behavior in the time domain is determined solely
by sinus node pacemaking, whereas CS regularity may also
depend on the effect of ACh on atrial tissue present in our
preparations.

Studies on ACh effects on SAN cells/tissue using nonlinear
measures are very scarce. Yaniv et al (Yaniv et al., 2014a)
investigated the beating rate variability at different levels of
integration from the heart in vivo to single pacemaker cells
by linear (coefficient of variation) and nonlinear (approximate
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FIGURE 10 | Sample entropy SampEn (left column) and Higuchi dimension DH (right column) of relative contraction strengths rCSs. Data from optical recordings. The

control group is depicted in red and the ACh treated group in blue. (A) Net plots of all experiments, showing individual and pairwise values. (B) Box plots of all

experiments. The differences in SampEn and DH are statistically significant, p < 0.001, df = 8 and p = 0.03, df = 8 respectively, median test. (C) Mean SampEn and

DH values of shuffled (50x) data series.

entropy, power law and detrended fluctuation analysis)measures.
Their results show that beating interval regularity increased in
the order in vivo, denervated heart, isolated SAN tissue, but
decreased again in single pacemaker cells. However, single SAN
cells showed fractal-like behavior only to a small percentage.
Carbachol, a parasympathomimetic drug, decreased regularity
of beating intervals of single SAN cells. Since this group
analyzed the effect of parasympathetic stimulation on beating
behavior only in the time domain and at the single cell
level, a direct comparison to our results does not seem to be
reasonable. Clearly, further studies are needed to elucidate the

underlying physiological mechanisms of muscarinic stimulation
on nonlinear measures in SAN cells/tissue.

Compared to commonly used mechanical force transducer
measurements (Kihara and Morgan, 1991; Torres and Janssen,
2011; Koyani et al., 2017), the high-speed video technique used
in this study seems to be an appropriate, contact-free tool to
quantify changes in contraction strength variability. The SAN
preparation represents a very sensitive and fragile tissue which
could be easily damaged by hooks or threads of mechanical
transducers. Moreover, SAN tissue may not be very suitable
for mechanical force measurements because forces developed

Frontiers in Physiology | www.frontiersin.org May 2018 | Volume 9 | Article 546133

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ahammer et al. Contraction Strength Variability

by the low tissue mass are very small leading to low signal
amplitudes and hence low signal to noise ratios. The suggested
video method does not provide absolute values of contraction
forces. Absolute values are certainly a prerequisite for linear
analyses but not for nonlinear investigations of variabilities that
are per se independent of the absolute value. The electrical
and the contractile processes underlying the measured BBIs and
CSs are not reducible to each other, although tightly linked.
Thus, the measured video signal provides information about
these two distinct processes and consequently allows a more
comprehensive characterization compared to frequently used
electrode techniques.

For optically computed SampEn values, all surrogate
evaluations strengthen the experimental findings that long-range
correlations are present in BBI, CS, and rCS signals. Shuffled
values are always statistically higher compared to experimentally
obtained values and the difference between control and ACh
treated tissue vanishes compared to the experimental case.
Hence, the investigated physiological signals contain inherent
nonlinear patterns in the interval and the contraction strength
domains, justifying the application of the chosen nonlinear
measures. Furthermore, the increase of regularity due to
ACh (lower SampEn and DH values) seems to be caused by
deterministic and not by random processes.

The surrogate analyses for DH values agree very well to
SampEn evaluations, except for BBI signals (see Table 1).
Particularly, some experimental values were already close to
two, implicating a high degree of underlying random processes.
Obviously, data time series shuffling did not reveal any significant
changes. Distinct DH and SampEn surrogate results concerning
BBIs imply different sensitivities to underlying random and
deterministic physiological mechanisms. This may indicate that
the Higuchi dimension and not the sample entropy is able
to discriminate differences between interval and contraction
strength signals, but further investigations are needed to
corroborate this assumption. In order to rule out that high
DH values close to two were method specific, we additionally
performed a detrended fluctuation analysis DFA (Peng et al.,
1994; Goldberger et al., 2002). DFA characterizes white noise with
α = 0.5 and Brownian noise with α =1.5.The maximal window
length was set to 30, comparable to k = 30 for DH . The medians
of all control cases including BBI, CS, and rCS (n = 27) were
1.98 for DH and 0.61 for α (DFA) confirming the high degrees of
randomness in the signals. Thus, the decreased DH values under
ACh treatment indicate a change from very low correlations to
increased long-range correlations and self-affine processes.

Complexity can be defined as the presence of long-range
correlations, arising from nonlinear interaction dominated
dynamical processes being neither totally regular nor totally
irregular (Van Orden et al., 2011). This concept has been
successfully applied to discriminate healthy and pathological
conditions, where a breakdown of long-term correlations
and an according change in fractal dimension has been
observed (Goldberger et al., 2002). In our case, SAN tissue
preparations show a high degree of irregularity near white noise
indicating a low complexity without long-range correlations

or self-organizing mechanisms. This may be due to a loss
of multiple and interwoven communication pathways and
nonlinear dependencies present in the intact heart but not in
the tissue preparation. This is supported by ACh as a relevant
external stimulus that changes the interaction dominated
dynamical system by reducing the degrees of freedom and by
introducing long-range correlations, multiplicative interactions
and feedback. ACh may be interpreted as a control parameter
for the system. Phase transitions or bifurcations, dependent
on control parameters exceeding critical values, may also
play an important role for our tissue preparation, but at
this stage further investigations are necessary to justify such
interpretations.

In conclusion, the described technique represents a reliable,
easy handling and long-lasting recording method, from which
beating rate variabilities and contraction strength variabilities can
be assessed.
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We explored the coupling of gaze and postural sway to the motion of a visual stimulus, to
further understand sensorimotor coordination. Visual stimuli consisted of a horizontally
oscillating red dot, moving with periodic (sine), chaotic, or aperiodic (brown noise)
temporal structure. Cross Recurrence Quantification Analysis (cRQA) was used to
investigate the coupling between each measured signal with the time series of the
visual stimulus position. The cRQA parameter of percent determinism indicated similar
strength of coupling of gaze with either periodic or chaotic motion structures, yet weaker
coupling to aperiodic stimulus motion. The cRQA parameter of Maxline indicated a
particular affinity toward chaotic motion. Analysis of postural coupling supports the
idea that the complex periodicity of body sway affords interactivity with non-simple
environmental dynamics. These results collectively strengthen the argument that chaos
is an invariant and beneficial feature of biological motion, a feature which may be
critical for immediate and robust coordination of the self with the environment and other
environmental agents.

Keywords: biological motion, eye tracking, smooth pursuit, coupled systems, determinism, gaze, posture

INTRODUCTION

Humans exhibit oscillatory dynamics on many time scales, from sleep/wake cycles to breathing to
regulation of posture. Even the routine of trips to the grocery must be repeated after some time has
passed since the last visit. These are all processes which can be discretized, allowing their iterations
to be viewed as single events. In actuality, however, each individual event truly occurs within series,
with potentially critical interdependencies between iterations, making each event part of a more
general continuity. To ensure success in this complex world, individuals must possess some means
by which to coordinate the memories they have about previous events along with predictions about
future events, all in line with the real-time ‘now’ which they are experiencing (Spivey, 2007). Our
goal in this paper is to provide in the introduction a contextual motivation for an experiment
that explores the role of the complexity of stimulus orderliness as a mediator of sensorimotor
coordination, and then through empirical analysis to provide further discussion.

Sejnowski (2010) discussed the propensity of both monkeys and humans to learn optimal
strategies in the face of complex problems. Moreover, these behaviors have been replicated in
reinforcement based simulations which demonstrate the emergence of solutions given sufficient
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time to generate experience. This concept is further extended
to observations of how children seem to learn so naturally,
through simple attempt repetitions and imitation play (Meltzoff
et al., 2009). This discovery learning approach has also been
discussed by Berthier et al. (2005) where they have demonstrated
the efficacy of a fully unsupervised model to generate reaching
behavior similar to that which we would expect from a
typical human child. In contrast to a supervised model, where
‘correct’ strategies are instructed, unsupervised models foster
the self-discovery of the dynamics of the internal and external
environments.

However, it is not just the status of the agent and environment
that serve to inform motor strategy development. Thelen and
Smith (1994) showed extensively that interaction dynamics serve
a large role in the development of motor strategies. Both internal
and external constraints can serve to limit our coordination
space, reducing the number of potential movement strategies
that are available to choose from Todorov and Jordan (2002)
extended that variability in movement behavior is ubiquitous,
leading further to the conclusion that pre-planned regulations
of movement strategies could not possibly be effective. Instead,
they demonstrate that it is through real-time feedback (and its
optimal control) that purposeful actions are realized. Such a
control process should afford easy consideration to even the
most complex of experienced dynamics. Albeit, extensive practice
might yet be necessary in order to ‘learn’ the most effective uses of
such feedback. We see here a fundamental shift in what it takes to
excel in the world, from a strategy of learn the right way to learn
the right coordination. This paradigm shift could have massive
impact on how we continue to organize learning environments.

In light of this new perspective, it becomes clear that the
quality of experience is one of utmost importance. Here, we
do not mean the ‘goodliness’ type of quality, but instead refer
to factors of organization of the experience within space and
time; essentially, the ‘orderliness’ of the learning experience.
Sprott (2013) has shown that the inclusion of chaotic dynamics
is specifically beneficial to learning in artificial neural networks,
suggesting that the benefit of chaos is its core nature of
deterministic variability. This flexibility affords the exploration of
many combinations of degrees of freedom (potential strategies),
while maintaining structural similarity that can be revisited in
future iterations of practice. This point echoes the arguments of
many others in describing important aspects of play en route
to a successful motor repertoire (Siegler, 1996; Adolph and Joh,
2009; Siegler et al., 2010). The suggestion that we may utilize
chaos as a means to optimize our learning strategies is quite an
interesting notion. This is especially true in light of other recent
work describing the general inherence of chaos (and complexity)
in the optimization of human behaviors, including movements
(Haworth et al., 2013). Further work by Ali et al. (2007) affirmed
this idea of inherent chaos in human movement by showing that
algorithms for automated motion tracking are more proficient at
capturing biological motion when they are set to attend to chaotic
motion structures.

The notion of chaos is extendible even to the domain of
humanoid movement behavior. Schaal (2007), discussed the
role of behavioral variance in helping to make the actions

of robots more human-like in order to lead to greater social
tolerance. Interestingly, people seem to be quite sensitive
to the apparent rigidity of robots. Something about the
disproportionate predictability of a robot’s motions, relative to
a typical person’s, makes it a generally unnatural and uneasy
visual experience. The assertion that optimum dynamics should
include some factor of variance (i.e., from chaos) is certainly
interesting, and apparently also quite practical. Duran et al.
(2007a,b, 2008) showed that it is possible to develop real-time,
dynamic smooth pursuit behavior in robotic systems, using a
coupled chaotic systems approach. This tracking behavior is
readily responsive to known and novel objects, and their motion
trajectories. Moreover in this approach, vision is shown to be
sufficient to inform the self-organization of the motion of the
postural coordination necessary for object tracking; i.e., neck
muscle activations. However, much is yet to be discovered in this
domain of sensorimotor connectivity, particularly with regard to
the vast expanse of interaction dynamics that are necessary for
success in the world.

It should be noted here, that not all environments are
actually ultimately complex. Often, either by natural order
or imposed organization, we find ourselves operating in a
circumstance which is out and out routine. Other times, we
may find our operations to be within an environment which
truly has no organizational process to it, whatsoever. That
which is truly remarkable is that our ability to organize our
own behavior is almost ubiquitously robust against these
environmental variances. Continued cooperation between
human movement scientists and roboticists would surely be
mutually beneficial, heading toward elegant descriptions of
the way by which persons and machines can interact with
environments that range across periodic, through chaotic,
even toward completely random orders. As human movement
scientists, we make the assertion that an individual’s primary
means toward ‘success’ is through effective coordination
of their actions within the organization of the world.
This requires competency in the production of purposeful
movements, but even more so a competency in determining the
dynamics of the world within which those actions are to take
place.

Several modern techniques have emerged that offer
quantitative strategies for assessing qualities of synchronicity
between connected systems. Connectivity analysis is often used
to study rhythmic neuronal interactions to identify inter-areal
synchronization within the brain using techniques such as
conditional Granger causality index and partial transfer entropy
(Bastos and Schoffelen, 2016). In the fields of action perception
and ecological psychology, cross recurrence quantification
(cRQA) has been used extensively to elucidate human behavior
coupling between two persons or between a person and
an environmental stimulus. Common applications include
evaluation of social interactions (Richardson et al., 2008; Fusaroli
et al., 2014; Davis et al., 2017), conversational dynamics (Dale
and Spivey, 2005, 2006), head motions during conversation
(Paxton and Dale, 2017), postural coordination (Shockley et al.,
2003; Shockley, 2005; King et al., 2012), and eye movements
(Richardson and Dale, 2005; Richardson et al., 2007), as well as
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posture and gaze response to visual stimulus motion complexity
(Haworth et al., 2015, 2016).

Thus, we seek in the current work to better understand
human-environment interaction by testing the role of the
complexity of stimulus orderliness as a mediator of sensorimotor
coordination. We sought to find a better understanding through
this experiment of the sensitivity and responsiveness of human
vision and posture, in response to rhythmic, chaotic, and random
motion. Our analysis utilizes percent determinism and maxline
outcomes from cross recurrence quantification to evaluate
qualities of coupling between each of these systems, as these
have been shown previously to uncover interesting aspects of
engagement dynamics (Haworth et al., 2015, 2016). We intend
to conclude with the assertion that persons are able to observe
and respond to a full spectrum of motion dynamics, maintaining
particular affinity for chaos.

MATERIALS AND METHODS

Participants and Procedures
Fourteen healthy young adults (4 male and 10 female, age
29.8 ± 10.5 y, height 1.638 ± 0.1 m, and weight 67 ± 14.2 kg)
each participated in a single individual session for data collection.
Synchronous eye movement and standing posture recordings
were taken while a moving point-light stimulus was displayed on
a large monitor in front of the participant. FaceLab 4.5 (Seeing
Machines, Acton, MA, United States) eye-tracking equipment
was used to track eye movements. An AMTI force platform
(Advanced Mechanical Technology Inc., OR6-7, with MSA-6
amplifier) was used to record center of pressure (the projection
of the body’s center of mass onto the surface) throughout each
trial. Trials were managed through custom software designed
in LabView (National Instruments, Austin, TX, United States),

including software synchronization of the data from the eye-
tracker and the force platform, as well as the display of
the visual stimulus. All data was collected at 50 Hz, as this
was the highest common frequency available amongst the set
of equipment. Additionally, 50 Hz sampling provides 20 ms
resolution of each measured behavior, which is sufficient to
observe the dynamics of both postural sway and smooth pursuit
eye movements. We purposefully steered away from stimulus
oscillation velocity/frequency that could provoke saccade or
rapid postural perturbation.

The displayed stimulus (a red dot, 25 pixel radius) was
presented on a 55′′ 1920 × 1200 pixel LCD monitor, moving
according to a predefined motion trajectory (sine, chaos, and
brown noise) with an update in position occurring at a rate of
50 Hz. Trials lasted for 5 min each to ensure the capture of
adequate lengths of data, with condition order randomized for
each participant. Participants were given the instruction to stand
quietly and attend to the motion of the stimulus until the end
of the trial, as indicated by the investigator. Room lights were
dimmed, and conversation was held to a minimum throughout
each trial. However, participants were allowed to speak and move
about freely in the time between conditions. Grid markings on
the surface of the force platform were used to realign the feet to
ensure a similar stance between each condition. Figure 1 provides
a diagram of the setup. Informed consent was obtained prior to
all experimental procedures, as approved by the University of
Nebraska Medical Center Institutional Review Board.

Stimulus Presentation
Stimulus motion animations were constructed such that the
position of the stimulus was updated at 50 Hz (above perceptive
threshold of object motion), with each new point defined to
follow one of three main signal structures; sine, chaos, and
brown noise. These particular signals were selected, as they span

FIGURE 1 | Diagram of the experimental setup. Participants stood atop a force platform in comfortable, self-selected stance. Eye-tracking equipment is affixed to
the monitor stand, and positioned to capture gaze response during stimulus presentation. Example time series shown are from the Sine condition.
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the domain of ‘orderliness.’ Sine exhibits perfectly redundant
order, brown noise exhibits stochastic or non-redundant order,
with chaos exhibiting a dynamic and deterministic mixture of
redundancy and non-redundancy.

Each signal is comprised of 15,000 data points updating at
50 Hz, to provide 5 min of continuous stimulus motion. Stimulus
time series were constructed using embedded and custom
algorithms in Matlab (MathWorks, Natick, MA, United States)
and saved in data files on the computer. These data series were
accessed and displayed through the main Labview application
during each trial. The sine signal was generated using the
sin() function in Matlab. Single sinusoidal motion represents
the simplest oscillation, such as a frictionless clock pendulum,
expressing perfect redundancy. The chaos signal was produced
from a model of the motion of a double pendulum, which
has recently been shown to successfully model the dynamics
of human posture (Suzuki et al., 2012). The free rotations of a
two segment linkage are sufficient to afford chaotic dynamics
(Shinbrot et al., 1992), which appear in the hip strategies
expressed by their model. The x-axis position of the distal
segment of our custom model was extracted and used to produce
the chaos signal. Surrogate testing via phase randomization
(Theiler et al., 1992) was used to further the confidence that
the generated signal exhibited chaotic dynamics. The brown
noise signal was generated by the iterative addition of a
random perturbation to the original point position. White noise
truly represents purely stochastic nature; however, it would be
impossible to follow such a structure with smooth pursuit eye
movements. Smooth pursuit requires continuity in the motion
of the tracked object. Brown noise in essence is the integral
of white noise; maintaining the stochastic nature, while also
presenting sufficient continuity to be tracked by smooth pursuit
eye movements. Although contentious, human posture has
previously been touted to express Brownian motion (Collins
and Deluca, 1994); lending confidence to our approach that the
Brown Noise stimulus is available for integration in sensorimotor
coordination. This spectrum of particular signals provides us
with an access to investigate how individuals might manage their
gaze and posture in coordination to various motions; particularly
on the aspect of orderliness.

Data Processing
Gaze and postural data were recorded at 50 Hz, throughout
the entire 5 min duration of stimulus condition presentation.
Gaze data was recorded as the on-screen pixel coordinate at
which the participant was looking at each time point throughout
the trial. Center of pressure was recorded as the measure of
posture. For both signals, only the horizontal component of
motion was further considered, as the stimulus signal was set to
move only in the horizontal direction. To avoid the influence
of novelty, the first ten seconds of data was eliminated. Only
the subsequent 2 min of data were further processed, to reduce
the possibility that fatigue might interfere with the quality of the
analyses. Cross recurrence quantification analysis (cRQA) was
used to assess coupling of gaze (Gaze) and posture (COP) to the
stimulus, separately, as well as between gaze and posture to gauge
sensorimotor coupling (SensMot). Metrics of SensMot provide

additional novelty to this work, as it provides a first effort toward
a ‘direct’ assessment of the continuous relationship between gaze
and posture during an attention driven smooth pursuit task.

Outcome metrics from cRQA were calculated using custom
Matlab software (MathWorks, Natick, MA, United States)
adapted from those provided by the Perceptual-Motor Dynamics
Laboratory at the University of Cincinnati, are described in
further detail below (Shockley et al., 2002; Shockley, 2005). Prior
to conducting cRQA, gaze data was pre-processed to remove
zero (0) values that were recorded during collection from a
small number of files; much smaller than 0.01% of data in each
file. These data were registered by the eye-tracking software
during samplings when the eyes were unable to be imaged for
position analysis. This occurred in our case, when persons had
an exceptionally long blink. These values were removed from the
time series, and replaced using a 5th order cubic spline (Matlab,
interp1 function).

Cross Recurrence Quantification Analysis
Webber and Zbilut (1994) developed recurrence quantification
analysis to assess the structure of the temporal evolution of
a behavior through the associated measured time series. This
process includes embedding a time series into its respective
multi-dimensional phase space (Takens, 1981), creating a
recurrence matrix (recurrence plot), and then applying various
pattern matching algorithms to uncover the underlying
dynamics. Later, Zbilut et al. (1998) expanded this technique
to include applying these pattern matching approaches to
recurrence matrices generated from two separate time series
embedded in similarly dimensional phase space. This approach
proved useful for uncovering mutual dynamics between
the two time series, and has since been used to describe
coupled oscillators in many various disciplines, including the
coordination of chaotic oscillators (Shockley et al., 2002).
Particularly of interest to the current work are the applications of
cRQA to discover metrics of coordination of coupled biological
rhythms (Richardson and Dale, 2005; Richardson et al., 2008).

In order to conduct cRQA, each time series must be
unfolded into a similar multi-dimensional phase space. This
is accomplished using parameters of delay and embedding
dimension, which are calculated from average mutual
information (AMI; Fraser and Swinney, 1986) and False
Nearest Neighbors (FNN; Abarbanel, 1996) algorithms. We used
values of 22 and 10, respectively, as these were the group averages
after passing each dataset through the above algorithms.

In order to achieve outcome data that was both representative
of the time series’ dynamics, and yet also reasonably comparable,
we chose to set a fixed recurrence value instead of radius value;
as has been previously suggested (Shockley, 2005). Otherwise,
we found that the determinism saturated, and no effective
interpretations could be made of the recurrence plots (which
by the eye, clearly showed differences; see Figure 2, bottom
row). We set percent recurrence at 5%, such that we would
subsequently evaluate recurrent lines under parameters that
are more similar across the three stimulus conditions. Minline
represents the shortest duration (in data points) within which the
two signals are sequentially recurrent that will be considered in

Frontiers in Physiology | www.frontiersin.org October 2018 | Volume 9 | Article 1441140

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01441 October 9, 2018 Time: 19:56 # 5

Haworth and Stergiou Orderliness and Sensorimotor Coordination

FIGURE 2 | Sample data from a single, representative participant in response to the chaotic stimulus motion. The first three viewable dimensions of the two signals
are shown in the first row, with the single-dimensional measured signal in the middle row. The bottom row shows the recurrence plot which indicates the points of
coordination, across trial duration, in phase space. This order is repeated for each of Gaze, COP, and SensMot in separate columns as labeled. All data are
presented unit normalized spatially and from index value 0 through 6000, corresponding to 2 min of trial duration at 50 Hz.

subsequent computations. Minline was set in our experiment to
25, representing duration of 0.5 s as a minimum threshold to be
considered as a recurrent line. This value was chosen based on
the logic that smooth pursuit and saccadic eye movements can
both occur in shorter time spans, but the saccades would not last
longer. Additionally, early runs of sampled data suggested that
this value would provide more stable and comparable outcome
measures across the three conditions.

Outcome measures from cRQA to be considered here
include percent determinism and maxline. These outcomes each
provide a unique description of the dynamics available from
the cross recurrence plot as they have previously been shown
to elucidate dynamical coordination in tasks similar to those
used in the current experiment (Shockley et al., 2002, 2003;
Richardson et al., 2008). Percent determinism is the ratio of
recurrent points that form lines, divided by the total number
of recurrent points; reported from 0 to 100%. If every point
of recurrence between the two signals is part of a bout of
continuous coordination (minimum of 25 points to form a
line), percent determinism would report as 100%. It is possible
that none of the recurrent points are part of a continuous
coordination (line), in which case percent determinism would
report as 0%. Maxline is the length of the longest line formed
by recurrent points, expressing the extent of coupling between

the two signals; reported in number of data points. Larger values
of maxline indicate longer bouts of continuous coordination
between the compared behaviors. Data is collected at 50 Hz, so
each increment of 50 data points for maxline represents 1 s of
signal coordination.

Statistical Analysis
Separate one-way, repeated measures ANOVAs (within
subject; comparing periodic, chaotic, random conditions)
were conducted to test percent determinism and maxline
across these three stimulus conditions; for each of Gaze,
COP, and SensMot. Post hoc, dependent t-tests were used
to identify where differences occurred. Statistical tests were
conducted using IBM SPSS Statistics software (IBM Corporation,
Armonk, NY, United States, Version 18), with an alpha set at
0.05.

RESULTS

Results are reported below, separately for each of Gaze,
COP, and SensMot. A graphical view of the results can be
found in Figure 3, with a listing of the pairwise t-values
in Table 1. Additional analyses were conducted, with
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FIGURE 3 | Results of cRQA, showing coupling for Gaze and COP to stimulus motion (Gaze and COP, separately) and in relation to one another (SensMot), across
three types of stimulus motion.

proximal parameterizations to those reported, in order
to verify the robustness of the findings. In each case,
similar results and trends were found as those reported
here.

Gaze
The one way ANOVA for percent determinism resulted in
significant differences (p < 0.001). The post hoc analysis (Table 1)

showed that percent determinism was similar for Gaze in
response to the Sine and Chaos signals, but was lesser in response
to Brown Noise in comparison to the Sine or Chaos signal. For
maxline, ANOVA again found significant differences (p = 0.04).
Post hoc analysis showed maxline of Gaze was largest during
the Chaos condition, indicating significantly longer bouts of
coordination with Chaos than with either Sine or Brown Noise
signals.

TABLE 1 | Mean values of the group (n = 14) for each outcome measure, under each stimulus condition.

Stimulus signal Gaze T-tests COP T-tests SensMot T-tests

Percent Recurrence

Sine 85 Sine · Chaos 0.3371 82.3 Sine · Chaos 0.0049∗ 73.8 Sine · Chaos 0.0315∗

Chaos 86.2 Chaos · Brown 0.0000∗ 67.4 Chaos · Brown 0.0000∗ 63.7 Chaos · Brown 0.0119∗

Brown Noise 73.8 Brown · Sine 0.0026∗ 54.7 Brown · Sine 0.0003∗ 55.4 Brown · Sine 0.0116∗

MaxLine

Sine 2137 Sine · Chaos 0.0005∗ 208 Sine · Chaos 0.0002∗ 217 Sine · Chaos 0.0004∗

Chaos 4071 Chaos · Brown 0.0305∗ 308 Chaos · Brown 0.0000∗ 333 Chaos · Brown 0.0001∗

Brown Noise 2741 Brown · Sine 0.2134 499 Brown · Sine 0.0000∗ 511 Brown · Sine 0.0000∗

Values in bold indicate the mean of the group for each measure (percent recurrence or maxline) of each behavior (Gaze, COP, or SensMot) in response to each stimulus
type (Sine, Chaos, or Brown Noise). T-tests were conducted pairwise, as indicated, with a threshold at ∗p < 0.05 for significance.
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COP and SensMot
The one way ANOVA for percent determinism resulted in
significant differences for both COP (p < 0.001) and SensMot
(p = 0.004). Post hoc analysis (Table 1) showed similar
patterns of response to the three conditions for COP and
SensMot. Rates of coordination were highest in response
to the Sine signal, and lowest in response to the Brown
Noise signal. For maxline, significant differences were found
for both COP (p < 0.001) and SensMot (p < 0.001).
Again, post hoc analysis (Table 1) showed similar patterns
for COP and SensMot. Shorter duration coordination was
found in response to the Sine signal, while longer duration
coordination was found in response to the Brown Noise
signal.

DISCUSSION

We found that our results support the assertion that persons
are able to observe and respond to a full spectrum of
motion dynamics. Percent determinism shows that gaze had
similar propensity to track Sine and Chaos, indicating an
ability to maintain coupling with these signals throughout the
trial. Gaze in response to Brown Noise had a significantly
lower percent determinism, suggesting a weaker coupling
with this motion structure. It is worth noting, though,
that above 70% determinism does indicate an ability to
coordinate with the random signal, yet in contrast with the
other motion structures tends to not couple as strongly.
Our question here is whether this reduced coupling to
randomness is representative of a system limitation, or the
demonstration of preference. Regardless, these results suggest
that gaze behavior is proficient in response to a variety
of motion structures, and is robust to motion variation
of chaotic order. Actually, in looking at maxline data, it
appears that persons expressed a particular affinity for chaotic
motion.

Maxline represents the longest duration (in data points)
within which the two signals are sequentially recurrent. With
regard to gaze behavior, we contend that this measure stands
as a proxy for the attention span, or ability combined
with interest, to maintain stimulus following. Our results
indicate that the tendency for coupling is highest in the
chaos condition, and similar for the sine and brown noise
conditions. In fact, persons coupled with chaos for nearly
twice the duration of either of the alternatives. Recall also,
the inherency of chaos in biological animacy (Haworth
et al., 2013). In turn, these data may lend new insight
to how we might understand the interpersonal coordination
that has been described previously (Shockley et al., 2003,
2009).

Further, and as suggested above, we feel that the result of
gaze maxline being the highest during the chaos condition is
very much tied to attention. This interpretation is certainly
a bit speculative, as we did not test or measure anything
directly explicating attention as an outcome or as a mechanism.
However, it is an interesting and reasonable interpretation.

Coordinating gaze to the stimulus motion affords continued
accrual of information which could be used to predict its future
position. In the case of the Sine stimulus, the repetitive nature
of the motion trajectory dispels the benefit of highly coupled
gaze. It is just a simple periodic rhythm, identifiable in a short
viewing period. Following a prediction of periodicity would
require only intermittent viewing to confirm the prediction,
and continue as such. This interpretation helps to clarify the
higher percent determinism value that we found in response
to the Sine stimulus. This may represent the viewer continuing
to ‘come back’ to a coordination state in order to verify the
constancy of the periodicity assumption that was drawn after a
few cycles.

In the case of Gaze response to the Brown Noise stimulus,
two unresolvable possibilities exist; either the gaze coupling
is so difficult that it cannot be maintained for such longer
durations, or the information gained from coupling is poor
enough to dispel interest in the continuation of coupling.
Although we cannot make a certain conclusion, we look to
the gaze behavior in response to the sine motion and our
previous interpretation. In that case, the percent determinism
was high while the maxline was reduced, suggesting that
an intermittent attention strategy had been adopted. In the
Brown Noise condition, both metrics were depressed. We
take this to indicate a generally reduced attention to this
particular signal structure. We thus conclude that the high
maxline in the chaos condition indicates a behavior of
preference, and not one of limited ability under the other two
conditions. In other words, there seems to be a motivation
for sustained attention to the chaotic motion structure, which
we speculate is based from an implicit awareness of its
utility. Ward and West (1998) found that persons were
able to learn the underlying dynamic of a particular chaotic
process, and then proceed to generate number sequences
which contain that dynamic. Considering this along with
evidence of the invariance of chaos in biological motion (Ali
et al., 2007; Haworth et al., 2013) highlights the value of
our observed ability to coordinate with such complex motion
structures.

Interestingly, with regard to COP, percent determinism
decreased across each of the three conditions. More consistent
coupling was found to the Sine signal, while less consistent
coupling was found to the Brown Noise signal. It is possible
that this is an effect of the inherent redundancy of the
stimulus motion signal, itself. Postural coordination with
a less redundant signal (Brown Noise) would likely result
in less consistently recurrent behavioral patterns. However,
the observed trend is actually opposite when we look at
maxline, which indicates longest duration couplings to the
Brown Noise signal and the shortest to the Sine signal.
Given that the two metrics are independent of one another;
this inverse relationship is not typically seen in this type
of analysis. Thus, we believe it to be a behavioral and
not a computational phenomenon. For a more complete
understanding, we should consider the natural rhythmicity
of posture. All accounts report postural sway to exhibit
at least ‘noisy’ sinusoidal motion (Jeka and Kiemel, 2004).
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However, reports also describe posture to demonstrate Brownian
motion (Collins and Deluca, 1994); and more recently, posture
has been modeled to contain inherent chaotic structure (Suzuki
et al., 2012). Without trying to resolve which of these accounts
is more accurate, we highlight that each of them presents the
case that human posture requires a more complicated model than
simple sinusoidal rhythmicity. Given this, our results come into
better focus in suggesting that posture coordinates more so with
non-rigidly periodic motion structures.

Analysis of SensMot results in the same pattern of behaviors
as was found for COP. Several interpretations appear with
respect to these results. One is that the coordination of gaze
to stimulus motion was sufficiently high that we would not
expect dramatically different coordination of posture to stimulus
and gaze. Unfortunately, this deflates somewhat the additive
value of SensMot to a study which already compares gaze
and posture separately. However our results do support its
use as a stand-alone metric of sensorimotor coordination,
which could cut data preparation and processing time in half
without significant loss of information. Separately, given the
similarity of results between the COP and SensMot, we speculate
that the postural dynamics seem to govern the outcomes of
SensMot coordination. This seems to be a bit unexpected,
as the assumed information flow of the experience is from
the motion of the stimulus, through the sensation/perception
of its motion, to the resultant reorganization of posture.
It is curious how postural dynamics could weigh more
heavily in the coordination of eye and body movement
if they are at the end of the information flow. Possibly,
postural dynamics do have some regulative influence on the
nature of sensorimotor coordination. Further research could
explore the temporal resolution of the identified coordination
patterns, and seek to provide additional clarity to this
interpretation.

CONCLUSION

Our results corroborate with previous work testing sensorimotor
coupling to environmental dynamics (Stoffregen et al.,
2000, 2006, 2007; Kay and Warren, 2001; Giveans et al.,
2011). We have added with the current experiment, explicit
evidence that these couplings are robust in the presence
of chaotic motion structures of stimulus motion. This
opens the way for future research to be conducted into
the robustness of these findings, and the expanse of
chaotic oscillators to which we are able to couple in an
effective fashion. Further, we anticipate the application of
this finding in the creation of therapeutic modalities that
may seek to positively affect the dynamics of sensorimotor
coordination in clinical populations. Lingering questions
remain, however. Is attention to chaos a ubiquitous component
of the human sensorimotor experience, or is does this
propensity develop as we gain experience in the world;
i.e., throughout childhood? Children with autism tend to

express hyper-rigid behavioral patterns, including movement
behaviors (rocking and hopping) and compulsive adherence
to daily rituals. It might be interesting to explore if these
children express similar flexibility of attention to chaotic
motion.

The current work intends to provide an interesting
observation for the benefit of the complexity theorist. We
have identified not only that persons are sensitive to the
dynamics of a chaotic oscillator, but in some ways have a
particular preference to their dynamics. Further work will
focus on how this approach may be useful in understanding
behavioral coordination in a dynamic world rich with
complex, and often chaotic, dynamics. This study provides
solid ground from which to continue the investigation of
sensorimotor coupling in response to a full spectrum of visual
stimulus motion structure; from periodic, through chaos, to
aperiodic.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

ETHICS STATEMENT

This study was approved and the protocol was carried out
in accordance with the recommendations of the University
of Nebraska Medical Center Institutional Review Board. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

AUTHOR CONTRIBUTIONS

JH and NS contributed to the conception and design
of the study. JH organized the database, performed
the statistical analysis, and wrote the first draft of the
manuscript. Both authors contributed to data interpretation,
manuscript revision, and approval of the submitted
version.

FUNDING

Funding was provided by a Dennis Weatherstone Predoctoral
Fellowship (Autism Speaks grant #7070, awarded to author
JH), with additional support for materials from the American
Society of Biomechanics. Author NS currently receives
support from the National Institutes of Health Centers
of Biomedical Research Excellence (1P20GM109090-01).
The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript.

Frontiers in Physiology | www.frontiersin.org October 2018 | Volume 9 | Article 1441144

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01441 October 9, 2018 Time: 19:56 # 9

Haworth and Stergiou Orderliness and Sensorimotor Coordination

REFERENCES
Abarbanel, H. D. I. (1996). Analysis of Observed Chaotic Data. New York, NY:

Springer-Verlag. doi: 10.1007/978-1-4612-0763-4
Adolph, K. E., and Joh, A. S. (2009). “Multiple learning mechanisms in

the development of action,” in Learning and the Infant Mind, eds A.
Woodward and A. Needham (New York, NY: Oxford University Press),
172–207.

Ali, S., Basharat, A., and Shah, M. (2007). Chaotic Invariants for Human Action
Recognition. Piscataway, NJ: IEEE ICCV.

Bastos, A. M., and Schoffelen, J. M. (2016). A tutorial review of functional
connectivity analysis methods and their interpretational pitfalls. Front. Syst.
Neurosci. 9:175. doi: 10.3389/fnsys.2015.00175

Berthier, N. E., Rosenstein, M. T., and Barto, A. G. (2005). Approximate optimal
control as a 359 model for motor learning. Psychol. Rev. 112, 329–346.
doi: 10.1037/0033-295X.112.2.329

Collins, J. J., and Deluca, C. J. (1994). Random walking during quiet
standing. Phys. Rev. Lett. 73, 764–767. doi: 10.1103/PhysRevLett.
73.764

Dale, R., and Spivey, M. J. (2005). “Categorical recurrence analysis
of child language,” in Proceedings of the 27th Annual Meeting of
the Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum,
530–535.

Dale, R., and Spivey, M. J. (2006). Unraveling the dyad: using recurrence analysis
to explore patterns of syntactic coordination between children and caregivers
in conversation. Lang. Learn. 56, 391–430. doi: 10.1111/j.1467-9922.2006.
00372.x

Davis, T. J., Pinto, G. B., and Kiefer, A. W. (2017). The stance leads the dance:
the emergence of role in a joint supra-postural task. Front. Psychol. 8:718.
doi: 10.3389/fpsyg.2017.00718

Duran, B., Kuniyoshi, Y., and Sandini, G. (2008). “Eyes-Neck coordination
using chaos,” in Proceedings of the European Robotics Symposium, Springer
Tracts in Advanced Robotics, Napoli, 44, 83–92. doi: 10.1007/978-3-540-78
317-6_9

Duran, B., Metta, G., and Sandini, G. (2007a). “Emergence of smooth pursuit
using chaos,” in Proceedings of the First International Conference on Self-
Adaptive and Self-Organizing Systems, Boston, MA, doi: 10.1109/SASO.20
07.23

Duran, B., Metta, G., and Sandini, G. (2007b). “Towards a “chaotic”
smooth pursuit,” in Proceedings of the 7th IEEE-RAS International
Conference on Human Robotics, Birmingham, doi: 10.1109/ICHR.2007.481
3901

Fraser, A. M., and Swinney, H. L. (1986). Independent coordinates for strange
attractors from mutual information. Phys. Rev. A 33, 1134–1140. doi: 10.1103/
PhysRevA.33.1134

Fusaroli, R., Konvalinka, I., and Wallot, S. (2014). Analyzing Social Interactions:
The Promises and Challenges of using Cross Recurrence Quantification Analysis,
eds M. Marwan, A. Riley, C. L. Giuliani, and Webber Jr (Cham: Springer),
137–155.

Giveans, M. R., Yoshida, K., Bardy, B., Riley, M., and Stoffregen,
T. A. (2011). Postural sway and the amplitude of horizontal eye
movements. Ecol. Psychol. 23, 247–266. doi: 10.1080/10407413.2011.61
7215

Haworth, J., Kyvelidou, A., Fisher, W., and Stergiou, N. (2016). Indifference
to chaotic motion may be related to social disinterest in children
with autism. J. Motor Learn. Dev. 4, 219–235. doi: 10.1123/jmld.2015-
0031

Haworth, J., Vallabhajosula, S., Tzetzis, G., and Stergiou, N. (2013). “Optimal
variability and complexity: a novel approach for management principles,” in
Chaos and Complexity Theory for Management: Nonlinear Dynamics, ed. S.
Banerjee (Hershey, PA: IGI Global).

Haworth, J. L., Kyvelidou, A., Fisher, W., and Stergiou, N. (2015). Children’s
looking preference for biological motion may be related to an affinity
for mathematical chaos. Front. Psychol. 6:281. doi: 10.3389/fpsyg.2015.
00281

Jeka, J. J., and Kiemel, T. (2004). Noise Associated with the Process of Fusing
Multisensory Information. Coordination Dynamics: Issues and Trends, eds V. K.
Jirsa and J. A. S. Kelso (Berlin: Springer).

Kay, B. A., and Warren, W. H. Jr. (2001). Coupling of posture and gait: mode
locking and parametric excitation. Biol. Cybern. 85, 89–106. doi: 10.1007/
PL00008002

King, A. C., Wang, Z., and Newell, K. M. (2012). Asymmetry of recurrent dynamics
as a function of postural stance. Exp. Brain Res. 220, 239–250. doi: 10.1007/
s00221-012-3133-5

Meltzoff, A. N., Kuhl, P. K., Movellan, J., and Sejnowski, T. J. (2009). Foundations
for a new science of learning. Science 325, 284–288. doi: 10.1126/science.
1175626

Paxton, A., and Dale, R. (2017). Interpersonal movement synchrony responds
to high-and low-level conversational constraints. Front. Psychol. 8:1135.
doi: 10.3389/fpsyg.2017.01135

Richardson, D., and Dale, R. (2005). Looking to understand: the coupling
between speakers’ and listeners’ eye movements and its relationship to
discourse comprehension. Cogn. Sci. 29, 39–54. doi: 10.1207/s15516709cog00
00_29

Richardson, D., Dale, R., and Shockley, K. (2008). “Synchrony and
swing in conversation: coordination, temporal dynamics and
communication,” in Embodied Communication, eds I. Wachsmuth,
M. Lenzen, and G. Knoblich (Oxford: Oxford University Press),
75–93.

Richardson, D. C., Dale, R., and Kirkham, N. Z. (2007). The art of conversation
is coordination. Psychol. Sci. 18, 407–413. doi: 10.1111/j.1467-9280.2007.01
914.x

Schaal, S. (2007). The New Robotics—towards human-centered machines. HFSP J.
1, 115–126. doi: 10.2976/1.2748612

Sejnowski, T. J. (2010). “Learning optimal strategies in complex environments,”
in Proceedings of the 402 National Academy of Sciences, Ithaca, NY, 107,
20151–20152. doi: 10.1073/pnas.1014954107

Shinbrot, T., Grebogi, C., Wisdom, J., and Yorke, J. A. (1992). Chaos
in a double pendulum. Am. J. Phys. 60, 491–499. doi: 10.1119/1.
16860

Shockley, K. (2005). “Cross recurrence quantification of interpersonal
postural activity,” in Tutorials in Contemporary Nonlinear Methods
for the Behavioral Sciences, eds M. A. Riley and G. C. Van Orden,
142–177.

Shockley, K., Butwill, M., Zbilut, J. P., and Webber, C. L. Jr. (2002). Cross
recurrence quantification of coupled oscillators. Phys. Lett. A 305, 59–69.
doi: 10.1016/S0375-9601(02)01411-1

Shockley, K., Richardson, D. C., and Dale, R. (2009). Conversation and
coordinative structures. Top. Cogn. Sci. 1, 305–319. doi: 10.1111/j.1756-8765.
2009.01021.x

Shockley, K., Santana, M. V., and Fowler, C. A. (2003). Mutual interpersonal
postural constraints are involved in cooperative conversation. J. Exp. Psychol.
29, 326–332.

Siegler, R. S. (1996). Emerging Minds: The Process of Change in Children’s Thinking.
New York, NY: Oxford University Press.

Siegler, R. S., DeLoache, J., and Eisenberg, N. (2010). How Children Develop, 3rd
Edn. New York, NY: Worth Publishers.

Spivey, M. J. (2007). The Continuity of Mind. New York, NY: Oxford University
Press.

Sprott, J. C. (2013). Is chaos good for learning? Nonlinear Dynam. Psychol. Life Sci.
17, 223–232.

Stoffregen, T. A., Bardy, B. G., Bonnet, C. T., Hove, P., and Oullier, O. (2007).
Postural sway and the frequency of horizontal eye movements. Motor Control
11, 86–102.

Stoffregen, T. A., Hove, P., Schmit, J., and Bardy, B. G. (2006). Voluntary and
involuntary postural responses to imposed optic flow. Motor Control 10, 24–33.
doi: 10.1123/mcj.10.1.24

Stoffregen, T. A., Pagulayan, R. J., Bardy, B. G., and Hettinger, L. J. (2000).
Modulating postural control to facilitate visual performance. Hum. Mov. Sci.
19, 203–220.

Suzuki, Y., Nomura, T., Casadio, M., and Morassa, P. (2012). Intermittent control
with ankle, hip, and mixed strategies during quiet standing: a theoretical
proposal based on a double inverted pendulum model. J. Theor. Biol. 310,
55–79. doi: 10.1016/j.jtbi.2012.06.019

Takens, F. (1981). Detecting Strange Attractors in Fluid Turbulence, eds D. Rand
and L.-S. Young (NewYork, NY: Springer Verlag).

Frontiers in Physiology | www.frontiersin.org October 2018 | Volume 9 | Article 1441145

https://doi.org/10.1007/978-1-4612-0763-4
https://doi.org/10.3389/fnsys.2015.00175
https://doi.org/10.1037/0033-295X.112.2.329
https://doi.org/10.1103/PhysRevLett.73.764
https://doi.org/10.1103/PhysRevLett.73.764
https://doi.org/10.1111/j.1467-9922.2006.00372.x
https://doi.org/10.1111/j.1467-9922.2006.00372.x
https://doi.org/10.3389/fpsyg.2017.00718
https://doi.org/10.1007/978-3-540-78317-6_9
https://doi.org/10.1007/978-3-540-78317-6_9
https://doi.org/10.1109/SASO.2007.23
https://doi.org/10.1109/SASO.2007.23
https://doi.org/10.1109/ICHR.2007.4813901
https://doi.org/10.1109/ICHR.2007.4813901
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1080/10407413.2011.617215
https://doi.org/10.1080/10407413.2011.617215
https://doi.org/10.1123/jmld.2015-0031
https://doi.org/10.1123/jmld.2015-0031
https://doi.org/10.3389/fpsyg.2015.00281
https://doi.org/10.3389/fpsyg.2015.00281
https://doi.org/10.1007/PL00008002
https://doi.org/10.1007/PL00008002
https://doi.org/10.1007/s00221-012-3133-5
https://doi.org/10.1007/s00221-012-3133-5
https://doi.org/10.1126/science.1175626
https://doi.org/10.1126/science.1175626
https://doi.org/10.3389/fpsyg.2017.01135
https://doi.org/10.1207/s15516709cog0000_29
https://doi.org/10.1207/s15516709cog0000_29
https://doi.org/10.1111/j.1467-9280.2007.01914.x
https://doi.org/10.1111/j.1467-9280.2007.01914.x
https://doi.org/10.2976/1.2748612
https://doi.org/10.1073/pnas.1014954107
https://doi.org/10.1119/1.16860
https://doi.org/10.1119/1.16860
https://doi.org/10.1016/S0375-9601(02)01411-1
https://doi.org/10.1111/j.1756-8765.2009.01021.x
https://doi.org/10.1111/j.1756-8765.2009.01021.x
https://doi.org/10.1123/mcj.10.1.24
https://doi.org/10.1016/j.jtbi.2012.06.019
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01441 October 9, 2018 Time: 19:56 # 10

Haworth and Stergiou Orderliness and Sensorimotor Coordination

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Farmer, J. D. (1992). Testing
for nonlinearity in time series: the method of surrogate data. Phys. D 58, 77–94.
doi: 10.1016/0167-2789(92)90102-S

Thelen, E., and Smith, L. (1994). A Dynamic Systems Approach to the Development
of Cognition And action. Cambridge: The MIT Press Inc.

Todorov, E., and Jordan, M. I. (2002). Optimal feedback control as a
theory of motor coordination. Nat. Neurosci. 5, 1226–1235. doi: 10.1038/
nn963

Ward, L. M., and West, R. L. (1998). Modeling human chaotic behavior: nonlinear
forecasting analysis of logistic iteration. Nonlinear Dynam. Psychol. Life Sci. 2,
261–282. doi: 10.1023/A:1022957921056

Webber, C. L. Jr., and Zbilut, J. P. (1994). Dynamical assessment of physiological
systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 965–973.
doi: 10.1152/jappl.1994.76.2.965

Zbilut, J. P., Giuliani, A., and Webber, C. L. Jr. (1998). Detecting deterministic
signals in exceptionally noisy environments using cross recurrence
quantification. Phys. Lett. A 246, 122–128. doi: 10.1016/S0375-9601(98)00457-5

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Haworth and Stergiou. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org October 2018 | Volume 9 | Article 1441146

https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1038/nn963
https://doi.org/10.1038/nn963
https://doi.org/10.1023/A:1022957921056
https://doi.org/10.1152/jappl.1994.76.2.965
https://doi.org/10.1016/S0375-9601(98)00457-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


ORIGINAL RESEARCH
published: 31 October 2018

doi: 10.3389/fphys.2018.01527

Frontiers in Physiology | www.frontiersin.org October 2018 | Volume 9 | Article 1527

Edited by:

Sladjana Z. Spasić,
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Static taping of the ankle or knee joint is a common method of reducing risk of injury by

providing mechanical stability. An alternative taping technique employs kinesiology tape,

which has the additional benefit of improving functionality by stimulating proprioception.

There is substantial disagreement whether kinesiology tape shows significant differences

in proprioception and postural stability as compared to rigid/static tape when applied

at the lower limb. The current study investigated the effects of kinesiology tape and

static tape during a Y Balance Test on center of mass as an indicator for postural

stability. Forty-one individuals, free of injury, performed the Y Balance Test under the

three conditions; no tape, kinesiology tape, and static tape applied at the lower limb

to the quadriceps, triceps surae and ankle joint. All participants completed the Y

Balance Test to determine whether any significant differences could be observed using

center of mass movement as a surrogate measure for balance and proprioception.

The Minkowski-Bouligand and box-counting fractal dimension analyses were used as

measures of the dynamic changes in the center of mass whilst undertaking the Y Balance

Test. Statistical analyses included the Kruskal Wallis test to allow for non-normally

distributed data and a Bonferroni corrected pairwise T-test as a post hoc test to ascertain

pairwise differences between the three taping conditions. Significance was set at 0.05.

The fractal analyses of the dynamic changes in center of mass showed significant

differences between the control and both the static tape and kinesiology tape groups

(p = 0.021 and 0.009, respectively). The current study developed a novel measure of

dynamic changes in the center of mass during a set movement that indicated real-time

processing effects during a balance task associated with the type of taping used to

enhance postural stability.

Keywords: postural stability, center of mass, balance test, fractal dimension, ankle taping, complex movement

INTRODUCTION

Proprioception and Balance
Proprioception is a sensory modality important in monitoring body position in space, balance
and movement (Lephart et al., 1997). The somatosensory, vestibular, and visual systems are all
involved in proprioception to retain balance and posture and to enable dynamic movements
(Woollacott and Shumway-Cook, 2002). The receptors in the skin, muscles, ligaments, and
tendons, as well as vestibular and visual information associated with proprioception, provide input
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to the central nervous system regarding body position. Taping
of the lower limb has been used to improve stability using static
tape or to enhance proprioception by applying kinesiology tape.
The effectiveness of either taping method is best analyzed by
measuring the degree of postural control during a balance test.
Current measures are based on Euclidean geometry such as
area covered by postural sway. Non-Euclidean or complexity
measures such as fractal analysis are better suited to determine
extent of postural sway and taping effectiveness.

Assessment of Body Balance
Two tests are preferentially used to assess dynamic balance:
the Star Excursion Balance Test (SEBT), and the Y Balance
Test (YBT). These tests can be used to evaluate physical
performance, investigate dynamic postural control, identify
athletes at greater risk for injury, and provide quantitative data
during rehabilitation. Both tests require reaching of the non-
stance leg in set directions from a central standing position. The
YBT uses three (anterior, posteromedial, and posterolateral) of
the eight SEBT directions. No significant differences in terms of
reliability and information gained from the two tests have been
reported (Bell et al., 2011; Coughlan et al., 2012). The Balance
Error Scoring System (BESS) and the Biodex Balance System
are two additional measures of balance (Arnold and Schmitz,
1998). However, these tests do not measure center of mass (CoM)
changes during dynamicmovement, but rather assess the effect of
a movement upon completion. Therefore, a more direct measure
of proprioception and balance as key factors influencing the
CoM during movement that assesses postural stability is required
(Fritschi et al., 2014).

Taping the Lower Limb
Postural stability is important during all types of tasks as part
of activities of daily living and sport. The use of tape on the
lower limb is often applied to improve dynamic postural control
and has been investigated by several researchers (Briem et al.,
2011; Nakajima and Baldridge, 2013; Hosp et al., 2015). Static
or non-elastic tape (ST) is commonly used to limit the range
of motion in a desired direction. This type of tape has been
shown to be effective in reducing the prevalence of lower limb
injuries (Karlsson et al., 1993; Wilkerson, 2002; Lardenoye et al.,
2012; Jackson et al., 2016). However the mechanism responsible
for improving postural control has not been clearly elucidated,
and may be a function of the reduction in joint flexibility by
the rigid tape or due to enhanced proprioceptive input from
skin sensory receptors as suggested by the distributors of the
kinesiology tape (KT; Corporation, 2017). For three decades KT
has been adopted by athletes world-wide, but no clinical study has
yet unequivocally shown that KT taping on the lower limb has
better outcomes compared to ST for dynamic postural stability.
One study reported that application of KT at the knee did not
improve knee proprioception in healthy women, yet enhanced
proprioception in women with poor proprioceptive ability (Hosp
et al., 2015). A further study using the Balance Error Scoring
System (BESS) investigated the effects of KT on balance deficits
associated with chronic ankle instability. This study concluded
that KT improved balance after it had been applied for 48 h, when

compared with the pre-test and with the control group results
(Jackson et al., 2016). Another study compared taping the ankles
with kinesiology tape to rigid tape in male athletes undertaking
the SEBT and found no significant effect on muscle activity
(Briem et al., 2011). Although rigid tape and not kinesiology
tape increased muscle activity when the ankles were taped, no
correlation between muscle activation and the influence of either
tape on postural stability could be determined. Finally, Nakajima
et al. used the SEBT to analyse the effect of KT on dynamic
postural control. They concluded that KT had an effect in females
only in the posterior-medial and medial directions of the SEBT
test (Nakajima and Baldridge, 2013).

Fractal Analysis as a Dynamic Measure
Measures of spatial dispersion of the CoM to investigate the
effects of taping on movement have not been investigated
using non-linear methods, although they provide means for
dynamic assessment of CoM changes during the YBT or other
balance tests. Current center of pressure (CoP) or center of
mass analyses are based on position time series but also include
spatial measures such as sway path length, the area covered by
CoP/CoM dispersion, as well as range, maximal sway trajectory
and peak velocity (Yamamoto et al., 2015). Thus, CoM can be
analyzed as a time series associated with changes in a set direction
of movement or as a 2D trajectory or spatial dispersion as a
function of postural control during the YBT. Better postural
stability is associated with greater variation and dispersion in the
CoM trajectory leading to a more complex geometric pattern.
Postural stability which is associated with variability in the
CoM trajectory and observed during movement is a non-linear
phenomenon and is not well described by Euclidean geometry.
Fractal geometry may be useful for measuring the CoM trajectory
associated with YBT and any changes due to taping (Huang
et al., 2013; Gilfriche et al., 2018). The fractal dimension (FD)
is a descriptive parameter, which can provide an index of the
complexity of a non-linear pattern such as the CoM trajectory.
Several fractal analyses methods have been applied to investigate
non-linear spatial distributions, among them the box-counting
and Minkowski-Bouligand methods are commonly used. The
fractal dimension is a useful parameter for classifying complex
patterns (Jelinek and Fernandez, 1998) and several studies have
described changes in postural stability and balance including
the ability of postural adjustments in patients with Prader-
Willi Syndrome (Błaszczyk and Klonowski, 2001; Cimolin et al.,
2011). The Prader-Willi Syndrome study used the box-counting
method to investigate traces of CoP trajectories. The authors
demonstrated that the CoP trajectories in Prader-Willi Syndrome
were characterized by higher values of FD when compared to
a control group. A study investigating ankle sprain injuries,
however, indicated a reduction in fractal dimension (Doherty
et al., 2015). These two studies suggest that a fractal dimension
value that is too small or too large indicates compromised
proprioceptive function.

The current study investigated the spatial dispersion of CoM
associated with the YBT in a healthy cohort of young adults
and used Minkowski-Bouligand and box-counting methods to
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determine the fractal dimension to evaluate the effect of static vs.
kinesiology tape applied to the lower limb compared to no tape.

METHODS

Participants
A total of 41 participants were recruited at Charles Sturt
University for the study. The participants completed a
questionnaire reporting injuries for the last 5 years. Age,
gender, sporting activity, frequency and amount, individual
height, and weight for all participants were noted. The Human
Research Ethics Committee of Charles Sturt University approved
the protocol (protocol number H16113). All participants
provided written consent to take part in the research following
receipt of an information package.

Taping Procedures
All participants were tested on two separate occasions, using
kinesiology tape (Kinesio Tex R©) on one occasion, and rigid tape
on the other. The order of tape allocation was randomized. Both
occasions included a no Tape trial. A single strip of tape was
applied without tension to the muscle belly of rectus femoris
and the medial head of gastrocnemius while the muscle was
under stretch. An anti-inversion ankle strapping was also applied
using a single strip of tape without tension starting from the
medial lower leg, passing inferiorly over the lateral malleolus
(lateral part of the ankle), under the arch of the foot, passing
superiorly over the medial malleolus, and finishing at the lateral
aspect of the lower leg (Van Den Dries et al., 2013). As the YBT
utilizes sagittal plane motion at the knee, and a combination
of sagittal and frontal plane motion at the ankle, three strips
were applied to potentially influence the three fundamental
movements requiring control throughout the task. All strapping
was applied following procedures outlined in the guide produced
by one KTmanufacturer (Capobianco and Van Den Dries, 2013),
and applied to the dominant leg (Figure 1).

Y Balance Test
As a method of assessing dynamic postural stability, the Y
Balance test (YBT) was used to investigate the effect of taping.
The goal of the YBT is to reach as far as possible with one leg
in three directions while maintaining balance with the dominant
leg. The participant stands at a central point and extends the non-
dominant leg anteriorly, posterolaterally, and posteromedially
(Figure 2). Each participant performed one practice trial to
become familiar with the test, before performing five trials with
no tape, KT and ST tapes, respectively. On the first testing
occasion, the participant performed the YBT untapped and with
one of the taping variables (KT or ST). A minimum of 3 days
later, the participant performed the YBT again, both untapped
and then with either the ST or KT (the tape not used on the
first occasion). The minimum 3 days break between testing was
used as a washout period to ensure that the results would reflect
the taping intervention, not the carry over effects from previous
testing (Chow and Liu, 2004). In addition, the 3-day interval also
showed whether there was a difference in response to the YBT
when no tape was applied. An eight-camera 3D motion capture

FIGURE 1 | Taping procedures at (A) the ankle, (B) the calf, and (C) the

quadriceps.

system (100Hz, Vicon, Oxford Metrics, UK) was used to obtain
kinematic data based on 36 reflective markers applied to the
pelvis and lower limb, while anAMTI force plate (1000Hz, AMTI,
USA) collected kinetic data (Figure 2). Processes specific to
Visual3D (Version 6, C-Motion, Germantown,MD) were used to
calculate the mass of each segment, which allowed identification
of the relative position of the center of mass. A fourth-order
Butterworth low-pass filter was used to filter kinematic (18Hz)
and kinetic (50Hz) data prior to export for statistical analysis.
Of the 890 individual trials, the mean duration for the sequence
of three reaches was 880.6 (± 314.6) frames (8.81 s). All trials
were subsequently normalized to 1,001 frames to allow individual
trials to be directly compared. In Figure 2, the vertical arrow
represents the ground reaction force vector, the circle depicts
the relative center of mass. The bottom row represents the CoM
dispersion. While movement in the z-axis affects superior and
inferior movement of the CoM, movement in the x and y-
axis shifts CoM outside the base of support, which requires
somatosensory and neuromuscular adaptation to maintain a
balanced state. For this reason, the current analysis focused on
the CoM dispersion associated with postural adjustment in a 2-
dimensional representation in the x and y axis (anterior/posterior
and medial/lateral dispersion). The non-linear spatial dispersion
characteristics of CoM were determined using fractal analysis
and more common linear features including total sway area and
maximum/minimum trajectory.

Fractal Analysis
Traditional common features extracted from the spatial
dispersion of the center of mass included total path length,
maximum and minimum trajectory in each direction and total
area (Yamamoto et al., 2015). Fractal analysis was performed on
the 2D representation of the CoM trajectory during the YBT
from initiation of the reach attempts in the anterior, posterior
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FIGURE 2 | An illustrative example of a Vicon 3D frame.

lateral and posterior medial direction and to return to the central
position. The recorded CoM dispersion was then pre-processed
by filtering any noise and analyzed.

Minkowski- Bouligand Method
A computer-based approach to measure the fractal dimension
was developed by Tom Smith and his colleagues from existing
mathematical concepts and implemented applying an in-house
Minkowski-Bouligand dimension macro within NIH Image
software (Smith and Behar, 1994; Smith et al., 1996; Jelinek
and Fernandez, 1998). The Minkowski-Bouligand dimension is
determined by replacing each pixel of a line representing the
changes in the CoM associated with the YBT with an array
of pixels or circles whose diameter increased with each pass
(Figure 3). The double logarithm of the scale (circle diameter)
and length of the line associated with the changes in CoM during
the YBT result in a linear relationship (regression line) if the

image is fractal over several generations of scales. The slope (S)
of the regression line is used to calculate the fractal dimension
(Fernández and Jelinek, 2001; Jelinek et al., 2005). The fractal
dimension is calculated using the equation: DfMB = 2–S.

Box-Counting Method
The box-counting dimension was determined using the FracLac
box-counting algorithm in ImageJ (Karperien and Jelinek, 2015).
The box-counting method divides the space which contains the
image into equal sized boxes of progressively smaller sides. Then,
the boxes that include part of the image of interest are counted
(Figure 3) (Fernández and Jelinek, 2001). The double logarithm
of scale vs. the number of filled boxes is an approximate straight
line whose gradient is DfBC.

Statistical Analysis
The Shapiro-Wilk Test was used to check for normality
as recommended for sample size below 50 and based on
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FIGURE 3 | (A) Log-log plot of Minowski dimension analysis. (B) Log-log graph of Box counting dimension analysis.

TABLE 1 | Characteristics of participants for gender.

Gender Age (years) Height (m) Weight (kg) BMI (kg/m2)

Male 22.91 ± 3.61 1.81 ± 0.07 84.74 ± 10.53 25.67 ± 1.77

Female 21.05 ± 1.82 1.66 ± 0.06 66.57 ± 7.07 24.37 ± 3.35

Mean ± standard deviation.

regression and correlation, whereas the Kolmogorov-Smirnov
test is based on the empirical distribution function and
only considers the largest discrepancy between observed
and hypothesized distributions (Yap and Sim, 2011). The
results showed a normal distribution. A repeated measures
student t-test was performed to investigate whether significant
differences existed between the first trial and the second trial
performed without tape 3 days later. Data including fractal
dimension, reach distance, and demographic characteristics of
the participants were analyzed using a general linear mixed
model (Cnaan et al., 1997). Linear mixed-effect models typically
combine the components of fixed effects, random effects, and
repeated measurements in a single unified approach which was
appropriate for the study (Grajeda et al., 2016). The model
was followed by a Bonferroni corrected pairwise t-test as a
post hoc test to ascertain pairwise differences between the three
conditions (no tape, KT, rigid tape). Spearman’s correlation
was determined to investigate whether the fractal dimension
was correlated with maximum reach. Descriptive statistics were
calculated for male and female groups. Significance was set at
p < 0.05.

RESULTS

Forty-one participants attended the clinic to assess the effect
of taping on balance. Of these, 21 were males and 20 were
females. Table 1 represents the mean and standard deviation of
age, height, and weight for each gender.

TABLE 2 | Traditional linear measures of spatial patterns associated with CoM

dispersion.

Feature NoTape Static tape Kinesiology tape

AVERAGE TRAJECTORY

Anterior 63.1 (± 17.3) 65.6 (± 18.9) 66.0 (± 20.7)

Posterior-medial 87.0 (± 13.4) 86.2 (± 16.8) 86.6 (± 13.3)

Posterior-lateral 70.1 (± 14.8) 71.1 (± 19.5) 70.7 (± 19.5)

MAXIMUM TRAJECTORY (FOR ALL PARTICIPANTS)

Anterior 157.1 150.0 160.5

Posterior-medial 115.0 122.7 115.8

Posterior-lateral 152.0 150.9 147.9

MINIMUM TRAJECTORY (FOR ALL PARTICIPANTS)

Anterior 36.1 26.9 31.4

Posterior-medial 43.7 47.3 53.8

Posterior-lateral 37.6 39.4 38.6

Mean ± standard deviation. All data in centimeters.

Several variables can affect postural stability including being
overweight or obese (Hue et al., 2007). Therefore, body mass
index (BMI) was included in the analysis and normal range set
at between 20 and 25 kg/m2. BMI was within the normal range
for both genders with females having a slightly lower BMI but
not significantly different. No significant difference was noted
for age between the genders. The participants also recorded their
activity profiles. This indicated that the majority of participants
undertook on average 5 h of activity per week.

The change in the CoM dispersion for the no tape condition
did not differ between males and females, and therefore male and
female data were combined (Tables 2–4).

Common features investigated to determine postural stability
or sway were analyzed with respect to taping condition and YBT.
The results are shown in Table 2. No significant effect of taping
was observed for total path length, maximum, and minimum
trajectory in each direction and total area. Supplementary File 1

offers a video of a single participant completing the YBT in the
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TABLE 3 | Effects of taping measured with the Minkowski-Bouligand method.

Control KT ST

Group 0.957 ± 0.005 0.974 ± 0.007 0.976 ± 0.007*

Males 0.957 ± 0.007 0.979 ± 0.010 0.976 ± 0.010

Females 0.957 ± 0.009 0.969 ± 0.009 0.976 ± 0.009

Mean ± standard error; *significant finding (p ≤ 0.05).

no tape condition first and followed by the static tape condition.
It should be noted that while no significant effect was observed
for common measures of postural stability and sway, an increase
in corrective movements can be observed at the femur of the
support leg in the static tape condition compared to the no
tape condition. Results of the fractal analysis also indicated a
significant effect of taping.

A linear mixed effects model was applied to consider the three
experimental interventions of no tape, KT and ST tape as well as
gender. The t-test revealed no significant difference between the
first and third day trials. As such, the data was averaged and the
effects of KT and ST were compared against this average control
condition data. All data were normally distributed (Shapiro-
Wilk Test >0.05). Table 3 shows the results for the Minkowski-
Bouligand dimension analysis.

The box-counting results are shown in Table 4.
Fractal dimension results close to 1 may reflect a transition

phase between Euclidean and fractal forms or are a function of
the smoothness of theMinkowski-Bouligand dimension (dilation
method) that is more sensitive to linear features.

Significant differences were found when the fixed effects
were the Minkowski-Bouligand (DfMB) or box-counting (DfBC)
method. Themodel showed a significant difference for KT and ST
groups as compared to control with the Minkowski-Bouligand
method (p = 0.0216 and p = 0.0098 respectively), and for ST
with the box-counting method (p = 0.0048). The same model
was applied for males only and females only. Analysing effects
of taping within gender showed that both DfMB and DfBC were
significant. A difference was found for KT for males according
to the DfMB method (p = 0.0464) and for ST according to
the box-counting method (p = 0.0249) but not for females.
A post hoc comparison using Bonferroni correction indicated
a significant result for no tape vs. rigid tape for both the
Minkowski-Bouligand and box-counting methods (p = 0.052
and p = 0.0093) but no significant difference within gender. The
fractal data and maximum reach data showed that a correlation
existed for anterior reach and posteromedial reach when using
ST taping (r = 0.65 and r = 0.55, respectively). When maximum
reach points in the three directions of the YBT were connected
to form a sway area description of maximum reach in the
three directions, there was no correlation between the fractal
dimension results and the triangle area and perimeter (r = 0.04
and p= 0.9).

DISCUSSION

The purpose of this study was to investigate the effects of
static and kinesiology taping on postural stability during a

TABLE 4 | Effect of taping measured by the box-counting method.

Control KT ST

Group 1.173 ± 0.006 1.189 ± 0.008 1.197 ± 0.008*

Males 1.167 ± 0.008 1.186 ± 0.010 1.194 ± 0.010

Females 1.179 ± 0.010 1.192 ± 0.010 1.20 ± 0.010

Mean ± standard error; *significant finding (p ≤ 0.05).

dynamic movement control test using the Y balance test.
Postural control tasks, such as the YBT, allow investigation
of movement and balance around a central support base. A
change in the CoM trajectory and resulting fractal dimension
indicates a change in the postural sensori-motor strategies
applied during the YBT. The box-counting and Minkowski-
Bouligand methods were used here to investigate changes in
the CoM during the YBT. The principal finding of our study
was a significant increase in the fractal dimension for rigid
tape vs. no tape, when results were corrected for multiple
group comparison. However, both taping conditions led to
an increase in the Minkowski-Bouligand (DfMB) and box-
counting (DfBC) dimensions. Larger fractal dimension values
of the CoM trajectory are associated with greater activity
of the sensori-motor system in retaining balance during a
dynamic movement task. In contrast, in previous studies
applying KT did not improve knee or ankle proprioception
in a group of healthy young adults, did not decrease
or increase performance, and had no effects on muscle
activation (Briem et al., 2011; Nakajima and Baldridge, 2013;
Hosp et al., 2015. Similar findings were reported when
analyzing postural sway using multiscale entropy analysis,
where postural sway dynamics of healthy subjects were more
complex than that of subjects with a history of falls (Costa
et al., 2007). The current data combined with previous data
indicates what may seem contradictory results but confirms a
physiological adaptation process or adaptive stress response to
moderate intermittent stress occurring (Mattson, 2008). Normal
physiological phenomena occur within a set range, where
activity outside this range is considered pathological. Our results
indicate that taping increased complexity of CoM dispersion
suggesting an improvement in postural stability. However
extensive increases in CoM dispersion has been observed in
patients with Prader-Willi Syndrome and in patients prone to
falls, which is suggestive of pathology and reduced proprioceptive
ability and a reduction in postural control (Costa et al., 2007;
Cimolin et al., 2011).

The linear mixed effects model which was used in the current
study considers the repeated design nature of the research (no
tape, KT, and ST conditions) and gender, and showed a significant
difference in males for DfMB when KT was applied and for
DfBC when ST was applied. The results suggesting that the
fractal analysis method had an effect on the findings. ST led
to greater complexity and spread of the CoM trajectory across
movement space. In instances where the dynamics of the CoM
are within a smaller movement space/envelope, as may be the
case with KT, the box-counting method may be more sensitive.
Our findings suggest that KT tape may decrease extreme
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postural sway better to maintain balance due to stimulation
of skin receptors and heightened proprioceptive information
provided by KT application. This agrees with previous data
where KT was shown to improve postural stability in females
only in the posterior-medial and medial directions of the SEBT
test (Nakajima and Baldridge, 2013). KT also demonstrated
significant proprioceptive enhancement at the knee joint after
uphill walking in healthy women with poor proprioceptive
ability (Hosp et al., 2015). Our results now extend this to
a group of healthy young adults. The difference in gender
found in the current study may be due to the fact that males
and females use different sensori-motor strategies for postural
control during movement (Wikstrom et al., 2006; Smith et al.,
2012).

The fractal dimension reflects the degree of complexity
associated with changes in the CoM trajectory in the anterior-
posterior and medial–lateral directions during the YBT. In
general, a higher fractal dimension represents more complex
movement patterns, possibly reflecting better dynamic control
and postural stability (Costa et al., 2007). Conversely, a lower
fractal dimension represents reduced dynamic control and less
postural stability possibly due to compromised somatosensory
feedback. However, fractal analyses results indicating a very
much lower or higher fractal dimension are likely indicative
of sensori-motor dysfunction and loss of postural stability. A
previous study, investigating immediate post-injury movement
strategies with SEBT and using the center of pressure to calculate
the fractal dimension with a similar method to the dilation
method (Katz, 1988) demonstrated a reduction in the fractal
dimension for participants with a lateral ankle sprain. The
authors interpreted this result as a reduced ability to perform
the balance test (Doherty et al., 2015). Pain is known to
restrict movement, especially when a maximum reach in any
direction is required, and hence the fractal dimension is expected
to decrease. Other studies in which control participants were
age-matched with patients affected by Prader-Willi Syndrome
computed the fractal dimension on the image of the CoP
trajectory using the box-counting method and showed that
patients with Prader-Willi syndrome were characterized by
higher values in the fractal dimension and a poorer balance
capacity when compared to the control group (Capodaglio et al.,
2011; Cimolin et al., 2011). The higher fractal dimension was
interpreted as the inability for these patients to modulate the
sensori-motor systems involved in postural control, possibly
related to compromised sensori-motor feedback at the spinal
cord, brainstem or subcortical/cortical level(s) (Cimolin et al.,
2011).

In our study, with a young adult cohort free of injury, the
fractal dimension for KT and ST was higher than the control
for both methods. This suggests that rigid or kinesiology tapes
applied on healthy subjects may improve postural stability.
Rigid tape led to slightly higher DfMB and DfBC that could
be due to ST decreasing joint movement more than KT. A
previous study which investigated the fractal structure of force
plate signals suggested that the center of pressure was more

useful and sensitive in the evaluation of the age-related decline
of postural stability than the CoM (Błaszczyk and Klonowski,
2001). The current study utilized the CoM, and future studies
need to investigate the difference between the CoP, which
is more sensitive for vertical force distribution through the
standing leg, and CoM, which is more sensitive to body sway
and movement adjustment. In addition, to determine whether
KT does in fact have a significant effect that is different
from ST, a larger cohort study is being organized as well as
different fractal analysis methods incorporated such as the mass-
radius and caliper methods. A future study should include
measures of nerve conduction velocity to control for sensory
information processing and two-point discrimination assessment
in the lower limb as a baseline measure of skin sensation
sensitivity.

An association between fractal dimension and maximum leg
extension was not found in the current study, suggesting that
the CoM is not a function of maximum reach. Consequently,
the improved postural stability may not be associated with a
shorter reach. According to this result, the fractal dimension
represents the dynamics of movement and is not a function of
themaximum reach of anymovement, which suggests that taping
in general does not affect the extent of movement but rather
postural stability.

The findings of this study indicate both KT and ST application
contribute to increased complexity of CoM movement during
a dynamic balance task, however it was only ST that achieved
significance when compared to no tape. This is contrary to claims
KT has the potential to facilitate changes in proprioception and
postural stability. While the findings are of clinical interest, the
use of fractal analysis to achieve these findings offers a novel, and
potentially more appropriate method for future investigation of
movement complexity.
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Although error amplification (EA) feedback has been shown to improve performance on
visuomotor tasks, the challenge of EA is that it concurrently magnifies task-irrelevant
information that may impair visuomotor control. The purpose of this study was to
improve the force control in a static task by preclusion of high-oscillatory components in
EA feedback that cannot be timely used for error correction by the visuomotor system.
Along with motor unit behaviors and corticomuscular coherence, force fluctuations (Fc)
were modeled with non-linear SDA to contrast the reliance of the feedback process
and underlying neurophysiological mechanisms by using real feedback, EA, and low-
frequency error amplification (LF-EA). During the static force task in the experiment,
the EA feedback virtually potentiated the size of visual error, whereas the LF-EA did
not channel high-frequency errors above 0.8 Hz into the amplification process. The
results showed that task accuracy was greater with the LF-EA than with the real and EA
feedback modes, and that LF-EA led to smaller and more complex Fc. LF-EA generally
led to smaller SDA variables of Fc (critical time points, critical point of Fc, the short-term
effective diffusion coefficient, and short-term exponent scaling) than did real feedback
and EA. The use of LF-EA feedback increased the irregularity of the ISIs of MUs but
decreased the RMS of the mean discharge rate, estimated with pooled MU spike
trains. Beta-range EEG–EMG coherence spectra (13–35 Hz) in the LF-EA condition
were the greatest among the three feedback conditions. In summary, amplification of
low-frequency errors improves force control by shifting the relative significances of the
feedforward and feedback processes. The functional benefit arises from the increase in
the common descending drive to promote a stable state of MU discharges.
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INTRODUCTION

A general outcome of motor control is variability (Frank
et al., 2006; Bays and Wolpert, 2007). The structures of
movement variability [such as force fluctuations (Fc)] are not
necessarily a direct consequence of neural noises. Contrary to
the whiteness assumption, Fc are colored time series contingent
upon environmental contexts and task demands (Miall et al.,
1986, 1993). Fc are composed of numerous centrally scaled
pulse-like elements that remedy tracking deviations during a
visuomotor task (Navas and Stark, 1968; Miall et al., 1986;
Slifkin et al., 2000; King and Newell, 2015). The spatial
and temporal information in visual feedback determines the
transitions of the motor state with respect to target constraints
(Hwang et al., 2013; Chen et al., 2017b). Hence, Fc with
visual feedback are smaller and have greater complexity as
compared to those in a no-vision condition (Baweja et al.,
2009). Force tracking results in higher complexity of Fc when
the visual display has high spatial resolution than when it has
low spatial resolution (Sosnoff et al., 2006). The reason is that
high-sensitivity feedback with precise visual information can
facilitate richer error correction strategies. A major determinant
of Fc is variations in the discharge properties of MUs. In
addition, corticomuscular coherence (EEG–EMG coherence) in
the beta range (13–35 Hz) plays a critical role in stabilizing
corticospinal communication during static contraction (Kristeva
et al., 2007; Omlor et al., 2011). Greater beta EEG–EMG
coherence represents more effective sensorimotor integration
and greater attentional focus being directed toward stabilizing the
force output (Witte et al., 2007).

Accurate visual feedback is important to develop a
reliable perception–action link. Interestingly, visual display
of performance outcomes that are worse than the actual
performance can better expedite motor adaptations to novel
task constraints than can accurate visual feedback (Patton et al.,
2006; Domingo and Ferris, 2010; Reisman et al., 2013). The
virtual amplification of task errors, or EA, is frequently used in
combination with robotic technology to facilitate motor recovery

Abbreviations: 1 MDRRMS, differences in root mean square of mean
discharge rate between the EA/LF-EA and control conditions; 1β_CohEMG−EEG,
differences in beta-range EMG-EEG coherence area between the EA/LF-EA
and control conditions; 1IRGAV, differences in discharge irregularity between
the EA/LF-EA and control conditions; 1Task Error, difference in task errors
between the EA/LF-EA and control conditions; CL, confidence level; CMC,
corticomuscular coherence; CV-ISImean, coefficient of variance of mean ISI among
motor units; <dF2>, mean-squared value of the force fluctuations; <dFc

2>,
critical point of force fluctuations; Dl, long-term effective diffusion coefficient;
DOF, degree of freedom; Ds, short-term effective diffusion coefficient; DSDC,
Decomposition-Synthesis-Decomposition-Compare test; dt, time interval; dtc,
critical point of time; EA, error amplification; EEG, electroencephalography; EMG,
electromyography; Fc, force fluctuations; FDI, first dorsal interosseus; Hl, long-
term scaling exponent; Hs, short-term scaling exponent; IR, irregularity index
of inter-spike interval; IRGAV, global average of irregularity index of inter-spike
interval for all motor units; ISI, inter-spike interval; ISIGAV, global average of mean
inter-spike interval for all motor units; ISImean, mean value of inter-spike intervals
in an individual MUAPT; LF-EA, low-frequency error amplification; MF, mean
frequency; MU, motor unit; MUAPT, motor unit action potential train; MVC,
maximal voluntary contraction; RE, real error; RF, real force; RMS, root mean
square; SampEn, sample entropy; SDA, stabilogram diffusion analysis; T, target
signal; VE, visualized error; VF, visualized force.

in patients with neurological disorders (Abdollahi et al., 2014;
Kao et al., 2015; Israely and Carmeli, 2016; Bouchard et al.,
2017). EA is thought to inflate response conflicts in the error-
monitoring network such that participants are more attentive
to execution of the motor task (Boussaoud and Kermadi, 1997;
Jueptner and Weiller, 1998; Shirzad and Van der Loos, 2012).
Alternatively, a model-based study predicted that EA could
minimize the effect of overt task fluctuations by reducing the
neuromotor noise variance (Hasson et al., 2016). In addition
to task improvement, a force-tracking task with EA leads to
smaller Fc with higher spectral components and complexity
(Williams et al., 2016; Chen et al., 2017b; Hwang et al., 2017).
These scenarios support the potential functional benefits of
visual EA, including deliberate and richer tuning behaviors
with more frequent corrective attempts than with real visual
feedback. Physiologically, visually exaggerated mismatches with
visual EA favors the use of a feedback process to regulate the
MU discharge and the variability of the ISI among those MUs
(Chen et al., 2017b). However, the use of visual EA does not
always result in behavior success (Wei et al., 2005; Sung and
O’Malley, 2011; Bouchard et al., 2015). For instance, EA may
add to perceptual conflicts among the visual, proprioceptive, and
haptic inputs due to the distortion of real visual consequences
(Ogawa and Imamizu, 2013). Moreover, EA may augment the
visual information load by proportionately amplifying the full
spectrum of execution errors, including functionally irrelevant
visual stimuli that could impair the efficacy of corrective
behaviors (Lipowski, 1975; Chen et al., 2017a). Hence, to
optimize visual EA, it is necessary to focus on the usability of
task-related information.

Given the potential positive effects with EA, this study
aimed to contrast EA with and without high-frequency error
components during low-level static contraction. We argue
that not all of the error information, especially the fast-
oscillatory components, is helpful to improve visuomotor
performance. As a visuomotor task with EA favors the
use of a feedback mechanism (Chen et al., 2017b), the
amplified fast-oscillatory error components (>0.8 Hz)
within visual feedback cannot be effectively used due to a
significant delay of 150 ms in the visuomotor loop (Miall
et al., 1985, 1986, 1993). The amplification of these high-
frequency error components could offset the positive effect
of EA on a visuomotor task. Only LF-EA, wherein the
error information of rapid fluctuations is excluded, could
increase the effectiveness of visual feedback (or a feedback-
prone process) for corrections of force-tracking deviations.
Employing non-linear Fc dynamics and mathematical
decomposition of surface electromyography, this study
contrasted the behavior and neural mechanisms of static
force-tracking in the real, EA, and LF-EA feedback conditions.
Due to potential changes in force gradation strategies, it was
hypothesized that (1) the size, complexity, and SDA variables
of Fc would be different in the three visual feedback modes
(traditional visual feedback, EA, and LF-EA), and (2) the
variations in MU discharge and central drive to stabilize
corticomuscular communication would vary among the visual
feedback modes.
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MATERIALS AND METHODS

Subjects
The participants were 15 healthy adults (8 males and 7 females;
mean age: 24.8 ± 0.9 years, range: 21–31 years old) from a
university campus or the local community. All were self-reported
as being right-handed, and none had symptoms or signs of
neuromuscular diseases. The experiments were conducted in
accordance with the Declaration of Helsinki and approved by an
authorized institutional human research review board (IRB) at
the University Hospital of the Chung Shan Medical University,
Taiwan. All participants signed a written informed consent form
prior to inclusion.

Experimental Procedures
The participants completed a unilateral static force task of
isometric index abduction at a low force level (20% MVC) under
three error feedback conditions: control, error-amplification
(EA), and low-frequency error-amplification (LF-EA). The
participants were seated with the palm and forearm of the right
hand firmly fixed within a thermoplastic splint on the table. The
index finger was held slightly abducted (5 degrees of abduction),
and its abduction force was measured using a force transducer
(Model: MB-100, Interface Inc., United States) followed by an
analog amplifier (gain = 10). The cut-off frequency of the
amplifier was 20 Hz so that fast-oscillatory force components
such as 8–12 Hz physiological tremor would not be attenuated
by the experiment setting. For each individual, the MVC of the
FDI was pre-determined from three maximal contraction trials
of 3 s separated by 3 min pauses, by averaging the largest force
produced in each trial. Interleaved with 3-min pauses, separate
experimental trials in the control, EA, and LF-EA conditions
commenced in a randomized order, after three practice trials in
all conditions. There were four experimental trials for the control,
EA, or LF-EA conditions. During the force-tracking in the control
condition, the participants were given 2 s to reach the target force
(slope: 10% MVC/second) after a latent period of 3 s (Figure 1A).
Then they coupled isometric force to the target signal (20% MVC)
as precisely as possible by pushing their index finger against the
force transducer for another 34 s under visual guidance. The force
output returned to the resting level in 2 s, followed by a 3-s latency
period. The time window of interest was denoted as the 8th to
37th seconds in a total of 44 s for an experimental trial. The
resolution of the display of visual feedback on the monitor was
1,920 pixels× 1,080 pixels.

In the EA condition, the VF displayed on the monitor
was mathematically transformed to potentiate execution error
[mismatches between the real force output (RF) and the target
signal (T)] (Figure 1B). The VF was equal to the sum of
twice the RF minus the target signal (T) (VF = 2RF-T), so
the participant would perceive twice the amount of the RE
of the static force-tracking task (VE = 2RE). RF in the EA
condition was low-pass filtered at 20 Hz, and the VF was relatively
noisy, containing enhanced fast-oscillatory force components
and tremulous movements. In the LF-EA condition, the RF came
from a parallel force channel that pre-conditioned the force

output with an analog low-pass filter (cut-off frequency: 0.8 Hz)
prior to amplification (Figure 1B). The VF was much smoother in
the LF-EA condition than in the EA condition. The participants
could hardly correct high-frequency errors above 0.8 Hz via
visual feedback (Pew, 1974; Miall et al., 1985), because the time
period between the pick-up of visual information and its use
in producing a required adjustment was at least 150 ms (Miall
et al., 1986). For all the feedback conditions, the spatial gain
to display the target signal and the force output was roughly
25 pixels per 1% MVC. The inter-trial interval of rest was
2 min. In the LabVIEW platform (LabVIEW v.8.5, National
Instruments Inc., United States), the RF conditioned with a low-
pass filter at 20 Hz and the target signal were digitalized at
1 kHz by a 16-bit analog-to-digital converter (DAQCard-6024E;
National Instruments Inc., United States) in the EA and LF-EA
conditions. For the LF-EA condition, the smoother force channel,
conditioned with an analog low-pass filter (cut-off frequency:
0.8 Hz), was also recorded.

Electromyographic and
Electroencephalographic Recordings
In addition to the force signal, we synchronized multi-electrode
surface EMG with 5 surface pin-sensors (0.5 mm diameter
at the center and corners of a 5 mm × 5 mm square)
(Bagnoli sEMG system, Delsys Inc., United States) to record
activities of the FDI muscle. By careful skin preparation and
proper sensor application, the peak-to-peak value of baseline
noise was controlled under 20 µV to secure the accuracy
of EMG decomposition using EMG works v.4.1 (Delsys Inc.,
United States). The analog EMG signals from each pin-sensor
were amplified (gain = 1,000) and filtered with a bandwidth of 20–
450 Hz (De Luca et al., 2014). After that, four single differential
EMG channels were obtained with pair-wise subtractions of
the five pin-detections (voltages of the pin-sensor at the corner
minus voltage of the pin-sensor at the center) (De Luca et al.,
2006; Nawab et al., 2010; Hu et al., 2013). A high sampling rate
of 20 KHz was used to avoid introducing phase skew across
channels (De Luca et al., 2006, 2014; Nawab et al., 2010). Two
active Ag-AgCl electrodes (3 mm diameter; Model F-E9M-40-
5, Grass, United States) were placed 1 cm apart on the C3 area,
which was over the hand area of the primary motor cortex. The
reference electrodes for the EEG were placed on the bilateral
earlobes. After amplification of the recorded signal (gain = 5,000),
the EEG signal was hardware-filtered in the frequency range of
0.01–100 Hz and 60 Hz (Model P511, Grass, United States).
Synchronized with the EMG system and force data, the EEG
signal was sampled at 1,000 Hz.

Stochastic Modeling of Force
Fluctuation Dynamics
The force data used for behavior analysis were the RF data
low-pass filtered at 20 Hz. To exclude force data irrelevant to
visuo-motor processes and error correction (such as 8–12 Hz
physiological tremor) (Slifkin et al., 2000; Vaillancourt et al.,
2002), the RF was further conditioned with a digital low-pass
filter (cut-off frequency: 6 Hz) (Chen et al., 2013; Lin et al., 2014).
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FIGURE 1 | (A) Target signal and representative data. Only force data, EMG, and EEG in the time window of interest were presumably stable for subsequent feature
extraction. (B) Illustration of manipulation of error augmentation for visual feedback. In the control condition, real force (RF) was shown on the monitor to guide the
force task, so that real error (RE) is equivalent to visualized error (VE) during tracking. In the error amplification (EA) and low-frequency error amplification (LF-EA)
conditions, the VE of the tracking task were magnified with mathematical transformation. The visualized force outputs (VF) in the EA condition represent on-line force
feedback information that doubles the size of the execution error during force-tracking. The LF-EA feedback consists of a low-pass filtering process and an error
amplification process during force-tracking. The low-pass filtering process suppresses high-frequency components (>0.8 Hz) of real force. Error amplification
process based on the filtered real force (RFf) magnifies VE that contains only low-frequency components (<0.8 Hz).

Then the conditioned force data in the time window of interest
(8th to 37th second) were down-sampled to 100 Hz. The
quality of the force-tracking performance was visualized with
a return map for the time series of task errors, a graph of
the task error Ei+1 versus the previous task error Ei (Shenker,
1982; Mendez-Balbuena et al., 2012). A poor performance led
to a dispersive distribution of error points in the map. In
contrast, error points for a good performance concentrated

near to the center of the map. The size of the task error was
quantified with RMS of mismatch between target and force signal.
In the temporal domain, RMS and SampEn were applied to
calculate the size and complexity of Fc, defined as force data
after removal of a linear trend (Hong and Newell, 2008). Fc
characteristics reflect the degree of force steadiness and gradation
strategy for force stabilization. SampEn is a popular and reliable
entropy measure of the temporal aspects of biological variability
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(Richman and Moorman, 2000). The mathematical formula of
sample entropy was SampEn (m, r,N) = −log(

∑N−m
i=1 Ai∑N−m
i=1 Bi

), where

r = 15% of the standard deviation of the force channel, m is
the length of the template (m = 3), and N is the number of
data points in the time series. Ai is the number of matches of
the ith template of length m + 1 data points, and Bi is the
number of matches of the ith template of length m data points
(Pethick et al., 2015). A larger value represents a more complex
structure of the low-frequency Fc. In the spectral domain, the
MF of Fc was determined based on the spectral profile estimated
with a fast Fourier transform and the Welch method (Hanning
window; window length: 2.048 s, overlapping time segment:
1/4 × window length) with a spectral resolution of 0.1 Hz. In
addition, we quantified the spectral DOF, a statistic to reveal the
power dispersion of Fc. Spectral DOF is calculated as DOF =(∑N

i Si

)2
/
∑N

i S2
i . The quantity is unity for a perfect single

spectral peak, and a greater value of DOF represents a broader
band of Fc (maximal value of N for white noise).

Force fluctuation dynamics were characterized with SDA,
a probabilistic tool first proposed by Collins and De Luca
(1993). The mathematical concept of the SDA approach was
originally designated to resolve the statistical mechanics of a one-
dimensional generalized family of Gaussian stochastic processes,
such as postural sway (Collins and De Luca, 1993, 1995) and
Fc (Chen et al., 2017a). The SDA describes the power-law
relationship between the <dF2> and the dt in which these values
occur; i.e., < dF2 >∼ dt2H. H is the scaling factor, a real number
ranging from 0 to 1. For classic Brownian motion, H = 0.5. For
the purpose of the present study, SDA was calculated by using the
following equation:

〈
dF2〉
=

〈[
x
(
t + dt

)
− x (t)

]2
〉
, where <•>

indicates the mean of the time series. The computation of dF2

was empirically repeated with increasing dt values ranging from
0 to 3 s. The diffusion plot (linear–linear plots or log–log plots)
was the mean square of Fc <dF2> against the time intervals
dt (Figures 2A,B). Specifically, for biological systems regulated
jointly by open-loop and closed-loop processes, the diffusion
plots could be best-fitted with piecewise linear regression models,
the cross-over phenomenon (Delignières et al., 2011). The dtc
was the intersection of the two regression lines of the linear-
linear diffusion plot (Figure 2A), and variations in the <dFc

2>
reflected a paradigm shift in force control (Collins and De Luca,
1993; Toosizadeh et al., 2015). In the linear–linear diffusion
plot, the regression slopes (Ds and Dl) of the short-term and
long-term regions were two effective diffusion coefficients, which
parameterized the control of the force stochastic activities in
those regions, respectively. The Hs and Hl were linear fits of the
log–log plot of the SDA (Figure 2B). A scaling exponent greater
than 0.5 indicates that the system is governed by the open-loop
process (persistence) and that the data series of the past and
future are positively correlated (Collins and De Luca, 1993, 1995).
Conversely, a scaling exponent smaller than 0.5 indicates that
the data series of the past and future are negatively correlated,
as regulated by the closed-loop process (anti-persistence). The
selection of this model was a matter of physiological concern, due
to the underlying shift in feedback and feedforward control for

force stabilization with better use of the error information within
the visual feedback.

Probability of Motor Unit Discharge
The action potential “templates” of MUs were decomposed from
differential EMG channels using a previous proof-of-principle
(De Luca et al., 2006; Nawab et al., 2010). Recent studies
have shown that the artificial-intelligence-based computation
algorithm can produce convincing decomposition results (Nawab
et al., 2004; De Luca et al., 2015) via independent verification
methods (Hu et al., 2013). The entire data collection period
(44 s) was decomposed, resulting in binary spike trains that
coded the activations of all MUs with values of 0 or 1
(Figure 3). Only discharge patterns of the window of interest
were further analyzed. The validity of the EMG decomposition
of each MU action potential train (MUAPT) was evaluated with
the Decomposition-Synthesis-Decomposition-Compare (DSDC)
test (De Luca et al., 1982, 2006). In brief, the DSDC test
was used to decompose a synthetic sEMG signal, which was
reconstructed by the summation of the predefined MUAPTs
(or decomposed results) and Gaussian noise. The decomposed
results were compared with the firing instances of predefined
MUAPTs, and the percentage of the accuracy and location error
of decomposition for each MUAPT was defined as decomposition
accuracy. Previous studies have reported that the decomposition
accuracy of MUAPTs ranges from 92.5 to 97.6% (De Luca et al.,
1982, 2006). In this study, MUs of low decomposition accuracy
(<90%) were excluded from the analysis. The discharge variables
of MUs were determined in the time window of interest based
on the decomposed EMG data of the overall 44 s. Three MU
discharge variables were calculated, including global averaged
inter-spike interval (ISIGAV), CV-ISImean, and global averaged
irregularity index (IR) of all MUs (IRGAV). In an experimental
trial, ISImean was the mean value of all ISIs for an individual
MUAPT, and the ISIGAV was the averaged value of the ISImean
for a group of MUs. Experimentally observed ISI variability
among MUs was represented with the CV of the ISImean of
a group of MUs (CV-ISImean). Given a series of inter-spike
intervals (ISIi) for a single MU, the irregularity index (IR)
(Davies et al., 2006; Witham and Baker, 2007) is mathematically
formulated as: IR = 1

N−1
∑N−1

i=1
∣∣ln (ISIi+1/ISIi)

∣∣. The IRGAV
was the averaged value of the IR for a group of MUs. An
increase in force steadiness with LF-EA was likely associated
with changes in inter-spike variability. The pooled behaviors
of MU discharges were characterized with the mean discharge
rate (Figure 3). To estimate the mean discharge trace, the
global discharge rate was first determined by convolution of
the cumulative spike trains of all the MUs with a Hanning
window (window duration: 400 ms) (Hwang et al., 2017). The
mean discharge rate was the global discharge rate divided by
the number of detectable MUs in the experimental trial. The
averaging process was used to standardize the amplitude of the
global discharge rate across trials. Low-frequency oscillations
of the mean discharge rate likely correspond to the common
input to the motoneurons, providing a reasonable estimate
of the force exerted by the muscle (Farina and Negro, 2015;
Farina et al., 2016).
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FIGURE 2 | Stabilogram-diffusion plot. (A) A typical linear-linear stabilogram-diffusion plot. The short-term effective diffusion coefficient (Ds), and long-term effective
diffusion coefficients (Dl) are regression slopes for the short time scale (0–0.5 s) and long time (0.5–3 s) scales. The critical point (dtc, <dFc

2>) is the intersection
point of the two regression lines, indexing a shift in open-loop and closed-loop control for the stochastic dynamics of force fluctuations. (B) A typical log-log
stabilogram-diffusion plot. The computed short-term scaling exponent (Hs) and long-term scaling exponent (Hl) are regression slopes of the short time and long time
scales of the log–log stabilogram-diffusion plot.

Corticomuscular Coherence Estimation
Corticomuscular coherence, especially in the spectral range of
13–35 Hz, is known to reflect efferent neural transmission to
maintain force steadiness (Kristeva-Feige et al., 2002; Omlor
et al., 2011). Four undecomposed EMG signals directly from
differential channels were used to calculate CMC. The analog
EMG signals were first resampled at 1 KHz, followed by
signal conditioning with a band-pass filter (cut-off frequencies:
10 and 400 Hz). The conditioned EMG signal was rectified
and high-pass filtered at 5 Hz (Chen et al., 2013). Ocular
artifacts in the EEG recordings were removed. The EEG–EMG
coherence was determined with EEG C3 and each conditioned
EMG signal. The resulting EEG–EMG coherence spectra were
averaged to represent the CMC of the experimental trial. The
coherence between signals x and y at frequency f, Cohxy(f), was
determined according to the following equation: Cohxy

(
f
)
=

|Sxy(f )|
√

Sxx(f )×Syy(f )
. The cross-spectrum between signals x and y

at frequency f averaged across N data segments, Sxy(f), was
calculated as follows: Sxy

(
f
)
=

1
N
∑N

i=1 Xi
(
f
)
× Yi

(
f
)∗

, where
Xi (f) denotes the Fourier transform of the data segment i of
the channel x at frequency f, and Yi (f)∗ denotes the complex
conjugate of the Fourier transform of the data segment i of
the channel y at frequency f. To estimate Cohxy(f), EEG, and
EMG signals were segmented into artifact-free epochs of 1.024 s
without overlapping. Each segmented EEG and four EMG
data from the differential channels were Hanning-windowed
to minimize spectral leakage, and the Cohxy(f) of a given
experimental trial was estimated with a total of 116 epochs (29
epochs/trial × 4 experimental trials). Spectral resolution was
1 Hz. The significance level of EEG–EMG coherence was the
95% CL. The CL was defined as: CL (α) = 1−

(
1− α

100
)1/N .

Both the peak coherence and spectral area of the pooled EEG–
EMG coherence spectrum in the beta band frequencies (13–
35 Hz) were determined for each experimental trial, and those
spectral variables of the three experimental trials were averaged
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FIGURE 3 | Acquisition of variables of inter-spike interval and mean discharge rate following mathematical decomposition of surface EMG into motor unit spike
trains. Mean discharge interval (ISImean) and irregularity index (IR) of each spike train are determined. The global averages of ISImean and IR, as well as coefficient of
variance of ISImean (CV-ISImean) among motor units (MUs). Mean discharge rate is obtained by smoothing the cumulative MU spike trains following convolution with a
Hanning window (window length: 400 ms). Spectral distributions of mean discharge rate are estimated.

for all the feedback conditions. All the behavior/physiological
variables and their functional implications in this study are briefly
summarized in Figure 4.

Statistical Analysis
With reference to typical visual feedback to guide force-
tracking, the primary research interest of this study was
to contrast variations in the stochastic force behaviors and
probability structure of MU discharges with the use of EA
feedback and LF-EA feedback. On account of the relatively
small sample size, the Wilcoxon signed-rank test was used
to examine the task error, Fc variables (including SDA
variables), inter-spike variables, variables of the mean discharge

rate, and EEG–EMG coherence in the beta band in the
three feedback conditions. The level of significance was
0.05. In the presence of significant main effects, post hoc
testing was conducted using the Mann–Whitney U test
with Bonferroni correction to determine the alpha level of
significance (p = 0.0167). Spearman rank correlation was
used to assess functional linkages between differences in
task error between the EA/LF-EA and control conditions
with the corresponding changes in those neurophysiological
metrics that were sensitive to manipulation of EA. Signal
processing and statistical analyses were completed in Matlab
R2015b (Mathworks Inc., United States) and the statistical
package for IBM SPSS software for Windows v.19.0 (IBM Inc.,

FIGURE 4 | A summary diagram of behavior and physiological variables and their functional implications.
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United States), respectively. Data reported in the text and figures
without specific notations indicating otherwise are presented as
mean± standard error.

RESULTS

Figure 5A displays the return maps of the task errors from a
typical subject in the three conditions: control, EA, and LF-EA.
The dispersion of the error points in the maps for the LF-
EA condition was smaller than those for the EA and control
conditions. This was a qualitative way to characterize stable
and accurate force-tracking with LF-EA. Figure 5B shows the
population means, standard errors, and individual values of
force-tracking errors for all three visual conditions. The results
of the Wilcoxon signed-rank test revealed that force-tracking
errors varied with feedback mode (χr

2 = 10.13, p = 0.006),
with the smallest error for the LF-EA condition (p ≤ 0.006).
Figure 5C shows the distribution of differences in tracking error
between the EA/LF-EA and control conditions. The majority of
the participants exhibited a more positive performance benefit
with LF-EA than with EA, as indicated by the smaller mean

tracking error relative to that of the control condition. Table 1
contrasts the differences in the Fc variables among the three
visual conditions. The results revealed that all Fc variables were
dependent on the feedback mode (p < 0.05). Post hoc analysis
further revealed that the LF-EA condition exhibited the smallest
RMS and the largest SampEn of Fc among the three feedback
conditions (p < 0.01). Both the EA and the LF-EA conditions
exhibited mean frequencies and spectral DOF larger than those of
the control condition (p < 0.01). Functionally, LF-EA led to fine-
grained and richer force gradation to rapidly remedy tracking
deviations. In addition, the Fc dynamics were characterized with
SDA, and all the SDA variables varied with manipulation of the
feedback mode (p ≤ 0.006) (Table 2). Post hoc test indicated
that dtc was smallest in the LF-EA condition and largest in the
control condition (p < 0.01). In addition, <dFc

2> was smaller
in the LF-EA condition than in the control and EA conditions
(p < 0.01). Ds and Hs were smallest in the LF-EA condition
(p< 0.01), whereas Dl and Hl were largest in the LF-EA condition
(p < 0.01). The observations indicated that the preclusion of
high-frequency feedback components from the EA process led
to task improvement during static force-tracking. The functional
benefits were associated with the sensible detection of Fc (smallest

FIGURE 5 | Task error properties. (A) Return maps of the force-tracking for a typical subject in the control, EA, and LF-EA condition. Graph of the error E i+1 versus
previous error E i where i is the sampling point. For brevity, the interval between two error data is set at 100 ms. Good performance of force-tracking exhibits error
points that are concentrated near the center of the blue circle. (B) The contrasts of force-tracking error among the three visual feedback conditions. The blue dots
represent force-tracking error of all individuals in this study. (C) A schematic plot to display scattering of differences in tracking error between the error amplification
(EA)/low-frequency error amplification (LF-EA) and control (C) conditions. A more negative value of the error difference indicates a more positive performance benefit,
underlying a relatively smaller tracking error in the EA or LF-EA condition. Each green dot represents EA-related differences in tracking error for an individual.
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TABLE 1 | Mean and standard errors of task error and force fluctuation variables for the control, error amplification (EA), and low-frequency error amplification (LF-EA).

Behavior variables (n = 15) Control EA LF-EA Statistics

Fc_RMS (% MVC) 0.424 ± 0.029a 0.424 ± 0.028a 0.376 ± 0.026a χr
2 = 14.80, p = 0.001

Fc_SampEn 0.294 ± 0.017b 0.292 ± 0.016b 0.336 ± 0.023b χr
2 = 11.02, p = 0.004

Fc_MF (Hz) 0.832 ± 0.049c 0.894 ± 0.040c 0.893 ± 0.045c χr
2 = 12.13, p = 0.002

Spectra DOF 26.50 ± 1.40c 29.25 ± 1.05c 29.67 ± 1.27c χr
2 = 6.40, p = 0.041

aControl, EA > LF-EA, p < 0.01. bLF-EA > Control, EA, p < 0.01. cLF-EA, EA > Control, p < 0.01. (Fc, force fluctuations; RMS, root mean square; SampEn, sample
entropy; MF, mean frequency; DOF, degree of freedom).

TABLE 2 | Parameters of stabilogram diffusion analysis (SDA) of static force tracking in the control and error amplification (EA), low-frequency error amplification (LF-EA)
conditions.

SDA variables (n = 15) Control EA LF-EA Statistics

dtc (s) 0.401 ± 0.016a 0.367 ± 0.015a 0.329 ± 0.014a χr
2 = 20.93, p < 0.001

<dFc
2> (%MVC2) 0.409 ± 0.063b 0.442 ± 0.071b 0.292 ± 0.040b χr

2 = 14.80, p = 0.001

Ds (%MVC2/s) 0.601 ± 0.097b 0.682 ± 0.109b 0.419 ± 0.064b χr
2 = 14.80, p = 0.001

Dl (%MVC2/s) −0.014 ± 0.006c
−0.019 ± 0.008c 0.005 ± 0.002c χr

2 = 14.53, p = 0.001

Hs (%MVC2/s) 0.940 ± 0.003b 0.942 ± 0.003b 0.937 ± 0.002b χr
2 = 12.13, p = 0.002

Hl (%MVC2/s) −0.088 ± 0.020c
−0.062 ± 0.014c

−0.015 ± 0.016c χr
2 = 10.13, p = 0.006

aControl > EA > LF-EA, p < 0.01. bControl, EA > LF-EA, p < 0.01. cLF-EA > Control, EA, p < 0.01. (dtc, critical point of time; <dFc
2>, critical point of force fluctuations;

Ds, short-term effective diffusion coefficients; Dl, long-term effective diffusion coefficients; Hs, short-term scaling exponent; Hl, long-term scaling exponent).

TABLE 3 | Means and standard errors of variables of inter-spike interval (A) mean discharge rate (B) from all motor units in the control, error amplification (EA), and
low-frequency error amplification (LF-EA) conditions.

Control EA LF-EA Statistics

(A) Discharge variables (n = 15)

ISIGAV (ms) 58.89 ± 3.15 58.78 ± 3.30 59.07 ± 2.99 χr
2 = 1.20, p = 0.549

CV-ISImean 0.238 ± 0.012 0.215 ± 0.012 0.222 ± 0.012 χr
2 = 5.20, p = 0.072

IRGAV 0.198 ± 0.007a 0.194 ± 0.008a 0.208 ± 0.009a χr
2 = 6.93, p = 0.031

(B) Mean discharge rate (n = 15)

RMS (Hz) 0.823 ± 0.067b 0.785 ± 0.065b 0.763 ± 0.057b χr
2 = 10.53, p = 0.005

SampEn 0.319 ± 0.009 0.308 ± 0.007 0.339 ± 0.007 χr
2 = 1.73, p = 0.420

MF (Hz) 1.089 ± 0.025 1.074 ± 0.024 1.076 ± 0.017 χr
2 = 0.40, p = 0.819

DOF 30.32 ± 0.88 29.88 ± 0.54 31.30 ± 0.85 χr
2 = 3.73, p = 0.155

aLF-EA > EA, p = 0.023; LF-EA > Control, p < 0.01. bControl > EA > , p = 0.023; Control > LF-EA, p = 0.012. (ISIGAV, global average of mean discharge interval
(ISImean) of all MUs; IRGAV, global average of irregularity index (IR); CV-ISImean, Coefficient of variance of ISImean among motor units; RMS, root mean square; SampEn,
sample entropy; MF, mean frequency; DOF, degree of freedom).

dtc and <dFc
2> in the LF-EA condition) and a shift in Fc control

toward the feedback-prone process.
Under the condition of acceptable decomposition accuracy

using the DSDC test (Control: 93.10± 0.42%; EA: 93.45± 0.42%;
LF-EA: 93.76± 0.46%), the average numbers of analyzed MUs of
an experimental trial did not vary with the feedback conditions
(Control: 30.8 ± 1.8; EA: 32.1 ± 2.0; LF-EA: 31.5 ± 1.9;
χr

2 = 1.97, p = 0.374), (χr
2 = 1.20, p = 0.549). Table 3A

contrasts the inter-spike (ISI) variables of all MUs among the
three feedback conditions. The global averages of the mean inter-
spike interval (ISIGAV) and CV-ISImean were not affected by the
feedback mode (p > 0.05). Only the discharge irregularity in
terms of IRGAV (or global average of IR for all MUs) varied
significantly with feedback mode (p < 0.05). IRGAV was generally
highest in the LF-EA condition (p < 0.01). Table 3B contrasts
the characteristics of the mean discharge rate of the all MUs

among the three feedback conditions. Only the RMS of the
mean discharge rate was subject to feedback mode (p = 0.005).
Post hoc test revealed that the RMS of the mean discharge
rate was significantly smaller in the LF-EA condition than in
the control condition (p = 0.012). However, the SampEn, MF,
and DOF of the mean discharge rate did not significantly
vary with feedback mode (p > 0.05). Figure 6A presents an
example of the pooled coherence spectra of the EEG and rectified
EMG from a typical participant in the control, EA, and LF-
EA conditions. The typical coherence spectra manifested with
large power in the beta frequencies (13–35 Hz), exceeding
the 95% CL. Figure 6B contrasts the population means of
the peak coherence and spectral area in the beta frequencies
among the three feedback conditions. Both the peak coherence
(χr

2 = 7.60, p = 0.022) and the spectral area in the beta frequencies
(χr

2 = 9.73, p = 0.008) varied significantly with feedback mode.
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FIGURE 6 | (A) Pooled coherence spectra between the EEG and rectified EMG of a typical participant in the control, error amplification (EA), and low-frequency error
amplification (LF-EA) conditions. (B) the contrasts of peak coherence and spectral area in the beta band (13–35 Hz) among the three feedback conditions. The blue
dots represent coherence values of all individuals in this study.

Beta peak coherence was larger in the LF-EA condition than in
the control condition (p = 0.005), and the spectral area in the
beta frequencies was largest in the LF-EA condition (p ≤ 0.009).
The use of LF-EA appeared to enhance CMC at 13–35 Hz,
which might serve to stabilize the motor output and decrease the
discharge variability.

Figure 7 presents three scatterplots showing the associations
between differences in task error and the neurophysiological
metrics (1IRGAV, 1MDRRMS, and 1β-CohEMG−EEG) sensitive
to manipulation of EA. In terms of Spearman rank correlation
(rs), the change in task error between the LF-EA and control
conditions was significantly correlated to 1MDRRMS and
1β-CohEMG−EEG (p< 0.05). In contrast, the change in task error
between the EA and control conditions was not significantly
correlated to 1IRGAV, 1MDRRMS, or 1β-CohEMG−EEG
(p > 0.05). These facts implied that task improvement in the
LF-EA condition relative to that of the control condition could be
linked to centrally mediated change in the amplitude of pooled
discharges of the MUs.

DISCUSSION

The novel finding of this study was that gating of the high-
frequency execution errors prior to virtual amplification (the
LF-EA feedback) provided a functional benefit to the stabilization
of static force, due to the smaller Fc with higher complexity, MF,
and spectral DOF. The LF-EA feedback reduced the perceptual
sensitivity to Fc (smaller <dFc

2>) with a greater reliance on
the visual feedback process for error corrections (smaller dtc).
Physiologically, the shift in force control was associated with
greater global discharge irregularity (IRGAV), smaller fluctuation
in the mean discharge rate, and enhanced EMG-EEG coherence
in the beta band.

Structural Changes in Force Fluctuations
and Implications for Force Control
The time series of Fc modeled with SDA was different from
ordinary Brownian motion (un-correlated random-walk), as the
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FIGURE 7 | Scatter plots to show the relationships between EA-related changes in task error and neurophysiological metrics. Negative value of 1Task Error
represents task improve with EA or EA-LF feedback. (1Task Error, difference in task errors between the EA/LF-EA and control conditions; 1IRGAV, differences in
discharge irregularity between the EA/LF-EA and control conditions; 1MDRRMS, differences in root mean square of mean discharge rate between the EA/LF-EA and
control conditions; 1β_CohEMG−EEG, differences in beta-range EMG-EEG coherence area between the EA/LF-EA and control conditions; rs, Spearman rank
correlation).

diffusion curve of Brownian motion is linear and unbounded
with the scaling exponent equal to 0.5 (Mandelbrot and van
Ness, 1968; Collins and De Luca, 1993). The diffusion curve of
the Fc changed slope after the critical point, and the scaling
exponents for Fc were, respectively, greater than and less than 0.5
for short-term and long-term intervals (Figure 2B and Table 2).
Hence, like postural sway (Collins and De Luca, 1993, 1995;
Delignières et al., 2011), Fc are correlated and bounded random-
walk signals, regulated distinctively by two subsystems. An open-
loop process predominates Fc control in the short-term region
with a scaling exponent greater than 0.5, for the stochastic activity
was persistent and Fc data of the past and future were positively
correlated. In contrast, a closed-loop process predominates Fc
control in the long-term region. The stochastic activity with a
scaling exponent smaller than 0.5 was anti-persistent, for Fc data
of the past and future were negatively correlated (Collins and De
Luca, 1993, 1995). This stochastic model of Fc is reminiscent of
a continuum of the control regime of a visuomotor act ranging
from feedback (closed-loop) to feedforward (open-loop) (Slifkin
et al., 2000). Central to this interpretation is that the SDA
variables of Fc in the LF-EA condition indicated a scheme switch
of open- and closed-loop controls for static force control, as
compared with those of the EA and control feedback modes.
The smaller dtc and <dFc

2> in the LF-EA condition (Table 2)
reflected a drift in the equilibrium point of Fc control toward
a closed-loop process (Kurz et al., 2013; Coubard et al., 2014;
Toosizadeh et al., 2015). The interval of short-term stochastic
activity governed by the open-loop regime (dtc) was significantly
shortened, and feedback control was called into play when a
smaller degree of Fc (<dFc

2>) took place. The experimental
observation was congruent with reductions in the Ds and
scaling exponent (Hs). After deconditioning of the feedforward
mechanism, force-tracking in the LF-EA condition was more
dependent on the feedback mechanism, with a functional benefit
of superior task accuracy (Table 1). Hence, the prevailing use

of the feedback process was conceptually in agreement with
the perceptual narrowing (Easterbrook, 1959) and enhanced
attentive control (Boussaoud and Kermadi, 1997; Jueptner and
Weiller, 1998; Shirzad and Van der Loos, 2012) reported in
behavioral studies.

Due to the smaller Fc with greater complexity (Table 1),
the participants could develop fine-grained force-scaling with
a richer correction strategy in the LF-EA condition with the
feedback-prone process (Vaillancourt et al., 2002; Chen et al.,
2013). Several lines of indirect evidence have shown that
modulation of Fc dynamics in the LF-EA condition resembles
characteristic changes in Fc after motor practice (Deutsch and
Newell, 2004; Hwang et al., 2013). Moreover, the increase in
the MF of Fc and flattening of the spectral DOF support
of LF-EA indicated that the participants could increase the
number of corrective attempts with abundant exploratory
efforts to remedy tracking deviations. Gating the high-frequency
components brought about these performance benefits because
VEs above 0.8 Hz are too fast to be corrected. The interval
to accomplish visuomotor correction in humans is at least
1 s (Navas and Stark, 1968; Miall et al., 1985), and primates
cannot follow the full excursion of a target higher than 0.9 Hz
with the feedback process (Miall et al., 1986). If visual EA
contains information that cannot be rapidly responded with
the feedback process, lag-induced feedback instability taxes
attentional resources with processing visuomotor information
that is irrelevant to task success. That is why the task accuracy,
Fc properties, and SDA variables between EA and LF-EA
were distinct.

Variations in Motor Unit Discharge for
Low-Frequency Error Amplification
The adaptation of the Fc dynamic originated from variations in
the probability structures of the MU discharges. Physiologically,
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the decrease in the size of Fc with LF-EA was correspondent
with the decrease in RMS of the mean discharge rate (Table 3B)
rather than CV-ISImean (Table 3A). It is known that modeling of
the mean discharge rate with a pooling process could accentuate
synaptic inputs common to a population of active motoneurons
but also attenuate the role of independent synaptic inputs to
motoneurons (Farina and Negro, 2015; Farina et al., 2016).
Therefore, the amplitude modulation of the mean discharge
rate implies that LF-EA could effectively reduce the variations
in the common input to a muscle. The observed influence
of the common input confirms the model-based conjectures,
implying a reduction in the intrinsic neuromotor noises at
the motoneuronal level with EA (Wei et al., 2005; Hasson
et al., 2016; Williams et al., 2016). The modulation of the
size of the mean discharge rate was critical to the increase in
task precision in the LF-EA condition (Figure 7). However,
the reduction in the size of Fc with LF-EA is unlikely to
have resulted from modulation of independent synaptic inputs
to motoneurons because CV-ISImean, which highlights the
influence of synaptic inputs to motoneurons that differ from
those that are common, was insensitive to feedback mode.
On the other hand, the enhancement of the complexity of
Fc in the LF-EA condition (Table 1) was nicely compatible
with the irregularity of the increases in MU discharge (IRGAV)
(Table 3A). However, the structures of the mean discharge rate,
such as SampEn and DOF (Table 3B), did not well index the
change in the complexity of Fc in the LF-EA condition. In
addition to some unidentified organizational discharge activities,
the viscous resistances of the musculotendon system attenuate
the transmission of high-frequency neural drive to a muscle
(Günther et al., 2007). This non-linearity often complicates the
discharge–force relationship.

Variation in Corticospinal Coupling for
Low-Frequency Error Amplification
Instead, superior task accuracy and force steadiness in the LF-EA
condition were associated with increased EEG–EMG coherence
in the beta range (Figure 4). An increase in the beta-range EEG–
EMG coherence represents greater synchronization of cortical
activity to regulate common spinal inputs, a neural marker
of steady-state motor output during static contraction (Perez
et al., 2006; Kristeva et al., 2007). The beta-range CMC is
greatly reduced when a force task is not steady (Salenius et al.,
1997; Boonstra et al., 2009). Previous studies have reported that
repetitive training can increase the precision of control in a
static force task, in association with enhancement of beta-range
CMC (Perez et al., 2006; Witte et al., 2007; Larsen et al., 2016).
From all the neural sequelae, the enhanced beta-range CMC
should contribute to a smaller size of discharge variability with
enhanced complexity (Table 3 and Figure 7) and fine-grained
force scaling with the feedback-prone process (Tables 1, 2) in the
LF-EA condition. Since the beta-range corticomuscular rhythm
is modifiable to peripheral sensory afferents (Riddle and Baker,
2005; Lalo et al., 2007), the precise force control in the LF-
EA condition might be attributable to the reduction of the
cognitive load of processing task-irrelevant error information,

which would facilitate rapid integration of the visual and
somatosensory information.

Methodological Issues
A contrasting approach to enhance static force control is
stochastic resonance (Mendez-Balbuena et al., 2012; Trenado
et al., 2014). In addition to an increase in corticomuscular
synchronization at 13–35 Hz, a better force precision with a
return map of concentrated error points was noted following
application of an optimal mechanical Gaussian noise. The task
improvement was hypothesized to detect subthreshold sensory
signals in the peripheral receptors, pertaining to noise-enhanced
sensorimotor integration. However, stochastic resonance differs
with the use of LF-EA, which minimizes cognitive load to process
functionally irreverent noises. The return map with concentrated
error points speaks for additional functional benefits for removal
of high-frequency error components (noises) prior to EA
(Figure 5A). Besides, one matter of concern is the decomposition
of multi-electrode surface EMG. Although we cannot deny the
likelihood of a small decomposition error (Piotrkiewicz and
Türker, 2017), the state-of-the-art decomposition algorithm is a
trade-off to capture the discharge variability among MUs and the
force–discharge relation, based on a relatively large number of
active MUs. To be rigorous, we applied a “reconstruct-and-test”
procedure (Nawab et al., 2010; De Luca et al., 2015) to support the
accuracy of the obtained identifications (91.2–97.1%) (De Luca
et al., 2006; Nawab et al., 2010; Chen et al., 2017a,b; Hwang et al.,
2017). The use of multi-channel surface EMG to explore MU
behaviors has gained popularity in recent studies (Hu et al., 2014;
Laine et al., 2015; Contessa et al., 2016; Chen et al., 2017a,b). In
particular, the inconsistent changes in the complexity measures
between IRGAV and the SampEn of the mean discharge rate
with LF-EA (Tables 3A,B) reinforce the role of decomposition in
revealing diverse fractal myoelectric manifestations. A simulated
EMG study showed that the fractal characteristic of surface EMG,
which accounts for pooled MU behaviors, is jointly subject to
variations in the CV of the discharge rate and the degree of
MU synchronization (Mesin et al., 2016). Hence, fractal changes
in the surface EMG are evident during fatiguing (Ravier et al.,
2005) or higher-force (>25% MVC) contractions (Beretta-Piccoli
et al., 2018). When the CV of the ISI is not expected to change,
the discharge irregularity of a single MU such as IRGAV could
be masked by the interference pattern of surface EMG (or the
mean discharge rate). Next, a low-pass filtering effect was likely
to be effective only in the visual EA condition, though this study
did not examine tracking performance in the non-EA condition.
According to our preliminary study in healthy adults (n = 14),
the task error of the control condition (0.467 ± 0.029% MVC)
did not differ significantly from the task error in the condition
of low-frequency feedback without EA (0.446 ± 0.039% MVC)
(t13 = 0.648, p = 0.528) (unpublished data). Therefore, low-
frequency error signals without amplification could not facilitate
feedback control, and the performance benefit and paradigm shift
were evident only in the LF-EA condition. Also, the selection
of a low pass threshold of 0.8 Hz for EA was empirically
determined. The time period necessary for the detection of
visual information and motor adjustments was at least 150 ms
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(Miall et al., 1985, 1986), which prevented the participants from
timely correcting fast-oscillatory error components. However,
on account of the slow tracking response and perceptual
motor conflict, the excessive removal of high-frequency error
components is disadvantageous to task precision due to the lack
of ample information for remedying tracking deviations. The
effects of various low-pass thresholds on EA feedback will require
further investigation.

CONCLUSION

Virtual potentiation of low-frequency errors below 0.8 Hz for
visual feedback more effectively improves task performance than
does traditional EA or real visual feedback in a static isometric
task. The selective gating of high-frequency error components
reduces the task-irrelevant information in the visual feedback that
cannot be rapidly processed with a feedback process. This study
reveals that the amplification of low-frequency error information
could increase the sensitivity to detect Fc and facilitate the state
shift to the negative feedback process for force stabilization.
The behavior adaptations arise from the promotion of effective

corticospinal interactions to enhance discharge irregularity and
minimize fluctuations of the common drive to a muscle.
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Arch height is an important determinant for the risk of foot pathology, especially
in an aging population. Current methods for analyzing footprints require substantial
manual processing time. The current research investigated automated determination
of foot type based on features derived from the Gabor wavelet utilizing digitized
footprints to allow timely assessment of foot type and focused intervention. Two
hundred and eighty footprints were collected, and area, perimeter, curvature, circularity,
2nd wavelet moment, mean bending energy (MBE), and entropy were determined
using in house developed MATLAB codes. The results were compared to the gold
standard using Spearman’s Correlation coefficient and multiple linear regression models
with significance set at 0.05. The proposed approach found MBE combined with
foot perimeter to give the best results as shown by ANOVA (F(2,211) = 10.18,
p < 0.0001) with the mean ± SD of low, normal, and high arch being, respectively,
0.26 ± 0.025,.24 ± 0.021, and 0.23 ± 0.024. A clinical review of the new cut off
values, as set by the first and the third quartiles of our sample, lead to reliability up to
87%. Our results suggest that automated wavelet-based foot type classification of 2D
binary images of the plantar surface of the foot is comparable to current state-of-the-art
methods providing a cost and time effective tool suitable for clinical diagnostics.

Keywords: non-linear dynamics, complexity, wavelet analysis, bending energy, foot arch height

INTRODUCTION

The arch height of the foot has long been recognized as a key parameter in foot type classification,
and is considered an important prediction and diagnostic tool in lower limb pathology. Some
studies have shown that high and low arched foot types can alter plantar pressures as compared to
a foot with normal arch height (Van Schie and Boulton, 2000). High arched foot type has also been
found to be associated with increased levels of foot discomfort and pain (Burns et al., 2005). Due
to differences in repeatability and reliability, as well as ease of use, no single method has been fully
accepted for objective foot arch assessment. Various invasive, time consuming, and costly measures
exist and have been tested as clinical tools to determine arch height (Hawes et al., 1992), but all
require either extensive manual pre-processing or post-processing of the images, before results can
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be obtained. Several non-invasive methods based on footprint
images have also been proposed as useful measures in gait and
movement analysis (Johnston, 2014). However, these methods
require extensive processing, are very time consuming and largely
underutilized by clinicians and researchers. In the current paper,
we propose an automated method based on Gabor wavelet
results of 2- dimensional footprints and compare these to the
current gold standard assessment methodology. Wavelet analysis
simplifies the determination of the arch index for clinicians by
requiring only the ink foot print without toes to be uploaded to
the script. The Gabor-wavelet analysis is a common tool used
in 2-dimensional pattern analysis as it allows extraction of a
number of features that describe a pattern. In the current research
we have determined the circularity, histogram of orientation,
and mean bending energy (Costa and Cesar, 2001 #623). These
features describe the characteristics of the footprint. For example
the circularity feature measures the degree of departure from
a circle and is therefore sensitive to the medial part of the
footprint, which has a straighter appearance in flatfoot and is
more rounded closer to a circle with normal arch height. Arch
height is a function of several factors, including a complex foot
structure of 26 bones, 16 joints, and more than 100 muscles,
tendons, and ligaments. The structure and function of the lower
limb ensures support and stability in gait, as well as good
posture for balance and movement. The skeletal, musculature,
and ligamentous components of the foot lead to the formation
of the three plantar arches (Goonetilleke, 2012 #15208), which
provide flexibility and weight bearing support (Figure 1) (Manley
and Solomon, 1979, Parker et al., 2015, Gwani et al., 2017).
The foot arch of most importance to function and gait is the
medial longitudinal arch (MLA), as this arch provides most of
the elasticity and stability during gait. The focus of this paper is
the development of new innovative, less time consuming method
to calculate the height of this arch to assess pathology.

Medial longitudinal arch height is also important in shock
absorption, providing support while walking (Ghasemi et al.,
2016). Abnormal arch height such as high arches, flat feet or fallen
arches (Figure 2) can be responsible for discomfort and more
serious pathology, such as, lumbar lordosis, foot eversion, and
knees injuries (Nigg et al., 1993), plantar fasciitis, tibialis posterior
tendon dysfunction (Johnson and Strom, 1989; Schepsis et al.,
1991).

Different methods to evaluate arch height exist and have been
verified in several studies. The current gold standard method
adopted in clinical practice is the “Arch Index” proposed by
Cavanagh and Rodgers (1987). The accuracy of this method
has been verified by experts in examining arch height (Menz
and Munteanu, 2006). However, the C&R method is difficult to
use and time consuming. Clarke’s Arch Angle (Clarke, 1933),
Index of Irwin (1937), Truncated Arch Index and the Arch
Length Index (Hawes et al., 1992) have been proposed as
alternatives but have similar shortcomings and are therefore not
used routinely in clinical practice. Automated feature analysis
methods with Gabor Wavelet-based feature extraction have been
applied in diverse clinical areas and have shown promise in
identification of plagiocephaly, proliferative retinopathy, brain
tumor detection, and complex image analysis (Jelinek et al., 2003;

Jelinek et al., 2014; Nagtode et al., 2016). Therefore, the current
paper explores the use of automated images analysis for the
classification of footprints within a clinical environment and for
research purposes. There is a need to develop a computer-based
method to establish arch height which is less time consuming
and likely to be used by clinicians and researchers. The new
innovative approach developed by the authors is an automated,
self-contained computer-based analysis method using digitized
2D footprints. The methodology is based on features derived
from geometrical characteristics and the use of the Gabor wavelet.

MATERIALS AND METHODS

Footprints for analysis were collected from 143 volunteers as part
of a foot health screening. MLA height index was determined
using a pedograph footprint system (Welton, 1992). A sample
of two hundred and eighty ink footprints were collected from
the volunteers upon informed and written signed consent.
The foot ink prints were taken with a standard Ruckgaber
Orthopadie ink plate developed by Ruckgaber Bruggemann1.
Participants volunteered from three different regions of Australia
and were included if they could walk unassisted and have no
lower limb pathology, footprints were collected with a standard
pedograph of the left and right foot. Ethics approval was granted
from the Human Research Ethics Committee (HREC) at the
University of Newcastle (Protocol Number 2012–0385) and all
participants provided written consent following an information
session Initially, the arch index proposed by C&R, representing
the current gold standard method, was determined. To obtain
the Arch Index (AI) requires a line to be drawn from the middle
of the heel to the center of the second toe of the foot. Then
the toeless footprint is divided into three equal parts by dividing
the longitudinal line into three equal parts through drawing two
lines perpendicular to the central longitudinal line (Figure 3).
The footprint image is then imported into the Analyzing Digital
Image analyzing program (ADI, University of Massachusetts
Amherst, MA, United States) and the outline of the footprint is
traced.

The AI is determined by calculating the area of the middle
segment (area of section B) and this is divided by the area of the
whole foot (area of section A, B, and C), i.e., B/(A + B + C).
A low arch is indicated by an AI being equal to or higher than
0.26, whereas a high arch has an AI of equal or lower than
0.21 (Cavanagh and Rodgers, 1987). To calculate the proposed
new features, the outline of the footprints was manually traced
and then scanned into the computer for further analysis. An
Image Editor tool (IrfanView) was used to remove the toes
from the image. All prints were analyzed using an in-house
algorithm written in MATLAB (MathWorks, MathWorks Inc.,
New York, NY, United States). Binary images were obtained by
applying image thresholding and Sobel operator to the gray scale
image. Then the binary images were uploaded as a batch file to
the Feature Analysis Algorithm, to determine perimeter, area,
curvature, circularity, 2nd moment, entropy, and bending energy

1http://ruckgaberbrueggemann.de/
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FIGURE 1 | Skeletal structure of the foot. From top to bottom: outline of the lateral arch and medial arch. Adapted from Gray and Lewis (1918).

FIGURE 2 | Binary footprint of a flat foot and high arch.

(Van Vliet and Verbeeck, 1993; Costa and Cesar, 2001). Area,
perimeter, and circularity features were extracted based on the
geometry of the footprint. The wavelet based features, including
second moment of the magnitude of the wavelet transform
(Arnéodo et al., 2000), entropy-based features of the histogram
such as orientation of the wavelet transform and curvature, were
consequently determined. Finally, mean bending energy (MBE)
and circularity associated with the contour of the footprint were
calculated. Using binary images, the perimeter corresponds to

the edge between white and black pixels on the image of the
foot. The perimeter was calculated by applying an edge detection
algorithm, where it was determined by counting the boundary
pixels multiplied by π/4. As for area, each line, and column of the
digital footprint corresponded to the sum of foreground pixels.
The circularity highlights the relationship between perimeter and
area, where P equals perimeter and A corresponds to the area.
The circularity is then defined as:

C =
P2

a
(1)

The entropy represents the histogram of the Orientation (angles)
of the Wavelet Transform and is a statistical measure of the
degree of orientation disorder as follows:

E = −
∞∑

n = 1

pi In(pi) (2)

where pi is the frequency of vectors oriented toward a specific
direction, and k corresponds to each bin in the histogram. The
curvature represents how the direction of a tangent vector varies
from point to point on the shape. This feature is given by the
following equation:

k = 5.
5f
|| 5 f ||

=
fxxf 2

y − 2fxfyfxy + fyyf 2
x

(f 2
x + f 2

y )3/2 (3)

where fx, fy, fxx, fyy, and fxy denote the first and the second
partial derivatives of f with respect to x and y, and the partial
derivatives with respect to x and y, respectively. Mean Bending
Energy (MBE), also known as boundary energy, is related to the
amount of energy necessary to transform the shape of the image
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FIGURE 3 | Determination of Arch Index according to Cavanagh and Rogers’
method.

into a circle, which would have the same perimeter. This feature
is a curvature-based shape descriptor, whose discretised version
is defined as:

M
_
BE =

1
N

N−1∑
N=0

k (n)2 (4)

where N is the number of pixels in the contour and k(n) is
the local curvature for the nth pixel in the contour. The Gabor
wavelet is defined as:

ψG (x) = exp
(
jk0x

)
exp

(
1

1
2
|Ax|2

)
(5)

Where j =
√
−1, k0 is a vector, which defines the frequency

of the complex exponential, and A = diag
[
ε−1/2, 1

]
,ε ≥ 1is a

2× 2 diagonal matrix that defines the anisotropy of the filter,

and its elongation in any direction. The Gabor wavelet is
a complex exponential modulated by a Gaussian. The above
equations were based on the work reported in Costa and Cesar
(2001).

Statistical analyses included a correlation analysis using
Spearman’s correlation coefficient to determine any collinearity
between the proposed features and the C&R Arch Index currently
used in clinical practice. Simple and multiple linear regression
models were also applied to investigate the relationship between
the predictor variables. The relative quality of each statistical
model consisted of combinations of the proposed features
including perimeter, area, curvature, circularity, 2nd moment,
entropy, and bending energy (Van Vliet and Verbeeck, 1993;
Costa and Cesar, 2001). For example, the corrected Akaike
Information Content (AICc) measures the relative quality of
the statistical models for the data, with the smallest AICc
indicating the best model. The Variance Inflation Factor was
applied to ensure that there was no multicollinearity between
factors (Zuur et al., 2010). The correlation coefficient (r2)
was used to prove the reliability of the AHI linear equation
obtained and shown in the results. The model with the
lowest AICc and p-value < 0.05 with the least number of
features was selected as the best model to describe low, normal
and high arch heights and best matched the three groups
of C&R (low, normal, and high arches). An Analysis Of
Variance (ANOVA) followed by the Tukey HSD post hoc (Tukey
et al., 1984) test were applied to determine which pairwise
groups of models were significantly different. All statistical
analyses were carried out in R Studio with significance set at
p < 0.05.

RESULTS

Spearman’s correlation test analysis revealed that several of
the proposed features obtained using the Gabor wavelet-
based analysis were correlated (r2 > 0.7), including the area

TABLE 1 | Significant result of spearman’s correlation for the proposed features.

Area Perimeter Second
moment

Circularity Correlation
coefficient

−0.892∗ 0.692∗

Entropy 0.354 0.014 −0.683∗

Curvature −0.296 0.089 0.851∗

∗Correlation is significant at the 0.01 level.

TABLE 2 | Best model regarding cavanagh & rodger classification.

Model AICc∗

MBE + P −761.68

MBE + E + P −760.44

MBE + C + P −760.31

MBE + SM + P −759.88

∗AICc – corrected akaike information content, MBE – Mean bending energy, P –
Perimeter, E – Entropy, C: Circularity, SM: Second moment.
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FIGURE 4 | Distribution of arch indices determined with MBE + P using the Cavanagh and Rodgers proposed cut-off values.

FIGURE 5 | Distribution of scores using the MBE + P equation and cut-offs.

and perimeter with circularity, and the second moment of
the Magnitude of the Wavelet transform with entropy and
curvature (Table 1). Of the correlated pair of features, the

feature that had a higher correlation with the dependent
variable (arch height) was retained for the regression
analysis.
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TABLE 3 | Distribution of footprints for each category.

High arch Normal Low arch

Cavanagh and rodgers 37 107 70

MBE + P 53 107 54

From all features, the multiple linear regression models
were tested in accordance with the statistical models.
Every combination of any model was studied. To avoid
multicollinearity issues, any model with a Variance Inflation
Factor greater than two was eliminated. Results of this regression
tests are shown in the following table. Each one of the four
models in Table 2 is equally valid based on the statistical analyses
to model the C&R classification. All models had an R-squared
value of 0.28 and were significant (p < .001).

The optimal model based on the multiple regression analysis,
consisted of the combination of Bending Energy (MBE), and
Perimeter (P), with the lowest number of features in the equation.
The related equation of this model is the following:

AHI =
(
−7.351−05

× P
)
−

(
1050.964×M

_
BE
)
+ .4597. (6)

The ANOVA was further applied to determine any relationship
between our best model using two features and the categorized

cut-off values defined by C&R at 0.21 and 0.26 with respect to
the Arch Index. Results show there is a statistically significant
difference between the groups, as set by ANOVA (F(2,211) = 10.18,
p < 0.0001). Tukey’s HSD result shows a statistically significant
difference in the mean value between the Low Arch and High
Arch (0.000113± 0.000026 and 0.000135± .000026, respectively,
p = .0001), as well as between the Normal (0.000126 ± 0.000024)
and High Arch (p = 0.002). However, there were no differences
between Normal and Low Arch (p = 0.191) for this two feature
model. The Mean Bending Energy was the most important
feature in this equation with a p-value < 0.001 compared to the
Perimeter (p = 0.05). Including entropy improved the results and
differentiated low arch from normal.

Figures 4 and 5 show the respective AI distribution
normalized to the C&R method scores and the MBE + P
approach using quartiles to identify the low and high AI. The
scores are normally distributed in both situations. The AI mean
value for the C&R method was 0.25 and the standard deviation
was 0.047. The mean value for the MBE + P approach was 0.25
and the standard deviation 0.025. The arrows indicate the first
and the third quartiles of the distribution.

As clinicians typically divide feet into three groups, the
distribution of MBE + P scores as shown in Figure 5 were
divided into three quartiles (Q1, Q2, and Q3). Q1 and Q3 are,
respectively, showing high arch (low AI) and low arch (high AI).

FIGURE 6 | Visual MBE + P groups of arch height.
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The recommended cut-off for low and high AI differed slightly
for the MBE+ P to that of the C&R approach with high arch and
low arch of 0.23 and 0.27 compared to the C&R of 0.21 and 0.26,
respectively. The distribution of the footprints for each foot type
for both methods from our sample is given in Table 3.

A representative example for each footprint category based on
the cut-off scores given by the MBE + P equation are shown in
Figure 6.

DISCUSSION

Automated analysis of foot type using MBE and perimeter
is a novel approach, which may give clinicians a powerful,
automated tool for timely identification of arch height type and
possible risk of foot pathology. Previous methods using MRI,
X-ray or CT images have shown good accuracy in Lin et al.
(2015) but these methods are expensive, not widely available to
clinicians, time consuming and expose participants to radiation.
Combining bending energy with perimeter provided a different
spatial analysis from the current Cavanagh and Rogers’ clinical
approach. Our model distinguished the classes proposed by
Cavanagh and Rogers providing a reliable tool in determining
foot type. However, the mean energy combined with perimeter
is more suitable for identification of high arch type, which is
more difficult to assess clinically compared to low arch height
(being flat footed). The better model based on the AICc in terms
of accuracy was the MBE + SM + P model after removing
collinearity from the complete model.

Mean Bending Energy plays an important role in the
classification of a footprint due to the sensitivity of the
measurement that highlights the middle longitudinal arch shape
seen in the footprint. However, it depends on how accurately the
footprint boundary/outline is presented. The more accurate and
clearer the footprint boundary, the better the results. Comparing
the two systems indicated that the MBE + P method was
more sensitive in highlighting a high arch type as compared
to the Cavanagh and Rodgers classification (Figures 4, 5). The
results of our approach lead to a greater number of footprints
categorized as high arch compared to the C&R categorisation
(Table 3). However, a review of these mismatched footprints by

an experienced clinician indicated that our approach gave an
average of 73% reliability for identifying any arch type, with up
to 87% reliability in correctly classifying the high arch type. This
indicated that the Cavanagh and Rodgers method may under-
represent high arch. The C&R method relies on the total footprint
area with respect to the area of the midfoot and can lead to some
feet being classified as normal, due to the larger total area of
the foot, but they may not be high arch foot type. Whereas the
Mean Bending Energy + Perimeter relies on the global shape
of the foot where the curvature associated with the arch height
contributes the most weighting in determining MBE. Therefore,
it is less sensitive to the shape of the foot and a better clinical tool
that is automated and standardized.

Our automated analysis method utilizing mean bending
energy, perimeter and entropy, identified specific frequency
content in the footprints associated with specific directions in
a localized region around each point of the perimeter of the
footprint. This novel, simplified and robust approach provides
clinicians a reliable method with faster results for assessment of
arch height and a better understanding for predicting injuries
associated with foot structure and posture.
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Essential tremor (ET) is the most common movement disorder. In fact, its prevalence

is about 20 times higher than that of Parkinson’s disease. In addition, studies have

shown that a high percentage of cases, between 50 and 70%, are estimated to be

of genetic origin. The gold standard test for diagnosis, monitoring and to differentiate

between both pathologies is based on the drawing of the Archimedes’ spiral. Our major

challenge is to develop the simplest system able to correctly classify Archimedes’ spirals,

therefore we will exclusively use the information of the x and y coordinates. This is the

minimum information provided by any digitizing device. We explore the use of features

from drawings related to the Discrete Cosine Transform as part of a wider cross-study for

the diagnosis of essential tremor held at Biodonostia. We compare the performance of

these features against other classic and already analyzed ones. We outperform previous

results using a very simple system and a reduced set of features. Because the system

is simple, it will be possible to implement it in a portable device (microcontroller), which

will receive the x and y coordinates and will issue the classification result. This can be

done in real time, and therefore without needing any extra job from the medical team.

In future works these new drawing-biomarkers will be integrated with the ones obtained

in the previous Biodonostia study. Undoubtedly, the use of this technology and user-

friendly tools based on indirect measures could provide remarkable social and economic

benefits.

Keywords: essential tremor, automatic drawing analysis, archimedes’ spiral, discrete cosine features, automatic

feature selection

INTRODUCTION

Essential tremor is a neurological disorder 20 times more common than Parkinson’s disease that
affects individuals worldwide with a prevalence in the western world of about 0.3–4%. With regard
to epidemiological analysis, the incidence of ET increases with age, both men and women are
affected more or less equally, with an incidence of 23.7 per 100,000 people per year, and may
also appear in children. In this scenario, studies suggest that the prevalence among elderly ranges
between 3.9 and 14.0%. Moreover, 50 to 70% of essential tremor cases are estimated to be of
genetic origin [1] and in these cases an early development of symptoms could appear. In the
characterization of this disorder, ET is considered a kinetic rhythmic tremor (4–12Hz) that only
occurs when the affected muscle is exerting an effort, and its amplitude is variable with respect to
age, but there is no gender predilection.
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The risk of Parkinson’s disease in people with essential tremor
is higher than in the general population, and stress and fatigue
may worsen the tremor. In addition, Parkinson’s disease and
essential tremor can also occur simultaneously and may appear
in individuals of the same family. As far as symptoms of essential
tremor are concerned, as in Parkinson’s disease, tremor of the
hand predominates and occurs in most cases, followed by or
at the same time that tremor of the head, voice, neck, face,
leg, tongue, trunk and walking difficulties (Louis and Vonsattel,
2007). The symptoms of ET produce a dramatic decline in the
performance of daily activities and may lead to disabilities.

Therefore, early treatment of the disorder is essential in
order to control and alleviate symptoms and increase the
patients’ quality of life. In recent years, significant progress has
been made in the development of reliable and robust clinical
biomarkers. However, despite their utility, some of the tests
can be very invasive or involve high cost and technological
requirements that make it impossible to apply them to all
patients with motor disorders, especially when continuous
monitoring is necessary. For these cases, new intelligent non-
invasive diagnostic techniques have been developed based
on indirect biosignals such as speech, writing or drawing.
These developments can become valuable tools for early
detection of disorders and friendly monitoring. Additionally,
these techniques supervised by health specialists are managed
by non-technical staff in the patient’s usual environments
without introducing stress or altering or blocking their abilities.
The systems are very low cost and do not require extensive
infrastructures or the availability of medical equipments. The
biosignals obtained are simple, natural and easy to process and
manage, and the tools are capable of producing information
easily, quickly and economically (Lopez-de-Ipiña et al., 2013a,b;
Zanuy et al., 2013; Laske et al., 2015). The literature and clinical
practice establish that handwritten tasks can be used for the
diagnosis of essential tremor and in this sense Archimedes’ spiral
is the reference test in clinical diagnosis (Pullman , 1998).

In the past, handwriting analysis was performed using an
offline test without technological tools. In fact, only the writing
or drawing itself (lines on paper) and the perception of the
health specialist were available and analyzed. Nowadays, modern
capture devices (digitizing tablets and pens) can gather dynamic
data with their temporal dimension to include the evolution
of the performance and quantitative measurements. Then, the
analysis is carried out online with the available spatiotemporal
information. The first papers published using digitizing tablets
dates back to the 1990s (see Elble et al., 1996; Cameron Riviere
et al., 1997; Pullman, 1998 for example), and spread significantly
from this century (see Miralles et al., 2006; Zeuner et al., 2007;
Haubenberger et al., 2011; Louis et al., 2012 for example), when
new and more powerful tablets appeared on the market. These
modern digitizing tablets collect not only the x and y coordinate
points that describe the hand movement and the evolution of
the pattern as it changes position, but can also collect other
interesting features, such as the pressure exerted on the writing
surface, the azimuth, the angles of the pen with regard to the
vertical and horizontal axis, the altitude (Likforman-Sulem et al.,
2017), as well as the movement in the air when there is no contact

nor pressure between the pen and the paper or device (Sesa-
Nogueras et al., 2012). This provides the possibility to analyse
both the static characteristics and the dynamics of their evolution
(Faundez-Zanuy, 2007):

• Static: Also known as “off-line” analysis. In these tests users
write their handwriting/drawing on paper and afterwards the
strokes are digitized through a camera or an optical scanner.
Then, a biometric analysis is carried out.

• Dynamic: Also known as “on-line” analysis. In these tests,
users write in a digitizing device, which acquires the
drawing/handwriting in real time with the whole set of
features abovementioned. Not only the strokes but also the
spatiotemporal information is available and used.

The present work belongs to a larger cross-sectional study for the
characterization of ET by indirect measures, and it is included in
the general transversal study conducted at the Biodonostia Health
Institute, which focuses on the characterization of genetic ET and
is based on families with identified genetic loci. For the detection
of ET, Archimedes’ spiral has been selected as the reference test
for the selection of linear and/or non-linear biomarkers from
drawings and writing, bearing in mind that irregularities due to
stress may also appear in control persons and patients with ET.
A previous work that used the same data (but with other features
and classification systems) can be found in (Lopez De Ipina et al.
(2015). The main goal of the study is to analyse the capability of
a classification system using exclusively the x and y coordinate
points of the drawings. This is because we would like to use the
handwriting exercise in real time using a tablet or phablet. In
the next sections we detail the new proposed features obtained
through the discrete cosine transform. Then, several automatic
analysis systems, Linear Discriminant Analysis (LDA), k-Nearest
Neighborhood (KNN) and Support Vector Machines (SVM), will
measure the quality of the selected features. Obtained results will
be compared with already available results with the same database
in order to check the potential use of these new descriptors.

MATERIALS AND METHODS

Acquisition System
The acquisition system is a digitizing tablet, the Intuos WACOM
4 2017, which is connected to a laptop trough a USB port and
captures the spatial coordinates, the azimuth and altitude angles
of the pen on the tablet, and the pressure exerted for it on the
surface. Sampling frequency is set to 100Hz. From this data we
could infer other variables such as acceleration, speed, etc. (Jain
et al., 1999; Sadikov Groznik et al., 2014).

Database
In this paper we use the database named BIODARW, first
presented in (Lopez De Ipina et al., 2015; López-de-Ipiña et al.,
2016). We have a total of 21 control people (CP) and 29 ET
people. The test consists of, among other exercises, drawing the
Archimedes’ spiral (Figure 1) with both the dominant and non-
dominant hands. Therefore, originally the database contains 100
handwriting samples. In order to compare our results with the
ones in Lopez De Ipina et al. (2015) and López-de-Ipiña et al.
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FIGURE 1 | Example of the original drawing of Archimedes’ spiral, performed

by a control individual (Left) and an individual with essential tremor (Right).

(2016), we will proceed as done in these works and will only
use the BIODARWO subset, which consists of 51 samples: 24
samples for the ET group and 27 samples for the control group.
The selection of these samples was as follows:

a. For the ET group, only the sample with the best quality is
chosen (one hand), but 5 subjects are discarded due to the poor
quality of the samples.

b. For the control group, the best sample (habitually the
dominant hand) is kept, but in 6 cases, also the non-dominant
hand is included

Themedical team carried out this selection. Detailed information
of recruitment acquisition procedure and selection of this subset
can be found in López-de-Ipiña,(2016). Table 1 summarizes the
features of the group with ET with regard to test features,
diagnosis and demography. Due to lack of space, only the first
9 subjects are presented.

Discrete Cosine Transform of Type II,
Partial Reconstructions and Residues
Considering the set of N points xn where n goes from 0 to N−1,
and N transformed coefficients Xk, where k goes also from 0
to N−1, the forward and backward expressions of the type II
Discrete cosine transform take the form:

Xk =

N−1
∑

n=0

ckxn cos

(

π

N

(

n+
1

2

)

k

)

; k = 0, · · · ,N − 1 (1)

and,

xn =

N−1
∑

k=0

ckXk cos

(

π

N

(

n+
1

2

)

k

)

; n = 0, · · · ,N − 1 (2)

and, Where ck is defined as:

ck =







√

1
N ; k = 0

√

2
N ; k 6= 0

(3)

Equations (1) and (2) show that, from all the coefficients Xk, the
N samples of the original xn sequence is perfectly recovered.

Let us consider only the first L coefficients of Xk to reconstruct
the original sequence xn, in order to obtain an approximation x̃n
as follows:

x̃n=

L−1
∑

k=0

ckXk cos

(

π

N

(

n+
1

2

)

k

)

; n=0, · · · ,N−1 and (L < N)(4)

And the remaining Xk, to form the residue x̂n as:

x̂n =

N−1
∑

k=L

ckXk cos

(

π

N

(

n+
1

2

)

k

)

; n = 0, · · · ,N − 1 (5)

It comes directly from (4) and (5) that the original sequence xn
is xn = x̃n + x̂n. As commonly L≪N, the calculus of x̃n involves
fewer coefficients than the one for x̂n, therefore the residue x̂n is
obtained more efficiently from x̃n as:

x̂n= xn − x̃n (6)

We propose the use of the DCT because this transformation
is often used in lossy data compression applications. The
property of the DCT that makes it suitable for compression
is its high degree of spectral compaction; this means that the
DCT representation of a signal tends to concentrate more of
its energy in a small number of coefficients, the first ones,
compared to other transformations such as DFT. Therefore, this
characteristics will allow us to keep a small number of coefficients
containing the fundamental information about the drawings.

Extracted Features
The digitalizing tablet used was an Intuos Wacom 4. The pen
tablet captures the spatial coordinates

(

xn, yn
)

, the pressure, and
the azimuth and altitude angles of drawing. In this study only the
spatial coordinates

(

xn, yn
)

were used.
To characterize each spiral by means of a single real sequence

the spatial coordinates
(

xn, yn
)

can be combined in several ways.
We investigate two options: (i) calculating the radius of the polar
coordinates and (ii) estimating a distance. Figure 2 shows a block
diagram of the two processes:

• The radius method: in this case, the radius was calculated by
transforming the Cartesian coordinates to Polar coordinates.
Therefore, the new sequence rn was obtained as rn =
√

xn2 + yn2. An example of the radius sequence rn for a
healthy subject and a patient is shown in Figure 3.

• The residue method: in this case, the Cosine transform
was applied to each coordinate xnand yn separately, and
then the inverse Cosine transform was calculated using a
predefined number of coefficients, obtaining the estimated sets
x̃n and ỹn. The inverse Cosine Transform of each axis was
subtracted from the original signal andwe obtained the residue
calculated as the distance between the two signals. Finally,
we characterize each spiral with a single real sequence rdn
obtained from de residues x̂n and ŷn of

(

xn, yn
)

as follows:

rdn =

√

(xn − x̃n)
2 +

(

yn − ỹn
)2

=

√

(

x̂n
)2

+
(

ŷn
)2

(7)

Frontiers in Physiology | www.frontiersin.org January 2019 | Volume 9 | Article 1947180

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Solé-Casals et al. Cosine Transform for ET

TABLE 1 | Some examples of the database, together with electrophysiological test features and diagnosis using Fahn–Tolosa–Marin (FTM) scale values for the selected

individuals with ET (ET_x).

ET_x Electrophysiological test features Diagnosis Demography

Frequency (Hz) Amplitude (V) Pattern FTM Scale Age Gender

ET_01 8.5 20 Synchronous 1 48 Female

ET_02 6.5 variable Alternating 8 72 Male

ET_03 10.5 200 Synchronous 1 46 Male

ET_04 4.5 503.6 Synchronous 3 80 Female

ET_05 6.6 298 Synchronous 22 68 Female

ET_06 9.5 46 Synchronous 2 46 Female

ET_07 5 173 Synchronous 50 75 Male

ET_08 6.5 159 Synchronous 40 75 Male

ET_09 8 128 Synchronous 9 75 Female

FIGURE 2 | Block diagram of the experimental part.

• An example of the sequences rdn is shown in Figure 4. In
order to evaluate the effect of the number of coefficients,
several number of coefficients have been considered in the
experiments.

By visual observation, comparing Figures 3, 4, we notice that the
irregularity of the signal is, as expected, bigger for the ET subjects
compared to controls, and more notorious in residue than in the
radius signal.

From these two signals, the radius and the residue, we extract a
set of temporal and frequency features. The temporal features are,
for example, the rootmean square, standard deviation, maximum
fractal length, or zero crossing. Frequency features, obtained
from the Welch periodogram transform, are, for example,
the mean frequency and its amplitude, median frequency,
total power, 1st, 2nd, and 3rd spectral moments, kurtosis, or
autocorrelation. The complete list of features is shown in Table 2

(temporal domain features) and Table 3 (frequency domain
features). We refer the reader to Shair et al. (2017) for details
on the features and how to calculate them. The total number of

extracted features is 34 andwewill use feature selection algorithm
to keep the most discriminative ones.

Classification Systems
Linear Discriminant analysis (LDA), k-nearest neighbors (k-
NN) and support vector machine (SVM) with radial basis
kernel have been used as classification algorithm to discriminate
between ET and control subjects. To evaluate the performance of
these algorithms we implemented the leave-one-out technique.
Although all the drawing samples have been done with a template
and the same pen tablet, the number of drawing points acquired
was different for each sample. In order to ensure the same
number of points in each sequence, we resampled all the exercises
to enforce 4096 points in all of them. Establishing the same
number of points is mandatory in order to be able to compare
the different Cosine transforms. Normalization was also applied
in order to have a unit norm in all the features. Results were
evaluated by means of the Accuracy (%). In the training and
validation steps we use a k-fold cross validation strategy with
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FIGURE 3 | An example of Archimedes’ spirals radius r performed by the same subjects of Figure 1. At the top for the control subject; at the bottom for the ET

patient.

FIGURE 4 | An example of the residue rd performed by the same subjects of Figure 1. At the top for the control subject; at the bottom for the ET patient.

k = 10. Cross-validation is a robust technique for the selection
of variables and widely used to obtain realistic results reducing
overfitting.

Experiments
Experiments where carried on the BIODARWO dataset. A
feature selection algorithm was applied in order to improve the
classification rate removing the similarities and dependencies
between features. Relieff algorithm (Kononenko et al., 1997)
was selected for its well performance in binary classification

problems. This method is one of the best enabling the classifiers
to achieve the highest classification accuracy while reducing the
number of unnecessary attributes. Also, and very important
for us, Relieff gives as output an ordered list of features
according to their importance, which will allow us to select
the first of them (Molina et al., 2002; Cehovin and Zoran,
2010). In this study the Relieff algorithm implementation from
MATLAB.

The feature selection algorithm was applied to the residue and
radius features in order to obtain the best performance in both
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TABLE 2 | List of the extracted features from the temporal domain.

Temporal Features Descriptor

Sample entropy (SENT) m = 3, r = 0.2

Mean absolute value (MAV) 1
N

N
∑

i=1

∣

∣Xi
∣

∣

Variance (VAR) 1
N−1

N
∑

i=1

∣

∣Xi − µ
∣

∣

2

Root mean square (RMS)
N
∑

i=1

1
N
X2
i

Log detector (LOG) e

1
N

N
∑

i=1
log(|Xi |)

Waveform length (WL)
N−1
∑

i=1

∣

∣Xi+1 − Xi
∣

∣

Standard deviation (STD)

√

1
N−1

N
∑

i=1

∣

∣Xi − µ
∣

∣

2

Difference Absolute standard deviation (AAC)

√

1
N−1

N−1
∑

i=1
(X i+1 − XI )

2

Fractal dimension (FD) Higuchi’s algorithms with m = 5

Maximum fractal length (MFL) log(
N−1
∑

i=1

∣

∣Xi+1 − Xi
∣

∣)

Myopulse percentage rate (MYO) Percentage of time where the

signal is bigger than two times

the mean

Integrated EMG (IEMG)
N
∑

i=1

∣

∣Xi
∣

∣

Simple square EMG (SSI)
N
∑

i=1
X2
i

Zero crossing (ZC) The number of times in which the

signal crosses its mean

Slope sign change (SSC) The number of times in which the

slope of the sign changes

Wilson amplitude (WAMP)
N−1
∑

i=1

∣

∣Xi − Xi+1

∣

∣ > ǫ where ǫ is

the mean of the signal

Autoregressive coefficients (AR, 4 coefficients) AR parameter estimation via

Yule-Walker method

The descriptor includes the values of the parameters (when needed) and/or the

mathematical definition. Details on all the features can be found in Shair et al. (2017).

cases. Several numbers of features were tested and experimentally
we obtained the best performance using the top 5-predictor
rank features. The 5 characteristics selected in each case are the
following, sorted according to their importance:

Residue method:

1. Mean frequency (MNF)
2. Wilson amplitude (WAMP)
3. Mean absolute value (MAV)
4. Maximum fractal length (MFL)
5. Fractal dimension (FD)

Radius method:

1. Maximum fractal length (MFL)
2. Fractal dimension (FD)
3. Myopulse percentage rate (MYO)
4. Mean absolute value (MAV)
5. Standard deviation (STD)

RESULTS AND DISCUSSION

Three different classification algorithms have been used to
compare the performance of the residue method and the radius

TABLE 3 | List of the extracted features from the frequency domain.

Frequency Features Descriptor

Main peak amplitude (Pmax) Maximum peak

Main peak frequency (Fmax) Frequency of the max peak

Mean power (MP) 1
N

N
∑

i=1

∣

∣Pi
∣

∣

Total power (TP)
N
∑

i=1
Pi

Mean frequency (MNF) Estimates the mean normalized frequency

of the power spectrum

Median frequency (MDF) Estimates the median normalized

frequency of the power spectrum

Standard deviation (STD)

√

1
N−1

N
∑

i=1

∣

∣Pi − µ
∣

∣

2

1st spectral moment (SM1) Spectral moments

2nd spectral moment (SM2) Spectral moments

3rd spectral moment (SM3) Spectral moments

Kurtosis (KUR) Kurtosis of the power spectrum

Skewness (SKW) Skewness of the power spectrum

Autocorrelation (Auto, 3 coefficients) 3 firsts coefficients of the autocorrelation

The descriptor includes the values of the parameters (when needed) and/or the

mathematical definition. Details on all the features can be found in Shair et al. (2017).

method. For the residue method, several coefficients for the
inverse cosine transformwere considered in order to establish the
optimal value.

First, a LDAwas used. As can be seen inTable 4, themaximum
accuracy was 85.71% obtained for the residue method with 17
coefficients, while for the radius method the best accuracy was
75.51%. An improvement of 10% was achieved using the cosine
transform apporach, instead of working directly with the radius.
This emphasizes the importance of using the residue as a time
series rather than working directly with the radius, as the residue
contains more information regarding the tremor. We can see the
results of the LDA as a reference results, and the other systems
will try to improve these ones.

Next, the k-NN method was used. In this case, different
number of neighbors were tested. Results are shown in Table 5

for the residuemethod, and inTable 6 for the radius method. The
maximum accuracy was 83.67% obtained for the residue method
with 17 coefficients and 3 neighbors, while for the radius method
the best accuracy was 81.63% with 3, 4, and 5 neigbors. We note
that results are worst than the ones obtained using LDA, but
again, the residue method outperforms the radius method, even
if that now the difference is smaller. The number of neighbors can
be kept small (in both cases 3 was enough), which is interesting
from the point of view of simplicity. The number of coefficients
for the inverse cosine transform was again 17.

Then, we used explored a non-linear classification system.
Specifically we used an SVM with RBF kernel. The number of
coefficients of the inverse cosine transform was explored and,
as in the other two cases, we found that 17 was the best case.
Therefore, we established 17 coefficients and then we performed
a tunning for the kernel scale and penalty cost of missclassifaction
in order to achieve the best classification rate (accuracy). Results
for the residue method with 17 coefficients are presented in
Table 7. The maximum accuracy achieved with this approcah
was 95.92%, for the scale of 0.2 and costs 103 and 104. Several
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TABLE 4 | Accuracy (%) for the LDA classifier for the residue of the cosine transform (as a function of the number of coefficients considered) and for the radius.

Coefficients

10 15 16 17 18 20 21 22 23 25 30 50

Residue of the CT 75.51 79.59 81.63 85.71 79.59 71.43 77.55 79.59 77.55 79.59 77.55 77.55

Radius 75.51

The best result is highligted in bold

TABLE 5 | Accuracy (%) from k-NN classifier and residue method, where k stands for the number of neighbors used in the classification algorithm.

Coefficients

k 10 15 16 17 18 20 21 22 23 25 30 50

1 75.51 75.51 77.55 79.59 77.55 67.34 75.51 75.51 77.55 73.46 73.46 77.55

3 69.38 77.55 73.46 83.67 77.55 65.30 71.42 73.46 67.34 65.30 69.38 63.26

5 69.38 79.59 71.42 77.55 73.46 59.18 77.55 71.42 69.38 65.30 69.38 67.34

7 73.46 73.46 73.46 79.59 81.63 63.26 69.38 67.34 71.42 71.42 67.34 69.38

9 77.55 75.51 73.46 73.46 69.38 73.46 67.34 65.30 69.38 69.38 67.34 73.46

11 77.55 77.55 77.55 77.55 75.51 69.38 71.42 63.26 67.34 63.26 59.18 79.59

13 77.55 77.55 73.46 73.46 67.34 65.30 71.42 61.22 65.30 65.30 69.38 79.59

15 77.55 75.51 71.42 73.46 69.38 69.38 71.42 67.34 67.34 67.34 69.38 77.55

17 71.42 75.51 69.38 79.59 73.46 69.38 71.42 63.26 65.30 69.38 69.38 73.46

19 71.42 75.51 71.42 81.63 77.55 67.34 71.42 63.26 61.22 65.30 63.26 67.34

21 69.38 75.51 73.46 79.59 75.51 71.42 71.42 75.51 65.30 61.22 61.22 71.42

23 73.46 75.51 73.46 79.59 73.46 75.51 71.42 73.46 75.51 71.42 67.34 69.38

25 67.34 77.55 69.38 77.55 77.55 69.38 73.46 73.46 65.30 67.34 71.42 73.46

27 67.34 77.55 71.42 73.46 73.46 67.34 73.46 75.51 67.34 73.46 73.46 75.51

29 69.38 67.34 73.46 75.51 73.46 71.42 73.46 71.42 69.38 69.38 71.42 73.46

31 71.42 67.34 71.42 75.51 73.46 71.42 73.46 71.42 71.42 67.34 69.38 69.38

33 71.42 73.46 67.34 71.42 71.42 67.34 71.42 71.42 73.46 69.38 69.38 75.51

The best result is highligted in bold.

other combinations reached accuracies over 90%, which is a very
good result. For the radius method, results are shown in Table 8.
In this case the maximum accuracy was 85.71%, for the cost
104 and scales 0.7–1. This result outperforms the ones obtained
previously with LDA and k-NN.

In order to demonstrate the capability of the system,
Table 9 (left) presents the confusion matrix obtained with
the residue method, for 5 features and the SVM classifier.
From these values we can calculate the sensitivity (SEN) and
specificity (SPE) of the system, which results in the following
values:

SEN =
TP

TP + FN
=

20

21
= 95.24 %

SPE =
TN

TN + FP
=

26

28
= 92, 86 % (8)

where TP, TN, FP, and FN stands for the true positive, true
negative, false positive and false negative values of the confusion
matrix.

Finally, we explore the combination of both methods (residue
and radius features). For that, we started from the best previous
case (SVM with RBF, using the 5 features of the residue method)
and adding 1 feature of the radius method; then adding 2

features; then 3 features; then 4 features and finally the 5 features.
When adding new features, we followed the ranking presented
in section 2.6. For the case of 5 (residue) + 2 (radius) features
(see Table 10) we achieved an accuracy of 97.96%, outperforming
the best result obtained before. The radius features added that
contributed to increase the accuracy were the Maximum fractal
length and the Fractal dimension. In that case, the confusion
matrix (see Table 9) contains only one missclassified sample,
which corresponds to a control subject that the system classifies
as ET. Therefore, sensitivity and specificity are increased to
the following values: SEN = 100%; SPE = 96.42%, see
(9). The exact same result whas obtained for 5(residue) +

3(radius), in that case adding also the Myopulse percentage
ratio.

SEN =
TP

TP + FN
=

21

21
= 100 %

SPE =
TN

TN + FP
=

27

28
= 96, 42 % (9)

We can see that for the three classification systems the residue
method always obtained the best accuracies. In particular,
the SVM classifier was the best choice for both methods,
and the results obtained with the residue method clearly
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outperforms the results obtained with the radius method.
The best results, using only one of the methods is close to
96% of accuracy, clearly exceeding the best results obtained
in (Lopez De Ipina et al., 2015) and (López-de-Ipiña et al.,
2018) and similar to those obtained in (López-de-Ipiña et al.,
2016), in all the cases using the same database. But the
combination of both methods allowed to increase up to almost
98% of accuracy. This is interesting because it means that
some information is complementary and therefore useful for the
classifier.

It is important to emphasize that while all the possible
characteristics captured by the Intuos device (including pressure,
air time, surface time, azimuth and elevation angles, speed,

TABLE 6 | Accuracy (%) from k-NN classifier and radius features, where k stands

for the number of neighbors used in the algorithm.

k CR(%)

1 77.55

3 81.63

5 81.63

7 81.63

9 79.59

11 77.55

13 77.55

15 73.46

17 69.38

19 69.38

21 69.38

23 67.34

25 67.34

27 65.30

29 65.30

31 63.26

33 61.22

The best results is highligted in bold

acceleration, etc.), were used in the previous works, now only
the x and y coordinate points are used. For example, comparing
our results with those presented in our recently publiched work
(López-de-Ipiña et al., 2018), we can see that we propose a
new set of extremely reduced features derived directly from the
x and y coordinate points, which allows us to obtain better
results (97.96% against 91%) than those in (López-de-Ipiña et al.,
2018). We combined x and y coordinate values in two ways:
(i) calculating the radius and (ii) calculating the residue after
reconstructing the coordinate points using the cosine and inverse
cosine transforms. With only this information we were able
to outperform the best accuracy obtained in previous results,
with a very simple method and using only 7 features, instead
of 70 to 198 features used in (López-de-Ipiña et al., 2016), for
example.

The results of our study will allow its implementation
in real time by means of a validation study to confirm its
usefulness in the differential diagnosis of essential tremor with
respect to other entities with which it can be confused such
as physiological tremor, tremor in Parkinson’s disease and
dystonia, as well as in the evolutionary monitoring of essential
tremor after the start of any of the specific treatments already
available.

There are several reasons to explore only these features.
Among them, the simplicity to obtain them, because this is the
traditional available information of any acquiring system. This
can make it easier and allow the use of other simpler acquisition
systems by tracking only the x and y coordinate values, rather
than, for example, the pencil angles or the pressure exerted
during the drawing process. Then, using fewer phisical variables
will lead to a small number of features and therefore also simple
clasification methods. Finally, the computational time is also
affected by the simplicity or complexity of the data to acquire,
the features to extract and the clasification system to implement.
Using only information of the x and y coordinates allowed us
to reduce complexity and hence also computational time. This
is important if we want to work in real time in autonomous

TABLE 7 | Accuracy (%) from SVM RBF classifier and residue features with 17 coefficients, where cost stands for the penalty cost of missclassification and scale is the

kernel scale applied.

Scale

Cost 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

10−5 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10

10−4 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10

10−3 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10

10−2 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10

10−1 55.10 65.31 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10

1 85.71 81.63 77.55 77.55 77.55 79.59 77.55 75.51 73.47 69.39 61.22

101 89.80 87.76 87.76 89.80 81.63 81.63 81.63 79.59 79.59 79.59 79.59

102 91.84 93.88 89.80 87.76 87.76 89.80 89.80 89.80 89.80 89.80 89.80

103 91.84 95.92 91.84 83.67 87.76 89.80 85.71 89.80 87.76 87.76 87.76

104 91.84 95.92 91.84 91.84 91.84 87.76 83.67 85.71 87.76 87.76 87.76

The best result is highligted in bold.
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TABLE 8 | Accuracy (%) from SVM with RBF kernel classifier and radius features, where cost stands for the penalty cost of missclassification and scale is the kernel scale

applied.

Scale

Cost 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

10−5 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10

10−4 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10

10−3 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10

10−2 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10

10−1 67.35 63.27 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10 55.10

1 77.55 79.59 77.55 77.55 77.55 75.51 73.47 73.47 69.39 63.27 61.22

101 75.51 77.55 79.59 81.63 79.59 79.59 77.55 77.55 77.55 77.55 77.55

102 71.43 73.47 81.63 77.55 77.55 81.63 79.59 79.59 79.59 79.59 79.59

103 67.35 71.43 79.59 83.67 83.67 81.63 79.59 77.55 75.51 75.51 77.55

104 63.27 75.51 75.51 79.59 81.63 83.67 85.71 85.71 85.71 85.71 83.67

The best result is highligted in bold.

TABLE 9 | Confusion matrix obtained when using a SVM classifier.

Predicted

ET Control

Actual ET 20 1

Control 2 26

Actual ET 21 0

Control 1 27

On the top, with the residue method (5 features); on the bottom with the residue method

plus 2 features of the radius method: Maximum fractal length and Fractal dimension.

systems, which is one of the goals of the abovementioned
project.

Working with the residue is clearly a good option,
outperforming in all the cases the results obtained directly with
the radius, and the small set of features, all of them that can
be interpreted by health specialists in order to investigate the
relevance and usefulness of the biomarkers for early diagnosis of
ET.

CONCLUSIONS

Nowadays, a large number of models of wireless triaxial
accelerometers and gyroscopes that allow clinical assessment
of postural and kinetic tremor are In addition, there are
new techniques in development such as the measurement of
the components of recovery of the blinking reflex, kinematic
measurements, analysis of accelerometry data and computerized
measurements of the ocular movement whose objective is
to be able to objectively distinguish the physiological tremor
from the essential tremor, mainly when it is of mild severity.
Unfortunately, the advantages of high sensitivity and accuracy in
the linear register of portable motion transducers are mitigated
by the large variability in the random amplitude of the tremor.

This work analyzed the capability of the cosine transform as
a technique to be used for obtaining relevant biomarkers from
drawings and handwriting. This is part of a wider cross study
on the diagnosis of essential tremor, which is developed in the

Biodonostia Health Institute. Specifically, the main goal was to
obtain good results using simple information provided by the
x and y coordinates of the Archimedes’ spiral drawing. The
collection of a standardized writing sample is a method used in
clinical practice and research to assess the severity of tremor.

The method has many practical advantages. It is easy to obtain
and takes little time to implement. In fact, the samples can even
be collected remotely using different devices, allowing them to
be studied in different real-life situations and saving time and
resources when it comes to evaluating a large number of people.
Surprisingly, there are virtually no published data to address a
methodological problem that arises: the validity of the method.
The performance of the hand-drawn spiral as a screening tool for
Essential Tremor depends to some extent on the sample of case
studies and the cut-off points used for sensitivity and specificity.

We investigated two possibilities, the first one using the
radius derived directly by transforming the Cartesian coordinates
to Polar coordinates, and the second one using the residue
calculated as the distance between the coordinates and its
reconstruction by means of the pair cosine transform / inverse
cosine transform at a given number of the coefficients. Classical
features, both temporal and frequential, were derived for both
cases and the Relieff method was used to reduce the set to the
top 5-predictor rank features. Interestingly, 3 of the 5 features are
common in both cases. Also, notice that for the radius method all
the features are from time domain while for the residue method,
one is from frequency domain and the others from time domain.
This seems to point out that time domain features are very
relevant. The results using only one of the methods are optimal
for the residue method, with accuracy up to almost 96% using
only 5 features using a SVM classification system. But the results
are even better (only one misclassified sample) when adding the
first two features of the radius method (fractal related), reaching
an accuracy of almost 98% with 7 features.

Louis (2015) demonstrated that the hand-drawn spiral is a
sensitive and specific screening method as a measure of tremor
severity for those tremors of mild to moderate amplitude or
greater according to the WHIGET Tremor Rating Scale. This
scale allows to rate postural and kinetic tremor during each
test, including the four hand-drawn spirals: 0 (none), 1 (mild),
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TABLE 10 | Accuracy (%) from SVM with RBF kernel classifier, residue features plus the following radius features: Maximum fractal length and Fractal dimension.

Scale

Cost 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

10−5 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1

10−4 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1

10−3 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1

10−2 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1

10−1 55.1 65.31 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1 55.1

1 87.76 81.63 81.63 79.59 79.59 77.55 79.59 79.59 73.47 67.35 67.35

101 97.96 89.8 89.8 83.67 83.67 83.67 81.63 81.63 81.63 81.63 81.63

102 97.96 95.92 93.88 91.84 91.84 89.8 91.84 89.8 89.8 89.8 83.67

103 97.96 95.92 93.88 91.84 93.88 91.84 91.84 91.84 93.88 93.88 93.88

104 97.96 95.92 93.88 91.84 93.88 91.84 91.84 91.84 89.8 89.8 89.8

The best result is highligted in bold. Cost stands for the penalty cost of missclassification and scale is the kernel scale applied.

2 (moderate), 3 (severe). In his study, when the tremor ratio
was ≥1.5 (i.e., a mild to moderate tremor) the spiral analysis
obtained a sensitivity between 78.8 and 97.0% depending on the
samples and a specificity of 95.3%. The analysis proposed in our
work achieves 100% sensitivity and 96.42% specificity even when
the severity cut-off point is reduced to mild amplitude tremors
(which would correspond to 1 on the WHIGET scale). In fact,
the only badly classified case of our sample corresponds to a
control without TE that has oscillations in the trace and that
corresponds to a case of exaggerated physiological tremor (due
to stress, drug consumption, etc.) and that can be classified as
<1 in the scale. At present, these cases can only be adequately
discriminated by means of more sophisticated tests such as the
electromyographic register. Therefore, our method significantly
improves the analysis of drawing results as a tremor screening
tool because it allows for the proper classification of almost all
tremor cases, even those of slight amplitude. This is interesting
for real-time applications, because the computational cost is
very low. Given the interesting results obtained by the cosine
transform applied to the x and y coordinates, in future works
we will evaluate this transform on the pressure and other direct
characteristics measured by the digitation tablet.
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Previous studies have demonstrated that cognitive impairment (CI) is not limited to
the brain but also affects the retina. In this pilot study, we investigated the correlation
between the retinal vascular complexity and neurodegenerative changes in patients with
CI using a low-cost multimodal approach. Quantification of the retinal structure and
function were conducted for every subject (n = 69) using advanced retinal imaging,
full-field electroretinogram (ERG) and visual performance exams. The retinal vascular
parameters were calculated using the Singapore Institute Vessel Assessment software.
The Montreal Cognitive Assessment was used to measure CI. Pearson product moment
correlation was performed between variables. Of the 69 participants, 32 had CI (46%).
We found significantly altered microvascular network in individuals with CI (larger
venular-asymmetry factor: 0.7 ± 0.2) compared with controls (0.6 ± 0.2). The vascular
fractal dimension was lower in individuals with CI (capacity, information and correlation
dimensions: D0, D1, and D2 (mean ± SD): 1.57 ± 0.06; 1.56 ± 0.06; 1.55 ± 0.06; age
81 ± 6years) vs. controls (1.61 ± 0.03; 1.59 ± 0.03; 1.58 ± 0.03; age: 80 ± 7 years).
Also, drusen-like regions in the peripheral retina along with pigment dispersion were
noted in subjects with mild CI. Functional loss in color vision as well as smaller ERG
amplitudes and larger peak times were observed in the subjects with CI. Pearson
product moment correlation showed significant associations between the vascular
parameters (artery-vein ratio, total length-diameter ratio, D0, D1, D2 and the implicit
time (IT) of the flicker response but these associations were not significant in the partial
correlations. This study illustrates that there are multimodal retinal markers that may
be sensitive to CI decline, and adds to the evidence that there is a statistical trend
pointing to the correlation between retinal neuronal dysfunction and microvasculature
changes suggesting that retinal geometric vascular and functional parameters might be
associated with physiological changes in the retina due to CI. We suspect our analysis
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of combined structural-functional parameters, instead of individual biomarkers, may
provide a useful clinical marker of CI that could also provide increased sensitivity and
specificity for the differential diagnosis of CI. However, because of our study sample
was small, the full extent of clinical applicability of our approach is provocative and still
to be determined.

Keywords: eye biomarkers, retinal vascular complexity, Alzheimer’s disease, cognitive impairment, fractal
dimension, neurodegeneration, electroretinography

INTRODUCTION

According to the 2015 World Alzheimer Report, there are
approximately 46 million dementia patients worldwide (Prince
et al., 2015). This number will almost double every 20 years, and
it is estimated to increase to 131.5 million by 2050. It has been
estimated that the total worldwide dementia-related healthcare
cost is $818 billion, rising to $2 trillion by 2030 (Prince et al.,
2015).

Alzheimer’s disease (AD) is the most common, progressive
cause of dementia in the elderly, and a severe burden on the
aging society worldwide (Prince et al., 2015). Also, dementia
is most common among older patients with longer Parkinson’s
disease (PD) duration, and least common in individuals with
multiple sclerosis (MS). Previous studies have suggested that AD
initiates decades before it is clinically expressed (La Rue and
Jarvik, 1987; Linn et al., 1995; Snowdon et al., 1996; Braak and
Braak, 1997; Elias et al., 2000; Kawas et al., 2003). Therefore, it
would be possible to identify persons who will ultimately express
the disorder long before the early symptoms appear as well as
to target potential interventions to prevent disease expression in
such individuals at high risk.

As an anatomically integral part of the brain, the retina shares
important structural and pathogenic pathways with the central
nervous system (Cabrera DeBuc et al., 2017). The link between
eye pathology and AD, PD and MS has been established in
multiple studies (Katz and Rimmer, 1989; London et al., 2012;
Cabrera DeBuc et al., 2017; Hampel et al., 2018). In particular,
neuronal loss in AD associated with optic nerve parameters
include retinal ganglion cells which are similar to neurons in the
cerebral cortex, and have been correlated to neurodegeneration
in AD (Katz and Rimmer, 1989; Hampel et al., 2018). Recently,
advances in neuro-electrophysiological and optical imaging
technologies have facilitated non-invasive morphological and
functional measurements in the eye using electroretinography
and advanced retinal imaging. Specifically, retinal microvascular
changes as well as the abnormal bioelectrical activity of retinal
ganglion cells, photoreceptors and the optic nerve have been
associated with cognitive decline and brain changes in relation
to aging and early AD (Moschos et al., 2012; Ong et al., 2014;
Hampel et al., 2018). Moreover, it has been hypothesized that
if an association can be made between the amyloid in the
brain and the amyloid in the eye, then it would be feasible to
diagnose AD by looking into the eye (Koronyo-Hamaoui et al.,
2011; Koronyo et al., 2012; Hampel et al., 2018). Therefore, the
vast research exploring cognitive impairment non-invasively in
the brain through the easily accessible retina warrants further

investigation to support the use of retinal biomarkers in the
detection of cognitive decline even during the asymptomatic
period.

The discovery of biomarkers is a complicated process
that demands considering multiple factors and approaches
to obtain reliable markers that allow us to predict risk or
response to treatment very early and with low false positive
and false negative rates. Unfortunately, the critical barriers
to primary prevention of cognitive decline are the lack of
rapid, non-invasive, sensitive and low-cost biomarkers. In this
pilot study, we investigated the extent to which measures
of vascular complexity and neurodegenerative changes in the
retinal tissue contribute to differences in cognitive function
using a low-cost multimodal approach. Our central hypothesis
is that multivariate eye biomarkers reflect distinctive eye-brain
signatures of cognitive impairment that might be associated
with the onset and progression of cognitive decline. Therefore,
quantification of the retinal vascular network complexity and its
neural function was performed for each study participant using
advanced retinal imaging, full-field electroretinogram (ERG) as
well as visual performance exams. Our preliminary findings show
that our multimodal approach to evaluating visual capacities
in elderly individuals may add predictive value of early visual
pathway injury associated with cognitive decline and facilitate
the introduction of novel multimodal eye biomarkers for early
detection of cognitive impairment at a low-cost.

MATERIALS AND METHODS

The Human Research Ethics Committee of the University of
Miami, Miami, FL, United States approved all protocols and
methods described in this study. The research adhered to
the tenets outlined in the Declaration of Helsinki. Informed
consent was obtained from all participants following a thorough
explanation of all test procedures. All study subjects underwent
cognitive function assessment and ERG followed by advanced
retinal imaging, color vision test and visual performance exams
of both eyes.

Study Participants
Prospective subjects with cognitive impairment were identified
in a non-systematic fashion as they appeared in the clinic
or identified from a population attending adult care centers
and community clinics with a diagnosis of AD. Study
subjects were recruited in numerous ways using flyers, a
university press release that generated interest in the community
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of Miami-Dade and Broward counties in Florida, and by
giving talks to AD caregiver support groups in the nearby
regions. Study subjects (or for the patients with cognitive
decline, reliable caregivers/informants) were interrogated about
subjective changes in vision that may have occurred in the
recent past or over the progression of their disease. The
exclusion criteria were age under 55 years and the presence
of any ophthalmic history before recruitment. Participants who
were not capable of comprehending information, and making
decisions about participation in the study due to cognitive
impairments that affect decision-making to make informed
choices, had informed consent obtained through a proxy. The
macular and optic disk regions were scrutinized for abnormalities
and subjects without any ocular history except for cataract
surgery were included in the analyses. All subjects wore their
own best optical correction for the visual performance tests.
Both hypertension and diabetes mellitus as well as cardiovascular
disease were considered comorbid medical conditions related
to retinal vascular alterations. Also, current or history of study
subject-reported smoking categorized as current, past, or never,
was considered because of earlier reports linking smoking with
potential vascular changes in the retina (Sun et al., 2009).

Fundus Imaging and Quantitative
Analysis of the Retinal Vascular Network
Retinal fundus photographs were taken of each eye with a non-
mydriatic digital camera (EasyScan, iOptics, Netherlands) based
on scanning laser ophthalmoscopy (SLO) technology that has
better penetration of media opacities such as cataract (Webb
et al., 1987). Its high-resolution images reveal what cannot be
seen with a traditional fundus camera, thanks to its multiple plane
principle (Figure 1). This low-cost camera with a FOV of 45◦ and
image size of 1024 × 1024 requires minimal operator training,
and it is conceived to maximize patient flow. Also, its compact,
ergonomic design and low power flash help ensure patient
comfort. Moreover, taking a high-contrast, detailed retinal image
is easy and intuitive. With one push of a button, it can be operated
anywhere and captures the image in both eyes in less than 5 min.

Retinal images from all participants were masked and
collected for further analysis. The right eye was imaged first
followed by the left eye. Optic-disk centered images of a selected
eye from each participant were analyzed with a semi-automated
computer-assisted program, Singapore I Vessel Assessment
(software version 3.0, National University of Singapore) (Cheung
et al., 2011). Images with poor quality were removed from the
analysis. The investigation was performed using a standardized
protocol by a trained grader after the retinal arterioles and
venules were identified automatically by the SIVA program
(Figure 1). The circular retinal region of interest (ROI) for the
overall analyses were 0.5 – 1.0 disk diameters away from the
disk margin (zone B in Figure 1) or 0.5–2.0 disk diameters
away from the disk margin (zone C in Figure 1). This
particular ROI selection to measuring the geometric vascular
parameters warranted that the retinal vessels had reached
arteriolar status. All artifacts traced as vessels were removed
by comparing the automated vessel tracing with the fundus

FIGURE 1 | Representative image obtained with the EasyScan unit (i-Optics
Corporation, Netherlands) and analyzed with the SIVA program that measured
the caliber of the vessels emerging from the optic disk. Arterioles are in red
and venules are in blue. The SIVA software automatically detects the optic
disk and traces vessels in a zone 0.5 to 2.0-disk diameter from the disk
margin. The different circular ROIs with various radii around the optic disk
center are labeled as B (0.5 – 1.0 disk diameters away from the disk margin)
and C (0.5- 2.0 disk diameters away from the disk).

images obtained with the EasyScan unit. Two experienced retinal
specialists revised the vessel classification (i.e., arteries/veins)
automatically generated by the SIVA software, and assessed all
fundus photographs to identify and rule out retinal pathological
features related to age-related macular degeneration (AMD),
diabetic retinopathy and glaucoma. Then, all misclassifications
of the retinal vessels were corrected by the grader, and images
showing signs of AMD and other pathological features related
to diabetic retinopathy (e.g., exudates, edema, cotton wool
spots, hemorrhages, microaneurysms) and glaucoma (suspicious
optic disk cupping) were discarded. Moreover, the resulting
geometric vascular parameters of the retina were obtained and
used for further analysis: retinal vascular caliber, summarized as
central retinal artery/vein equivalent (CRAE, CRVE), curvature
tortuosity (cTORTa, cTORTv), branching coefficient (BCa, BCv),
branching asymmetry factor (AFa, AFv), length diameter ratio
(LDRa, LDRv), and artery-vein ratio (AVR) as described in earlier
studies (Cheung et al., 2011). The reliability assessment and
detailed characterization of these vascular parameters have been
described elsewhere (Liew et al., 2008; Cheung et al., 2011).
The SIVA program calculates the CRAE and CRVE parameters,
based on the revised Knudtson–Parr–Hubbard formula. These
parameters represent the average width of the central retinal
vessels. The AVR consists of a ratio of the caliber of arterioles
to venules, and it is not affected by magnification differences
caused by refractive errors and camera lens adjustments (Cosatto
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et al., 2010). The BC is an estimate of the ratio between the
diameters of the main vessel and the diameters of its branches,
which is also known as daughter vessels (Zamir et al., 1979).
Therefore, a vascular network with comparably sized vessel
diameters between the main vessel and its branch is characterized
by a higher BC, while a reduction in the branches’ diameters
compared to the main vessel is related to a lower BC. Also,
cTORT is a tortuosity index defined as the integral of curvature
squared along the path of the vessel normalized by the total arc
length (Hart et al., 1999). Therefore, cTORT considers the bowing
and points of inflection. Straighter vessels are characterized by
a lower tortuosity index. The LDR is a measure of the vessel
width defined as the length of the vessel from the midpoint of
one bifurcation to the midpoint of the next bifurcation. It is
expressed as a ratio to the diameter of the parent vessel at the
first bifurcation (Cheung et al., 2011). The ratio of the squares
of the two branching vessel widths is used to calculate AFa and
AFv.

Fractal Dimension of the Retinal Vascular Network
Fractal analysis, a mathematical method used to measure
complexity in natural phenomenon (Mandelbrot, 1982), is a
well proved and reliable methodology used to characterize
the retinal vasculature (Liew et al., 2008; Cosatto et al.,
2010; Thomas et al., 2014). This method was introduced
in ophthalmology by Family et al. (1989), and since then,
interest in investigating the association between the fractal
dimension (FD) of the retinal vasculature and disease severity and
progression has dramatically increased. The retinal vasculature
tree could be quantified with various methods of fractal
analysis (Stosic and Stosic, 2006; Macgillivray et al., 2007; Ţălu,
2013a,b). The vascular FD, characterizes a “global” measure
that includes the whole branching pattern of the retinal
vascular tree. Therefore, a more complex branching pattern
indicates a larger FD value. Self-similarity over different scales
is an important property of the fractal structures. This self-
similar property means that at different magnifications or
scales, a similar pattern with different sizes can be perceived.
This property can be described by the following equation:

N(r) = const r−D (1)

where N(r) is certain measurements applied on the complex
pattern of the fractal structure at a scale or magnification r;
D is the FD that implies how many new similar patterns are
observed as the resolution magnification (scale) increases or
decreases.

Because the human retinal vessel structures have been shown
to be geometrical multifractals (Family et al., 1989; Mainster,
1990; Kyriacos et al., 1997; Stosic and Stosic, 2006; Ţălu,
2013b), the vascular FD was calculated from the skeletonized
vascular network (Figure 2) using both a monofractal and
multifractal approach (Vehel and Legrand, 2003). In contrast
to most studies, our approach did not use different circular
regions of interest with various radii around the optic disk
centers. Instead, to obtain comparable FD values, the skeleton

FIGURE 2 | Sample images used in the fractal analysis. Images in the left
column are the raw images obtained with the EasyScan system, while those
in the right are their respective skeleton images that were used in the fractal
analysis. Row (A) is from a healthy cognitively individual (MoCA score range:
29.6–25.2), Row (B) is from an MCI subject (MoCA score range: 25.2–19),
and Row (C) is from a participant with more cognitive deterioration than MCI
(MoCA score range: 21 to 11.4). MoCA, Montreal Cognitive Assessment.

comprised the whole branching pattern observable in the full 45
◦

FOV.
The box-counting method, proposed by Liebovitch and Toth

(1989), is the most popular monofractal approach for estimating
the FD of fractal objects. This method generates data by covering
the object with a rectangular coordinate grid and breaking the
data into boxes and then analyzing the subsets by counting the
number of boxes. Therefore, the measurement N(r) in (1) is the
number of boxes with side-length r that overlap with the vessel
segmentation or skeleton, and the box dimension (DB) can be
calculated as the absolute value of the slope of N(r) plotted against
r in a log-log plot.

The multifractal approach was used to investigate the effect
of the scale on the multifractal dimension (Stosic and Stosic,
2006; Gould et al., 2011). In this approach, the multifractal
behavior in the structure is described by finding the generalized
dimension Dq, which is associated to a value of q that expresses
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the fractal properties in different scales. The plot of Dq vs. q is
usually sigmoidal and decreasing to a multifractal configuration.
This method has been employed effectively to prove geometric
multifractality of the diffusion limited aggregation (DLA)
fractal dimension (Vicsek et al., 1990). Certain studies consider
determined values of Dq (e.g., D0, D1, and D2), which describe
the multifractal characteristics of an object when condition
D0 ≥ D1 ≥ D2 is satisfied. Particularly, the capacity dimension
Do (or box counting), has been reported to be constantly larger
than the information (or Shannon or entropy) dimension D1,
which was in turn always larger than the correlation dimension
D2 (i.e., all satisfying Do > D1 > D2). In all studies, all
the three generalized dimensions (Do, D1, and D2) are being
significantly lower than the DLA fractal dimension (D ≈ 1.7)
(Witten and Sander, 1981; Family et al., 1989; Mainster, 1990;
Kyriacos et al., 1997; Stosic and Stosic, 2006). The D1 measures
the uncertainty or entropy of a random event, being lower or
less informative for events that happen very often while larger
or more informative for events that might happen less likely
(Stosic and Stosic, 2006). The D2 estimates the FD via the
association between two pixels inside a region (Stosic and Stosic,
2006). Therefore, in our study, the multifractal behavior in the
retinal images was analyzed using the generalized dimension
spectrum for q values ranging between −10 and +10, where all
dimensions were statistically examined. Accordingly, Do, D1, and
D2 were computed and compared to check for consistency where
Do > D1 > D2.

The public domain Java image-processing program ImageJ
together with the FracLac plug-in was used to calculate
the multifractal properties of the retinal vasculature network
(Karperien, 1993). A total of 12 different grid positions was
defined in the grid design pane of the FracLac environment.
This arrangement facilitated multiple scans by changing the
starting position of the sampling grid each time to capture
the variation attributable to the grid orientations or positions.
The recommend setting for this parameter is 4 – 12 grid
positions or orientations as sampling tends to be unaffected
beyond 12 positions. We optimized this parameter by using
3 different number of grid positions (9, 12, and 15) to test
whether the different number of grid positions may result in
different slopes (D0) and R2 values in the double log plots.
As shown in Figures 3, 4, the slopes and R2 values remained
the same. Hence, we used the recommended number of 12
grid positions. A linear scaling method was also used to set
20 varying box sizes from a minimum box size of 10 pixels
to a maximum box size of approximately 60% of the image
size. The FracLac software computes the constant linear scale
as the difference between the minimum and maximum box
sizes divided by the number of different box sizes. The “greater
dim” and “check pix” check-boxes were selected to make
sure the longer side of the bounding box was used as the
image dimension and that only boxes containing meaningful
pixels were used in the computations of FD, respectively.
No sub sampling was selected in the sub scan options.
The generalized dimension spectrum was set from −10 to
10 with an increment of 1 and a graph of Dq vs. q was
chosen in the MF (multifractal) Graphs options. In the data

processing option, we selected “show optimal sample only”
for the multifractal optimizer option and “no filter” for the
multifractal filters. Regression for the double log plots and
“draw grids” (to show whether grids used in the FD calculation
contained meaningful pixels) options were selected in the
graphics option.

Electroretinography
Several ERG changes have been recorded in patients with AD
(Sadun et al., 1987; Armstrong, 1996). Earlier studies have
reported that the involvement of the visual cortex may be
the cause for dysfunction of the elementary visual sensation
that may be involved in the development of visual cognitive
deficits and vision-related behavioral symptoms (Strenn et al.,
1991; Granholm et al., 2003). Moreover, flash ERG was used
to demonstrate dysfunction of the retina under photopic and
scotopic conditions in patients with dementia with Lewy bodies
(Devos et al., 2005). The use of the full-field ERG was also
suggested to find whether dysfunction of preganglionic elements
may also occur in AD (Parisi et al., 2001). Intriguingly, it has
been also suggested that the ERG could be possibly used as a
marker of central dopamine and serotonin levels (Lavoie et al.,
2014).

Evaluation of the bioelectrical activity of the retina was
performed with a full-field ERG (RETevalTM, LKC Technologies,
Inc., Gaithersburg, MD, United States) according to the
International Society for Clinical Electrophysiology of Vision
(ISCEV) protocol (Marmor et al., 2004; Holder et al., 2007; Hood
et al., 2008). The RETevalTM system is a full-field flicker ERG
recording device designed as a low-cost handheld alternative
to traditional ERG screening without the need for mydriasis
(Kato et al., 2015). It can perform measurements in both eyes
in about 3 min without any eye contact. Also, various flicker-
based or single-flash based protocols are available through a
protocol chooser that enables other ERG/VEP tests (Sadun
et al., 1987). The intensity of the flash source of this device is
calibrated consistently with the light-adapted 3.0 flicker ERG
protocol of the ISCEV standard. The ERG examination was
performed by an experienced examiner trained in the use of the
RETevalTM unit. As per the manufacturer’s recommendations,
a disposable, self-adhering skin contact electrode array (Sensor
Strip; LKC Technologies) was placed on the cheek inferior to
the lateral half of the lower eyelid (∼2 mm from the eyelid
margin) and the lead was connected to this strip to initiate
the ERG recordings. Participants were seated in an upright
position and with the fellow eye covered were asked to focus
on the red beam projected from the device. The right eye
was tested first followed by the left eye. The skin contact
electrode strips were disposed of to prevent rescreening of
other study subjects using the used strips. ERG amplitudes
and implicit time values were measured consistent with the
recommendations by the ISCEV (McCulloch et al., 2015).
The protocol used was the ISCEV 6 step, light-adapted first.
Assessments consisted of light-adapted ERG (stimulus strength,
3.0 cd·s/m2; frequency, 28.3 Hz flicker response); and dark-
adapted ERG including rod, maximal dark-adapted and cone
responses. Implicit times and amplitude values of the ERGs
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FIGURE 3 | Skeletons of vessels obtained from an cSLO image of a cognitively healthy individual with overlaid boxes at different number (i.e., 9, 12, and15) of grid
positions, 9 (A), 12 (B), and 15 (C) with their corresponding double-log plots (D–F) of the count of boxes containing meaningful pixels vs. box size showing the
slope (D0) and the R2 values of the regression lines. Overlaid boxes on the skeletonized images are shown to indicate that only boxes containing meaningful pixels
were counted and used in the computation of the fractal dimension (D0 or the slope). Different number of grid positions are shown in (A–C) from the FracLac settings
to show that these parameters were optimized and that a change in the number of grid positions did not result in a change in the slope (D0) or the R2 values (D–F).
Hence the recommended number of 12 grid positions was used.

elicited by 141 to 424 flashes were processed separately for each
eye.

Also, all comparisons were established by using our ERG
data collected along with the reference data provided by the
manufacturer of the RETevalTM device. Specifically, the ERG
norm in the RETevalTM system is based on reference data
collected from 244 individuals aged 4–85 who were carefully
examined to have normal vision. The criteria followed to classify
the eyes as normal were a BCVA of 20/25 (0.1 logMAR) or better,
optic nerve cupping < 50%, no glaucoma or retinal diseases,
no prior intraocular surgery (excepting non-complicated cataract
or refractive surgery performed more than 1 year before),
IOP ≤ 20 mmHg, no diabetes, and no diabetic retinopathy as
determined by the ophthalmologist or optometrist.

Color Vision Quantification
Alzheimer’s disease is one of the chronic illnesses that can lead
to acquired color vision deficiencies and ultimately, to color
blindness (Pache et al., 2003; Cabrera DeBuc et al., 2017).
For example, it has been reported that the cone contrast test
scores in elderly individuals may be affected by cognitive decline
(Simunovic, 2016). Therefore, study subjects were tested for
acquired color vision deficiencies considering that the loss in
cone function could be caused by neurological, systemic, ocular

disorders and trauma to the eye or brain (Simunovic, 2016).
A commercially available tablet-based Cone Contrast Test unit
(CCT, Provideo CCT Plus System, Innova Systems Inc., Burr
Ridge, IL, United States) was used to test the type and severity
of color vision deficiency (Rabin et al., 2011). The tablet-based
CCT scores, expressed in the range from 0 to 100, were measured
on a portable tablet display (10.1′′, 1366 × 768 pixels, Windows
8) with a touchscreen interface and the system firmware version
14.2.6. The color vision examination was conducted from the
right eye to the left eye in a dark room with the tablet’s display
parallel to the individual’s face plane and positioned at near
distance (75 cm). The liquid crystal display of the tablet-based
CCT was calibrated before the examination. The score results
from the left eyes were used when both eyes met the inclusion
criteria to lessen potential errors due to inexperience with the
CCT test.

The stimulus displayed by the tablet-based CCT system
consisted of a randomized series of colored letters on a gray
background which are visible only to Red (R), Green (G), or
Blue (B) cones in decreasing steps of cone contrast (Figure 5).
During the exam, a single letter is displayed in the center of the
screen, and the observer had to use a mouse to select the letter
seen from an adjacent 10-letter matching display. Then, based on
the observer’ s correct or incorrect responses, color contrast is
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FIGURE 4 | Skeletons of vessels from an cSLO image of a MCI participant with overlaid boxes at different number of grid positions, 9 (A), 12 (B), and 15 (C) with
their corresponding double-log plots (D–F) of the count of boxes containing meaningful pixels vs. box size showing the slope (D0) and the R2 values of the regression
lines. Overlaid boxes on the skeletonized images are shown to indicate that only boxes containing meaningful pixels were counted and used in the computation of
the fractal dimension (D0 or the slope). Different number of grid positions are shown in (A–C) from the FracLac settings to show that these parameters were
optimized and that a change in the number of grid positions did not result in a change in the slope (D0) or the R2 values (D–F). Hence the recommended number of
12 grid positions was used. For all double log pots of the remaining cognitively impaired and healthy controls, see Supplementary Information.

FIGURE 5 | The cone contrast test (CCT) design principles showing the Long,
Middle, and Short- CCT scores (i.e., Red, Green and Blue CCT scores,
respectively). Image modified from Rabin et al. (2011).

adjusted up and down using a staircase program, to establish the
lowest (least visible) R, G, and B cone contrast that the individual

can see. The R, G, and B cone CCT scores are expressed on a
scale of 0–100 based on the number of letters identified correctly.
As previously reported, Cone contrast test (CCT) scores of 75 or
greater were defined as normal (Rabin et al., 2011). Also, the CCT
can be used after cataract surgery in elderly patients (Fujikawa
et al., 2018).

Visual Performance Test
The Ceeable Visual Field Analyzer (CVFA) is a cloud-based
digital platform used to detect and diagnose retinal disease, and
as an aid in monitoring progression of visual disease (Fink, 2004).
The CVFA delivers rapid, accurate and low-cost visual testing
to patient populations that may not have access to traditional
visual testing services. The system is based on the 3D Computer
Automated Threshold Amsler Grid (3D-CTAG) test. With one
eye covered, the subject is positioned in front of a touch-sensitive
computer screen on a head-chin rest and finger-traces the areas
of an Amsler grid that are missing from his field of vision.
Various degrees of contrast of the Amsler grid are presented by
repeating the test at different grayscale levels. The resulting 3D
data represent the measured contrast sensitivity across the tested
visual field and are stored in a relational MySQL database. The
platform includes an automated and integrated artifact removal,
analysis, and characterization system, which analyzes 3DCTAG
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visual field data and objectively identifies and characterizes
the occurring visual field defects (scotomas) within according
to visual field data transforms and scotoma data transforms.
Following each test, a topographical contour map, a 3D depiction
of the central hill-of-vision, and the comprehensive visual field
and scotoma characterization are automatically generated and
displayed onscreen, using the freely available Gnuplot© plotting
package.

Assessment of Cognitive Function
Cognitive function was assessed using the Montreal Cognitive
Assessment (MoCA), a widely-used screening test for detecting
cognitive impairment (Nasreddine et al., 2005). This brief
assessment is a one-page 30-point test administered in about 10–
12 min. An experienced examiner performed the test. It focuses
on several cognitive domains: short-term memory, visuospatial
abilities, executive functions, language abilities, orientation to
time and place as well as attention, concentration, and working
memory. The MoCA total score range is from 0–30, with lower
scores (<26 points) indicating poorer cognitive ability. Patients
with a score of ≥ 26 points are generally considered as having
normal cognition with an average score of 27.4, compared with
22.1 in people with mild cognitive impairment (MCI) and 16.2
in people with AD (Folstein et al., 1975; Smith et al., 2007).
One of the advantages of the MoCA test is that it measures an
essential component of dementia (i.e., executive function) that is
not measured by the mini-mental state examination (MMSE). It
also allows cognitive testing for those who are visually impaired.

Statistical Analysis
All statistical analyses were performed using IBM SPSS Statistics
for Windows, Version 24.0 (IBM Corporation, Armonk, NY,
United States). All values are presented as per mean and standard
deviation (SD). A p value < 0.05 was considered statistically
significant. The Shapiro–Wilk test of normality was used to test
the normal distribution of the covariates used in our statistical
analysis. The Shapiro–Wilk test did not come out significant for
the covariates used in our statistical analysis, hence parametric
tests were used. Independent sample t-tests were used to compare
the means of the variables between the cognitively healthy
and the cognitively impaired groups. Pearson product moment
correlation was used to find the associations between vascular and
functional parameters. Partial correlations were then performed
to assess the unique associations between each vascular parameter
and the functional parameter while controlling for the other
covariates.

RESULTS

Of the 69 initially recruited participants, 32 had cognitive
impairment (46%). We excluded data from individuals that
had eyes with poor image quality, AMD, glaucoma, diabetic
retinopathy, along with data from a subject with a cardiac
pacemaker implanted. Six subjects were pseudophakic but
without any ocular history except for cataract surgery. All
participants with diabetes mellitus (n = 9) and hypertension

(n = 10) were well controlled and did not exhibit retinopathy
signs. After applying all exclusion criteria, a total of 20
subjects with cognitive impairment were included in the
final analyses. Table 1 shows the baseline characteristics
of these participants. Furthermore, we found that some
participants (n = 17) with no cognitive impairment had some
illnesses (e.g., pre-diabetes, diabetic retinopathy, glaucoma,
cataract, AMD, hypothyroidism, controlled HIV, childhood’s eye
injury, uncontrolled hypertension, uncontrolled diabetes, and
cardiovascular disease) that may share a risk factor with the
outcome (i.e., cognitive impairment) under study. Also, although
quality of the retinal image was acceptable, an image from one
of the cognitively healthy subjects couldn’t be read by the SIVA
software for further analysis. Therefore, a total of 19 healthy
participants with no cognitive impairment was integrated into a
data group after removing the above participants with risk factors
and individuals that did not fulfill the age-matching criterion
needed for establishing rigorous comparisons with the group of
patients with cognitive impairment (Table 1).

Only 6 out of 22 associations were found to be significant.
These parameters were the AVR, LDRt, D0, D1, D2 and the
IT. The Pearson product moment correlation found significant
associations between the vascular parameters and IT (Table 2)

TABLE 1 | Baseline characteristics of participants with cognitive impairment and
cognitively healthy individuals after applying the inclusion/exclusion criteria.

Characteristic Cognitive
impairment

(n = 20)

Cognitively
healthy
(n = 19)

Mean age, years (SD) 81(6) 80(7)

Mean MoCA (SD) 17(5) 27(1)

Mean HR [beats per minute, (SD)] 72(12) 76(2)

SpO2 96(2) 98(1)

Male, n (%) 4(20) 3(16)

Ever smoked, n (%) 4(20) 2(10)

Current smoker, n (%) 0(0) 0(0)

Hypertension, n (%) 6(30) 4(20)

Diabetes, n (%) 6(30) 3(16)

Pseudophakic, n (%) 2(10) 4(21)

Dyslipidemia, n (%) 3(15) 0(0)

MoCA, Montreal Cognitive Assessment.

TABLE 2 | Statistical significant associations between retinal vascular and
functional parameters.

Parameters correlated Pearson coefficients p-value

AVR vs. IT 0.75 < 0.001

LDRt vs. IT 0.48 0.03

Do vs. IT 0.64 0.002

D1 vs. IT 0.67 0.001

D2 vs. IT 0.69 0.001

AVR, arteriole–venular ratio; IT, implicit time; LDRt, total length-to-diameter ratio
(i.e., arteriolar+venular); Do, capacity dimension; D1, information dimension;
D2, correlation dimension. For full correlations between all variables, see
Supplementary Tables 1–7 in the Supplementary Materials.
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TABLE 3 | Associations between retinal vascular and functional parameters after
partial correlation analyses.

Parameters correlated Partial
correlation
coefficient

p-value Control variables

AVR vs. IT 0.39 0.13 Do, D1, D2, LDRt

LDRt vs. IT 0.15 0.57 Do, D1, D2, AVR

Do vs. IT 0.005 0.98 D1, D2, AVR, LDRt

D1 vs. IT −0.045 0.87 Do, D2, AVR, LDRt

D2 vs. IT 0.091 0.74 Do, D1, AVR, LDRt

For the abbreviations see Table 2.

but these associations were not significant in the partial
correlations when other covariates were controlled for. Partial
correlation analysis results are shown in Table 3.

The fractal analysis was optimized to detect subtle changes
in the examined vascular structures (Stosic and Stosic, 2006).
Specifically, for all the two sets of images obtained for both the
cognitively healthy (n = 19) and impaired individuals (n = 20),
the generalized dimension Dq was extracted for different values
of q (−10 < q < 10) using the skeletons. Figure 6 shows the
generalized dimension spectrum Dq vs. independent variable
q. As expected, the retinal vascular tree displayed multifractal
properties revealed by the descending sigmoid curve Figure 6,
giving distinctive FD as the scale was changed. Also, we observed
a trend with lower standard deviation (i.e., less oscillation) in
cognitively healthy subjects compared to the individuals with
cognitively impairment (Figure 7). The calculated mean and
standard deviations of generalized dimensions D0, D1, and D2 for
both groups are shown in Table 4. Our results also demonstrate
that the overall FD is lower that of the DLA (Dq = 2 ∼1.71)
(Vicsek et al., 1990). The generalized dimensions corresponding
to both groups showed a statistically significance difference
(Table 4).

We found that the complexity of the branching pattern
(FD) of retinal vessels was significantly lower in patients with
cognitive impairment in comparison to age-matched controls
(see Table 4). As expected the MoCA scores were significantly

FIGURE 6 | Generalized dimension spectrum Dq vs. q for the cognitively
healthy individuals (n = 19, blue trace) and cognitively impaired (n = 20, red
trace).

lower (p < 0.001) in the group of cognitive impairment cases
compared with the age-matched controls. Although individuals
with cognitive impairment showed a trend toward a higher length
diameter ratio (LDRa, LDRv, and LDRt), this difference was
not statistically significant. We observed that the asymmetry
factor was significantly higher in patients with cognitive
impairment than in age-matched controls (see Table 4). Also,
peripheral drusen-like regions and retinal pigment dispersion
were noted in some elderly subjects with MCI (see Figure 7).
Geometric vascular parameters and functional measures did not
significantly correlate with the MoCA score. For all full-field ERG
measurements, smaller amplitudes and larger peak times were
observed in the subjects with cognitive impairment (see Table 5).
Also, there was a statistical significant (p < 0.001) difference
in the amplitudes and implicit times between the cognitively
healthy group and the one with cognitive deterioration. It is also
evident that the implicit time was less variable than the amplitude.
Furthermore, the implicit time’s increase that is perceived with
the manifestation of pathologic changes of the retina was highly
consistent in all patients with cognitive deterioration, and showed
practically no overlap between control data and pathologic
values: the range of variation seen for control data is between
29.4 and 29.8 ms, while for patients with cognitive impairment
it is between 29.6 and 32.8 ms.

Visual performance test with the three-dimensional
computer-automated version of the threshold Amsler grid
test (Ceeable Inc.) demonstrated that this method is subject
to variability in the observer’s judgment of the grid threshold
for most of the elderly subjects with cognitive impairment.
Therefore, because of variability may be exacerbated in these
individuals characterized by a pervasive inability to follow
detailed task instructions, the visual performance results
obtained with the Ceeable platform were not used in the overall
analysis. The visual performance test with the computerized
Cone Contrast test (CCT, Innova Systems Inc.) revealed
functional loss in color vision (see Table 6). There were more
patients with more green deficiency than red or blue deficiency.
The scores corresponding to both groups showed a statistically
significance difference.

DISCUSSION

In this study, multimodal parameters characterizing the structure
and function of the retina were compared to evaluate the retinal
vascular alterations regarding the retinal function in patients with
cognitive impairment. The study was designed to obtain multiple
retinal measures, such as structural and functional indicators of
the retina. This specific design provided an opportunity to find
and study the relationship between various pieces of information,
such as the caliber, tortuosity, and network complexity of the
retinal microvasculature (arteries and veins) with respect to
functional features (e.g., contrast sensitivity, electrical response
through ERGs), concomitant with both fractal- vascular and
neural analysis.

Retinal vascular attenuation is a well-recognized indicator in
patients with cognitive impairment. However, it has not been
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FIGURE 7 | Retinal topographical features observed in individuals with mild cognitive impairment. (Top row) Central and nasal infrared light-images obtained from a
female subject (79 years old) with MCI showing extramacular features such as drusen-like regions depicted by irregularly shaped bright spots in the periphery of the
superior quadrant as well as with pigment dispersion in both eyes. (Bottom image: Left) Central and nasal infrared light-images obtained from a female subject
(81 years old) with MCI showing tortuous vessels, extramacular features such as drusen-like regions along with pigment dispersion in the left eye. (Right) Nasal
infrared-light image obtained from a healthy control (71 years old). All images were acquired with the EasyScan Unit (i-Optics Corporation, The Netherlands). The
EasyScan camera is a dual color confocal SLO: Infrared (785 nm) and pure green (532 nm). The different colors are related to different penetration depth. ?The red
arrows indicate the location of the drusen and white spots observed at extramacular locations. The ROIs enclosed by the orange rectangles indicate the locations
where pigment dispersion was observed. The green light-image (see fundus image shown in Figure 1) is reflected at the retinal nerve fiber layer showing the vascular
structure up to the 4th bifurcation. The infrared light-image is reaching the choroidal vessel layer.

studied yet in relation to the retinal function, measured by using
a low-cost full-field ERG technique. The finding of a significant
correlation between the 30 Hz flicker ERG implicit time of
the b-wave and AVR, D0, D1, D2, and LDRt in patients with
cognitive decline is intriguing and requires further studies to
clarify the underlying pathophysiology and validate its clinical
usefulness in predicting the development of cognitive decline
using the eye as a surrogate marker. A decrease in amplitude
and an increase of the 30 Hz flicker ERG implicit time of
the b-wave are usually observed in all retinal pathologies that
comprise the photoreceptors when the flicker ERG method
has been used to assess photoreceptor function (Meyer et al.,
1978; Kondo and Sieving, 2002; Alexander et al., 2006; Verma
and Pianta, 2009). Also, previous studies suggest only modest
decreases in photopigment optical density with age (Keunen
et al., 1987; Elsner et al., 1988; Renner et al., 2004). Therefore,
it may be possible that the significant correlations between the
ERG parameters and vascular measures could be more related to
cognitive decline than aging.

The lack of significant “unique” associations between the
vascular parameters and the 30 Hz flicker ERG implicit time may
be due to the small sample size in our data as significant trends
are seen in the Pearson correlations and these trends may remain
significant in the partial correlations in a larger sample size.
Secondly, vascular parameters are associated physiologically –

for example the vessel branching, artery-vein ratio, and vessel
caliber may be related to the complexity of the branching network
(FD). Therefore, finding a unique association between these
parameters and functional parameters as it was performed with
the partial correlations analysis may be statistically robust but in
practice, may not follow how the retina is physiologically wired.
However, the associations between multiple vascular parameters
and functional parameters as shown with the Pearson product
moment correlations (Table 2) might describe how the retinal is
physiologically wired. Nevertheless, we provide both correlations
(Tables 2, 3) to show the statistically significant trend and how
this trend changes in the partial correlations.

The CCT scores have been reported to be affected in the
elderly due to cognitive decline (Simunovic, 2016). In our study,
not only were most patients with cognitive decline found with
more green deficiency than red or blue deficiency, but also all
CCT scores were severely reduced below the normal decline
level (i.e., below a CCT score of 75) associated with aging and
reported for the elderly in the eighth and ninth decades of life
(i.e., in the 70–79 and 80–89-year age group) (Fujikawa et al.,
2018). Although cataract formation may affect the CCT score in
phakic eyes of patients in the eighth and ninth decades of life
(Fujikawa et al., 2018), the 6 pseudophakic patients in our study
were reported to have undergone uneventful cataract surgery
with the implantation of a posterior chamber intraocular lens
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TABLE 4 | Geometric vascular parameters obtained for patients with cognitive impairment in comparison with the cognitively normal individuals.

Vascular Parameters Cognitive Impairment Cases n = 20 Mean (SD) Cognitively Healthy Cases n = 19 Mean (SD) p-Value

Fractal dimension

D0 1.57 (0.06) 1.61 (0.03) 0.03∗

D1 1.56 (0.06) 1.59 (0.03) 0.03∗

D2 1.55 (0.06) 1.58 (0.03) 0.02∗

Caliber (µm)

CRAE 65.88 (7.39) 66.73 (6.46) 0.707

CRVE 92.54 (7.15) 92.49 (9.02) 0.984

Bifurcation

BCa 1.65 (0.46) 1.47 (0.35) 0.169

BCv 1.30 (0.48) 1.34 (0.49) 0.812

BCt 1.55 (0.36) 1.50 (0.28) 0.631

AFa 0.75 (0.11) 0.74 (0.16) 0.765

AFv 0.74 (0.22) 0.61 (0.19) 0.042∗

AFt 0.77 (0.05) 0.71 (0.10) 0.018∗

Tortuosity

cTORTa (10−4) 4.30 (7.04) 4.13 (0.83) 0.485

cTORTv (10−4) 4.06 (1.06) 3.82 (0.80) 0.433

cTORTt (10−4) 4.17 (0.71) 3.97 (0.64) 0.374

Ratio measures

AVR 0.92 (0.25) 0.86 (0.20) 0.427

LDRa 8.98 (7.46) 7.35 (5.86) 0.456

LDRv 4.52 (6.06) 2.58 (3.77) 0.240

LDRt 9.7 (6.8) 7.13 (4.56) 0.173

The data reported was measured in the region C (i.e., area between 0.5 and 2.0 disc diameters away from the disc margin, see Figure 1) for all parameters except for the
fractal parameters that were calculated in the whole area occupied by the branching pattern (FOV = 45o). The P-values were calculated by independent sample t-test.
AVR, arteriole–venular ratio; BCa, arteriolar branching coefficient; BCv, venular branching coefficient; BCt total branching coefficient (i.e., arteriolar+venular); CRAE, central
retinal arteriolar equivalent; CRVE, central retinal venular equivalent; LDRa, arteriolar length-to-diameter ratio; LDRv, venular length-to-diameter ratio; LDRt, total length-
to-diameter ratio (i.e., arteriolar + venular); cTORTa, curvature arteriolar tortuosity cTORTv, curvature venular tortuosity; cTORTt, total tortuosity (i.e., arteriolar+venular);
AFa, asymmetry arteriolar factor; AFv, asymmetry venular factor; Aft, total asymmetry factor (i.e., arteriolar+venular). Do: capacity dimension, D1: information dimension,
D2: correlation dimension. ∗Significant (p < 0.05).

TABLE 5 | Light-adapted 3.0 flicker ERG (28.3 Hz) measurements recorded from patients with cognitive impairment in comparison with the normative data of the
RETeval system.

Light Adapted Test(flicker cone–3.0 cd.s/m2, 30 cd/m2, 28.3 Hz) ERG reference
data

n = 244
median [90% CI]
Age: [76 – 86]

Cognitive
Impairment
Cases
n = 20

median [90% CI]
Age: [69 – 90]

Cognitively
Healthy Cases

n = 19
median [90% CI]
Age: [60 – 88]

p-value

Amplitude(µV)
2.5% limit

19.6 [18–22.1]
97.5% limit

39.4 [35.5–43.1]

12.6 [10.9 – 14.4] 37.4 [36.6 – 38.2] <0.001∗∗

Implicit Time(ms)
2.5% limit

25.6 [25.1–26.3]
97.5% limit

29.6 [29.2–29.9]

31.2 [29.6–32.8] 29.6 [29.4 –29.8] <0.001∗∗

Amplitude (µV) and implicit time (ms) are denoted along with the medians and 90% confidence intervals of the 2.5 and 97.5% reference limits. The P-values comparing
cognitive impairment vs. cognitively healthy cases were calculated by independent sample t test. ∗∗Significant (p < 0.01).
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TABLE 6 | Long, Middle, and Short- CCT scores (i.e., Red, Green, and Blue CCT scores) for the cognitive impairment group.

Rabin CCT scores Cognitive Impairment Cases n = 20 Mean (SD) Cognitively Healthy Cases n = 19 Mean (SD) p-value

L-CCT (red) 56 (12) 91 (8) <0.001∗∗

M-CCT (green) 47 (18) 89 (8) <0.001∗∗

S-CCT (blue) 63 (12) 91 (7) <0.001∗∗

CCT scores of 75 or greater are defined as normal (Rabin et al., 2011). The visual performance test with the computerized CCT, revealed functional loss in color vision.
The P-values were calculated by an independent sample t-test. ∗∗Significant (p < 0.01).

(IOL). Therefore, we believe that these patients with IOL had
clear optical media that could not significantly influence our
CCT results. Interestingly, it has been reported that individuals
with cognitive deterioration due to AD struggle discriminating
between green and blue stimuli on the Stroop test which relies on
a cognitive measure that requires intact color vision (Cohen et al.,
1988; Fisher et al., 1990). These results add to the evidence that
extrastriate lesions could result in tritanomalous color deficits
(Meadows, 1974; Pearlman et al., 1979), and that the extrastriate
cortex is severely disturbed neuropathologically in AD (Lewis
et al., 1987). Therefore, pathological changes due to cognitive
decline observed in the striate area (IVcß) of the brain that
receives color information from the lateral geniculate nucleus,
suggest additional basis for deficits in color vision in the brain
as described here (Beach and McGeer, 1988).

As in previous studies, we found reduction of vascular
branching complexity (FD) in the patients with cognitive decline
(Berisha et al., 2007; Frost et al., 2013; Cheung et al., 2014a,b;
Ong et al., 2014; Williams et al., 2015). However, compared to
these studies, our study used a more robust approach considering
the actual multifractal properties of the retinal microvasculature
network. Of note, since the findings of AMD and cognitive
deterioration due to AD commonalities suggest a degree of
overlap (Williams et al., 2014), we assessed all retinal images
to identify and rule out retinal pathological features related to
AMD. Interestingly, in our patients with cognitive impairment,
we observed extramacular drusen in the superior quadrant for
some MCI individuals. This trend has been reported previously
as to be significantly related with cognitive deterioration due to
AD in patients with peripheral drusen (Csincsik et al., 2018). Two
earlier studies that may add to this evidence have described the
presence of amyloid beta in retinal drusen deposits (Ding et al.,
2008; Zhao et al., 2015). Also, abundant amyloid beta pathology
has been detected in AD patients in the periphery of the superior
quadrant (Koronyo et al., 2017).

Several ERG changes have also been recorded in patients with
cognitive deterioration due to AD (Sadun et al., 1987; Armstrong,
1996). Earlier studies have reported that the involvement of the
visual cortex may be the cause for dysfunction of the elementary
visual sensation that may be involved in the development of
visual cognitive deficits and vision-related behavioral symptoms
(Strenn et al., 1991; Granholm et al., 2003). The use of the full-
field ERG has been suggested to find whether dysfunction of
preganglionic elements may also occur in cognitive deterioration
due to AD (Parisi et al., 2001). Possible dysfunction of
preganglionic elements could explain the increase in P50 implicit
time observed in AD patients and this is supported by data
obtained in glaucoma or in multiple sclerosis in which the delay

of the P50 implicit time could be ascribed to a dysfunction of
both ganglionic and preganglionic elements (Katz and Rimmer,
1989; Tobimatsu et al., 1989; Holder, 1997; Porciatti et al., 1997).
Moreover, flash ERG was used to demonstrate dysfunction of
the retina under photopic and scotopic conditions in patients
with dementia with Lewy bodies (Devos et al., 2005). This study
outlined that the retinal dysfunction may be related to slight
alteration of the photoreceptors and numerous pale inclusions in
the outer plexiform layer found at the post-mortem examination,
suggesting specific retinopathy (Devos et al., 2005). In our
study, we also found a significant reduced a-wave amplitude
indicating abnormal photoreceptor function associated to a
longer response of the rods under scotopic conditions (Tzekov
and Mullan, 2014). The association between the retinal vascular
attenuation and the severity of the scotopic full-field alteration
have been previously reported in patients with cone degeneration
(e.g. retinitis pigmentosa) for which oxidative stress has been
suggested to play a potential pathogenic role like in AD (Mecocci
et al., 1994; Sandberg et al., 1996; Markesbery, 1997; Wang
et al., 2005; Ma et al., 2012). Also, a recent study reported that
subretinal injection of amyloid β in C57/BL6 mice yields declined
scotopic response (Liu et al., 2015). Interestingly, as in our study,
the infrared SLO images revealed drusen-like regions depicted by
irregularly shaped bright areas. Moreover, a substantial decrease
in mixed rod-cone responses (i.e., decreased a- and b-wave
amplitudes) has been noted in mice carrying ApoE-ε 4 allele of
apolipoproteine E4 which is the most prevalent genetic risk factor
for the late-onset AD that acts in synergy with Aβ (Antes et al.,
2013). Consequently, these recent studies on animal models and
our preliminary results suggest that evaluation of the bioelectric
activity of the retina with ERG may add significant value to the
retinal biomarker exploration in cognitive impairment at the
early stage. Also, the fact that the 90% confidence intervals of
the averages of the cognitively healthy and cognitively impaired
groups are not overlapping (Table 5) supports the opportunity
to define distinctive domains for the values of the implicit
time that can be correlated with the presence and, respectively,
the non-existence of cognitive impairment in the individuals
analyzed.

A thorough search of the relevant literature yielded no related
article reporting retinal vascular and functional abnormalities in
cognitive impairment using a multimodal approach that requires
an instrumentation cost of less than $45,000. The primary
strength of this study is the low-cost multimodal approach
implemented to measure combined structural-functional
parameters, instead of individual markers. The portability
and low-cost of our approach will facilitate to further extend
the collection of data in community settings for population
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health management. Another strength is the multifractal
analysis conducted considering that most studies have relied on
monofractal analysis; a scheme which has largely attained limited
success (Stosic and Stosic, 2006; Azemin et al., 2012).

This study has some important limitations. The exclusion
of eyes due to poor image quality because of opacities
in the ocular media (e.g., cataracts and floaters in some
elderly subjects), and the presence of confounding factors
limited the sample size. Also, we found some challenges
in achieving both structural and functional data with high
quality, mainly in elderly patients with cognitive impairment
who are easily fatigued. These challenges can be more
complex if the study subject has poor vision. Also, we did
not examine the relationship between the vast number of
parameters in the SIVA platform and the functional parameters
because of small sample size. Besides the complexity of the
branching pattern of retinal vessels, AVR, asymmetry ratios,
LDR, branching coefficients, tortuosity and vessel caliber, it
is possible that other geometric vascular parameters (e.g.,
other bifurcation parameters, branching coefficient angle, etc.)
are associated with physiological changes in the retina due
to cognitive decline and that the functional parameters are
sensitive to these changes. Another limitation could be that the
cognitive function of the study patients was only assessed by
the MoCA test. Therefore, differential diagnosis of cognitive
impairment was not possible, and detailed evaluations of
cognitive functions including pathological examinations and
neuroimaging of the brain will be needed to confirm the
existence of cognitive deterioration due to AD. However,
although AD is the most common, progressive cause of dementia
in the elderly, our study recruited subjects independently
of their cognitive impairment’s causation which helped us
to assess the collection of data in community settings for
population health management. It has been reported that
amyloid deposition can be identified among cognitively normal
elderly persons during life and the prevalence of asymptomatic
amyloid deposition may be like that of symptomatic amyloid
deposition. An early study has shown that in a group of
participants without clinically significant impairment, amyloid
deposition was not associated with worse cognitive function,
suggesting that an elderly person with a significant amyloid
burden can remain cognitively normal (Aizenstein et al.,
2008). Pagani et al. (2016) has also shown that there is
no deterministic relation between cognitive impairment and
AD severity. Nevertheless, a longitudinal follow-up of study
subjects would be required to support the potential of amyloid
imaging to identify preclinical Alzheimer disease or alternatively,
to show that amyloid deposition is not sufficient to cause
Alzheimer disease within some specified period. Therefore,
our multivariate and multimodal approach using an agnostic-
cognitive impairment assessment could be a starting point for
expanding the methodology in community settings to assess the
eye-brain conditions of individuals under the risk of cognitive
deterioration.

Although significant correlations between the functional and
vascular parameters did not survive after the partial correlations
analyses, that does not imply the statistical trends found in this

study are not revealing of alteration and disease of the neuro-
vascular component in general. Also, the cross-sectional setting
of our study couldn’t facilitate the investigation of temporal and
causal relationships between the retinal functional and structural
features with cognitive impairment. However, due to the strict
exclusion criteria used in our study, we only analyzed very good
quality data that makes our results more robust. Despite the
above limitations, the retinal vascular attenuation and reduced
complexity of the vascular branching network is comparable to
those observed in earlier studies (Berisha et al., 2007; Frost et al.,
2013; Cheung et al., 2014a,b). We continue collecting data under
this study and expect to explore the multiple relationships and
statistical trends further with larger sample size.

CONCLUSION

The difficulty in detecting cognitive impairment in its early
stages poses a limitation on the onset of cognitive decline
diagnosis. Unfortunately, there is no successful treatment once
early cognitive impairment or dementia becomes clinically
apparent (Hampel et al., 2018). This study illustrates that
there are multimodal retinal markers that may be sensitive
to cognitive impairment decline, and adds to the evidence
that there is a statistical trend pointing to the correlation
between retinal neuronal dysfunction and microvasculature
changes. This trend suggests that retinal geometric vascular and
functional parameters might be associated with physiological
changes in the retina due to cognitive decline. We suspect our
analysis of combined structural-functional parameters, instead of
individual biomarkers, may serve as a useful clinical marker of
cognitive decline that could also provide increased sensitivity and
specificity for the differential diagnosis of cognitive impairment.
However, because of our study sample was small, the full
extent of clinical applicability of our approach is provocative
and still to be determined. This study also adds support to
the use of a multimodal diagnostic biomarker approach of
cognitive impairment based on the retinal structure-function
relationship which also has the advantage of a low-cost
implementation in community settings to detect cognitive
decline-specific pathology in the retina, which could enable the
early diagnosis and monitoring of disease progression. Provided
a clinical correlation between the eye and brain measures can
be confirmed, screening of eyes in people being considered at
risk of cognitive impairment could help in the development
of an alternative low-cost approach for early diagnosis as well
as potentially serve to monitor the effectiveness of emerging
therapies.
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In this study, we examined the relationship between the fractal dimension (FD), the

morphology of the foveal avascular zone (FAZ) and the macular circulation in healthy

controls and patients with type 2 diabetes mellitus (T2DM) with and with no diabetic

retinopathy (DR). Cross-sectional data of 47 subjects were analyzed from a 5-year

longitudinal study using a multimodal optical imaging approach. Healthy eyes from

nondiabetic volunteers (n = 12) were selected as controls. Eyes from patients with

T2DM were selected and divided into two groups: diabetic subjects with mild DR (MDR

group, n = 15) and subjects with DM but without DR (DM group, n = 20). Our results

demonstrated a higher FD in the healthy group (mean, 1.42 ± 0.03) than in the DM and

MDR groups (1.39 ± 0.02 and 1.35 ± 0.03, respectively). Also, a bigger perimeter, area,

and roundness of the FAZ were found in MDR eyes. A significant difference in area and

perimeter (p ≤ 0.005) was observed for the MDR group supporting the enlargement

of the FAZ due to diabetic complications in the eye. A moderate positive correlation

(p = 0.014, R2 = 43.8%) between the FD and blood flow rate (BFR) was only found in

the healthy control group. The BFR calculations revealed the lowest values in the MDR

group (0.98± 0.27µl/s vs. 1.36± 0.86µl/s and 1.36± 0.57µl/sec in theMDR, DM, and

healthy groups, respectively, p= 0.2). Our study suggests that the FD of the foveal vessel

arborization could provide useful information to identify early morphological changes in

the retina of patients with T2DM. Our results also indicate that the enlargement and

asymmetry of the FAZ might be related to a lower BFR because of the DR onset and

progression. Interestingly, due to the lack of FAZ symmetry observed in the DM and MDR

eyes, it appears that the distribution of flow within the retinal vessels loses complexity as

the vascular structures distributing the flow are not well described by fractal branching.

Further research could determine how our approach may be used to aid the diagnosis

of retinal neurodegeneration and vascular impairment at the early stage of DR.

Keywords: diabetic retinopathy, fractal analysis, foveal avascular zone, blood flow rate, fractal dimension
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INTRODUCTION

Diabetes mellitus is one of the leading causes of vision loss
(Diabetes Fact Sheet, 2017). Central vision loss, which is the
most common impairment related to diabetic macular edema
(DME), has a big impact on quality of life (Bourne et al., 2013;
Korobelnik et al., 2014). The worldwide prevalence of DM is
predicted to grow to 430 million patients by 2030, according
to the World Health Organization (Korobelnik et al., 2014).
Diabetes prevalence has also increased at a faster rate in lower
income countries when compared to wealthier nations countries
(Diabetes Fact Sheet, 2017). Also, rates of retinopathy are higher
among people with type 1 diabetes mellitus (T1DM), individuals
with longer duration of diabetes, and Caucasian populations (Yau
et al., 2012; Bourne et al., 2013; Korobelnik et al., 2014). There is
also a correlation between lower socioeconomic status and higher
rates of retinopathy (Yau et al., 2012; Bourne et al., 2013).

Microaneurysms, capillary nonperfusion, and ischemia within
the retina are the characteristic pathological features of DR
(Elman et al., 2010; Hwang et al., 2015, 2016; Ishibazawa
et al., 2015). These pathophysiologic changes can be associated
with several complications, such as DME and diabetic macular
ischemia (Beltramo and Porta, 2013; American Academy of
Ophthalmology., 2014; Varma et al., 2014; Couturier et al., 2015;
Das et al., 2015; Bradley et al., 2016). These complications
compound impaired blood and oxygen supply of the neuroglial
tissues of the retina. The expression of vascular endothelial
growth factor (VEGF), which acts as an angiogenic agent and
increases vascular permeability, is enhanced in the hypoxic
environment (Choi et al., 2013). Diabetic maculopathy is caused
by a combination of both VEGF-mediated factors and mediators
(Agemy et al., 2015; Mastropasqua et al., 2015; Gorczynska
et al., 2016). High glucose levels lead to microvasculopathy
with alterations in the blood-retinal barrier, causing pericyte
loss and endothelial cell-cell junction breakdown (Kaur et al.,
2008). This capillary disruption increases vascular permeability
and the pooling of fluid within the plexiform layers of the
retina and the subretinal space (Ishibazawa et al., 2015). These
pathophysiological changes can result in a gradual loss of visual
acuity.

The FAZ is the macular region that is most susceptible to
retinal changes in individuals with diabetes (Choi et al., 2013;
Varma et al., 2014). The FAZ is the central part of the macula
and is surrounded by interconnected capillary beds. This vascular
network terminates in the central macula forming a vascular
ring-shaped border with an average diameter of 500–600µm
(de Carlo et al., 2015a,c). In some patients with DME, central
visual loss may be due to edema as well as ischemia occurring
due to capillary dropout sufficient to increase the FAZ area
(Choi et al., 2013). Most DR patients will not experience vision
changes until late-stage disease, therefore, early detection and
immediate interventionmay better preserve vision (Aiello, 2003).
Consequently, early detection and accurate staging are critical
for determining optimal management. DME treatments have
been developed, including focal or grid photocoagulation and
anti-VEGF therapy, both of which have been demonstrated
to be effective (American Academy of Ophthalmology., 2014;

Couturier et al., 2015; Wiley et al., 2016). Anti-VEGF therapy
has also been shown recently to slow the progression and, in
some cases, reverse the degree of ophthalmoscopically observed
nonproliferative retinopathy (Ip et al., 2012, 2015). However,
the pathology involved in the retinal hemodynamics throughout
the course of DR is not completely understood (Pemp and
Schmetterer, 2008; Kur et al., 2012; Stitt et al., 2016).

Various diagnostic techniques exist to assess the structure and
function of the retina. Ophthalmoscopy and fundus photographs
are standard techniques used in DR, with the fundus photographs
being comparable to ophthalmoscopy under dilated pupils while
remaining cost effective for screening in diabetes clinics (Lee
et al., 1993). Fluoroscein angiography is also recognized as a
useful tool for healthcare professionals diagnosing and treating
DR (Agemy et al., 2015). However, it requires venipuncture
which may lead to allergic reactions and, in rare cases, death
due to anaphylaxis (Yannuzzi et al., 1986). In addition, the
technique is costly and time-consuming, requiring up to 30min
only for image acquisition itself (Matsunaga et al., 2014; Sim
et al., 2014; Di et al., 2016). Nevertheless, it has historically
been the standard in the assessment of DR and DME. Retinal
hemodynamic abnormalities and retinal oxygenmetabolism have
also been investigated in patients with DR (Kohner et al., 1995;
Bursell et al., 1996; Calles-Escandon and Cipolla, 2001; Schram
et al., 2005). For example, the retinal function imager (RFI)
(Optical Imaging Ltd, Rehovot, Israel) is a noninvasive imaging
technique that has been used to investigate the microcirculation
in the retina of patients with DM (Grinvald et al., 2004; Nelson
et al., 2005).

Research in different areas of complications associated to DM
is constantly evolving (Campagnoli et al., 2017; Somfai et al.,
2018). The search for risk biomarkers characterizing preclinical
abnormalities is fundamental to fast-track the discovery of
novel treatments. For example, FD is one of the vascular
architectural parameters commonly used to quantify changes
in the retinal branching pattern and vascular density due to
disease progression (Lim et al., 2009; Cosatto et al., 2010). Fractal
geometry studies of the retinal vasculature can be performed
by fractal analysis, a mathematical method used to measure
complexity in natural phenomenon (Mandelbrot, 1982). The
concept of fractal geometry was first described by Mandelbrot
in 1989 (Smith et al., 1996; Fernández and Jelinek, 2001; Di
Ieva et al., 2015). Later, Family et al. introduced this method
in ophthalmology and since then, interest in studying the
association between the FD of the retinal vasculature and disease
severity and progression has dramatically increased (Family et al.,
1989; Fractals medicine., 1991; Cheung et al., 2009; Grauslund
et al., 2010; Yau et al., 2010; Aliahmad et al., 2014; Broe et al.,
2014). Although, the retinal vasculature tree could be quantified
with various methods of fractal analysis (Stosic and Stosic,
2006; Macgillivray et al., 2007), the digital retinal images could
be investigated through complexity, space-filling, shape, and
tortuosity of retinal blood vessels. These characteristics could
be quantified by the box-counting method of fractal analysis
(Milošević, 2015).

In this study, we examined the relationship between the
fractal dimension (FD), the morphology of the foveal avascular
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zone (FAZ) and the macular circulation in healthy controls and
patients with type 2 diabetes mellitus (T2DM) with and with no
diabetic retinopathy (DR). Our results suggest that the FD of
the foveal vessel arborization could provide useful information
to identify early morphological changes in the retina of patients
with T2DM.

METHODS

Study Population
The study was approved by the Institutional Review Board
(University of Miami, Miami, FL, USA). The research adhered
to the tenets outlined in the Declaration of Helsinki and written
informed consent was obtained from each study subject. In this
prospective study, enrollment was offered to patients with DM
referred to the comprehensive ophthalmology clinic that had DR
up to early treatment diabetic retinopathy study (ETDRS) level
35 and without macular edema, as well as diabetic patients with
no retinopathy and healthy individuals (Group ETDRSR, 1981).

Patients with proliferative disease, clinically significant
macular edema (CSME), and anatomic abnormalities that might
confound the evaluation of macular architecture (such as

glaucoma, vitreoretinal traction, and epiretinal membranes) were
excluded. Patients with medical conditions that might affect
visual function, those taking medications that might affect retinal
thickness (e.g., chloroquine or anti-cholesterol agents containing
niacin), recent cataract surgery, previous vitrectomy, or unstable
blood sugars were also excluded.

The routine ophthalmic examination was carried out with
dilated fundoscopy and patients were divided into two groups
based on the absence of DR (DM group) and presence of mild DR
(MDR group). Any eyes with more severe DR (i.e., greater than
ETDRS level 35) were excluded from the study. Study subjects
(age-matched) were selected from a 5-year longitudinal study
based on the quality of the overall imaging data required to
perform all analyses. Table 1 shows the demographics of the
study population. A total of 47 study participants (58 eyes) were
identified with good quality images from the RFI system.

Hemodynamic Analysis
This analysis was performed by the RFI system, which is based on
a standard fundus camera extended by a customized stroboscopic
flash lamp system. A green (“red-free”) light with a spectrum of
548 ± 75 nm is used for illumination and the interval between
consecutive flashes is typically 17.5ms. One session of RFI data
consists of 8 images with a resolution of 1,024 × 1,024 pixels in
an area of 4.3 × 4.3mm or 7.2 × 7.2 depending on the choice of
field of view (20◦ or 35◦) during the imaging acquisition. In this

TABLE 1 | Study Participant Demographics.

Descriptor Healthy DM MDR

Number of patients (Male/Female) 12 (3/9) 20 (6/14) 15 (8/7)

Number of Eyes (OD/OS) 13 (5/8) 28 (10/18) 17 (9/8)

Mean age ± SD, years 54.08 ± 7.71 52.64 ± 7.79 52.63 ± 5.79

study, all the images were captured with the setting of 20◦ field of
view (FOV) at a resolution of 4.3 microns/pixel. The heartbeats
of the patient were monitored with a finger probe sensor and
the image acquisition was synchronized with the cardiac cycle to
neutralize the effects of pulsation on arterial blood flow velocity
(BFV) (Grinvald et al., 2004; Nelson et al., 2005; Tian et al., 2016).

Once the image was acquired, the RFI built-in software
generated (a) the flow movie (a.k.a. “ratio video”) through
differential processing so that the motion of individual clusters of
red blood cells can be followed by the human eye; and (b) a non-
invasive capillary perfusion map (nCPM) was generated through
analyzing the difference of pixel intensities in adjacent frames
(Nelson et al., 2005; Izhaky et al., 2009). A good quality scanning
session is characterized by sharp vessel borders on the raw fundus
images, clear red blood cell movement along the vessels on ratio
videos and a visible capillary network on the nCPM. Therefore,
images were evaluated for optical quality, exposure and focus.
We obtained 3 or more good-quality sessions for each eye by
the same experienced photographer with at least 5 good images
per session that were selected for further analysis using a custom-
built software (Tian et al., 2016). In our method, the BFV is
calculated by maximizing cross-correlation of intensity profiles
between adjacent frames and the BFR is computed bymultiplying
the BFV with the cross-sectional area (Tian et al., 2016). All BFR
measurements were obtained for the overall arteries, overall veins
and overall vessels (i.e., arteries and veins) for each study group.

Fractal Analysis
The fractal analysis of the retinal vascular network was performed
using the box-counting method (Smith et al., 1996; Fernández
and Jelinek, 2001; Milošević, 2015, 2016; Rajkovic et al., 2017).
The RFI images were imported in Image J (National Institutes
of Health, Bethesda, MD) and used to calculate the FD after
grayscale format conversion (Figure 1). The box counting
method generates data by “covering” the object with a rectangular
coordinate grid and breaking the data into boxes and then
analyzing the subsets by counting the number of boxes (Smith
et al., 1996; Fernández and Jelinek, 2001). The lower and upper
box-dimensions of a subset F⊂Rn are respectively defined by

dimB(F) = lim
δ→0

logNδ(F)

− log δ
, dimB(F) = lim

δ→0

logNδ(F)

− log δ
(1)

and if lower and upper values are equal, then the common value
is referred to as the box-counting dimension of F and is denoted
by

dimB(F) = lim
δ→0

logNδ(F)

− log δ
(2)

Where Nδ(F) can be the smallest number of cubes of side δ

(naturally, in 3D) that covers F or the largest number of disjoint
cubes of side δ with centers in F (Falconer, 1989).

When plane-projection of the object is analyzed, this method
measures FD by covering the image with a rectangular coordinate
grid with cell size r and counts the number of boxes, where the
cell size is expressed as the number of foreground pixels. The
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number of squares N(r) needed to cover the image is given by
a power law

N(r) = const · r−D (3)

Where D is the box dimension, calculated as an absolute value
of the slope of the log-log relationship between N(r) and r as
previously described in detail (Milošević, 2015).

Morphology Analysis of the FAZ
The foveal morphology analysis was performed on the nCPM
composite images, which were generated from the individual
scans taken with the RFI (Tian et al., 2016). These capillary
maps were then used to gather information regarding the FAZ,
which can be identified in the image as the central area where
no vasculature is present. An active contouring model was used
to identify and outline the FAZ (Nikolay, 2016; Bates et al.,
2018). The active contouring program is run by constant user
supervision; therefore, each run was reviewed ensuring that it
accurately represented the FAZ. If it appeared to be inaccurate,
the simulation was rerun with different parameters, specifically
with a different region of interest drawn to capture the area better.
If it was still not representative of the actual FAZ, the image
was excluded from the analysis due to poor quality. This process
was done blindly, in that the group of the patient was unknown.
Following identification of the FAZ using active contouring,
the images were analyzed using ImageJ (National Institutes of
Health, Bethesda, MD) (Smith et al., 1996; Schneider et al., 2012).
This software allows for the easy acquisition of data regarding the
region of interest, including area, circumference, perimeter, and
the maximum/minimum Feret diameter. Area, perimeter, and
roundness are parameters that we used for this study.

FIGURE 1 | Sketch diagram of skeletonized box dimension (Dskel) obtained

by the box-counting method.

Ethics Approval
The Human Research Ethics Committee of the University of
Miami, Miami, FL, USA approved all protocols and methods
described in this study. The research adhered to the tenets
outlined in the Declaration of Helsinki. Informed consent was
obtained from all participants following a thorough explanation
of all test procedures.

Statistical Analysis
Linear regression was used to determine the relationship between
the BFR, FD, and FAZ parameters among the three groups. A
one-way ANOVA test was used to determine if there was a
difference present in any group, and then a post hoc Kruskal-
Wallis test was used to identify these individual group differences.
In all cases, a p-value of 0.05 was used to define significance (Katz
and McSweeney, 1980; Armstrong et al., 2000).

RESULTS

Fractal Dimension
FD was calculated for the three study groups. ANOVA showed a
statistically significant difference (p < 0.001) between all study
groups. The highest FD values were obtained for the healthy
group (1.42 ± 0.03) compared to those calculated for the DM
and MDR groups (1.39± 0.02 and 1.35± 0.03, respectively) (see
Figure 2). An example of the nCPM and corresponding skeleton
images used in the fractal analysis is shown in Figure 3.

The intergroup differences measured with the Kruskal-Wallis
analysis revealed a statistically significantly larger FD in the
healthy group compared to the one obtained from the DM
and MDR groups (p = 0.002). Also, a statistically significant
difference (p < 0.001) was found between the healthy and
the MDR group, as well as between the DM and MDR groups
(p < 0.001).

FAZ Dimensions
The area, perimeter and roundness of the FAZ were calculated to
characterize themorphology of the FAZ region (Bates et al., 2018)

FIGURE 2 | Box plots displaying the FD results. The middle 50% (mean and

95% CI) of the data groups are as follows: DM (1.3765–1.4105), MDR

(1.3255–1.365), and Healthy (1.4015–1.447).

Frontiers in Physiology | www.frontiersin.org September 2018 | Volume 9 | Article 1233208

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kostic et al. FD FAZ &-BFR in T2DM

FIGURE 3 | Sample images used in the fractal analysis. Images in the left column are the composite nCPM images generated from the RFI system, while those in the

right are their respective skeleton images that were used in the fractal analysis. Row (A) is from the healthy group, Row (B) from the DM group, and Row (C) from the

MDR group. We note that the blood vessel types used in the analysis were the major arterial and venous trees.

A summary of the results for the three study groups is presented
in Table 2. ANOVA showed significance in all parameters with
multiple significant differences in the pairwise comparisons as
seen in Table 2.

Blood Flow Rate
Figure 4 shows the BFR results obtained for the overall blood
vessels (i.e., both arteries and veins) per study group. Our results
showed 0.98± 0.27µl/s, 1.36± 0.86µl/s, and 1.36± 0.57µl/s in

the MDR, DM, and healthy groups, respectively. No significant
difference (p= 0.2) was found in the ANOVA analysis.

Relationship Between the Vascular FD, the
Morphology of the FAZ, and Macular
Circulation
Linear regression results showed significant differences for the
healthy group when analyzing the correlations between the
vascular FD and BFR parameters (see Table 3). For all three
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TABLE 2 | Results of the FAZ characterization for all three groups (first three columns show the morphological parameters).

Descriptor Healthy mean(±SD) DM mean(±SD) MDR mean(±SD) Healthy vs. DM Healthy vs. MDR DM vs. MDR

Area (mm²) 0.19 ± 0.05 0.21 ± 0.06 0.25 ± 0.06 0.26 <0.01 0.02

Perimeter (mm) 2.03 ± 0.24 2.16 ± 0.39 2.50 ± 0.41 0.29 <0.01 <0.01

Roundness 0.87 ± 0.07 0.84 ± 0.09 0.90 ± 0.06 0.21 0.31 0.02

The p-values of the Kruskal-Walls test are shown in the last three columns) with significant results in bold. Note that roundness as defined by Image J – represents how closely a region

conforms to a circle.

FIGURE 4 | Box Plot displaying the BFR results obtained for the overall blood

vessels in the three study groups. The middle 50% of the data groups are as

follows: DM (0.89–1.42), MDR (0.809–1.17), and Healthy (0.85–1.868).

groups of patients, FD was calculated and compared with BFR
data for overall arteries, veins, and vessels. A summary of the
results for all three study groups is presented in Table 3. Only
the healthy control group showed a significant linear correlation
between the FD and BFR parameters.

In comparing the BFR with the FAZ characteristics, only the
DM group showed a statistically significant linear relationship.
These relationships are shown in Figure 5, where the R2 value
and the equation of the line of best fit is displayed on their
respective graphs.

DISCUSSION

In this study, we investigated the FD of the foveal vessel
arborization in relation to the morphology of the FAZ and
the macular circulation in patients with T2DM. Our results
demonstrated the highest FD in the healthy group compared
to the DM and MDR groups, with a significant difference
between the three groups. Our results are similar to the outcomes
presented by Grauslund et al., where the FD of 94 patients with
T1DM without proliferative retinopathy were compared with 79
T1DM patients with proliferative retinopathy and found that the
group with the most severe disease had lower FD (Grauslund
et al., 2010). Similarly, Aliahmad et al. found that the healthy
group had higher FD compared with the diabetic group and
suggested that a low FD could be a result of the retina being less
effective, which may lead to an increased risk of complications
like proliferative retinopathy (Mainster, 1990; Aliahmad et al.,
2014).

Numerous studies have assessed the vascular complexity (FD)
in patients with different types of DM and stages of DR with
contradicting findings. A 16-years study that monitored 180
patients with T1DM found that FD of the retinal vasculature
generally decreased in these population. It was also found that
lower FD could predict neuropathy (Broe et al., 2014). On the
other hand, Cheung et al. and Yau et al. found that an increase
in vascular FD was associated with an increased incidence of
retinopathy (Cheung et al., 2009; Yau et al., 2010). However,
all these studies had different study designs and used fundus
machines with different resolutions and illumination settings.
The quality of the images acquired from the study subjects was
also dissimilar. Also, the region of interest for the FD calculation
was not the same for all studies. For example, our study analyzed
the FD in a 20◦ FOV while the other studies looked at the vessels
at a larger scale. This difference in methodologies may cause
contradicting findings among studies. Huang et al. found that
the FD must be calculated under very rigorous settings after
investigating the reliability of the vascular FD calculated from
retinal images acquired with 5 different fundus cameras (Huang
et al., 2016). Therefore, when comparing different studies, it is
of great importance to consider the study design, the settings
used for the analysis of the acquired images and image resolution
among other key factors.

The results of our study showed that there were significant
differences in FAZ parameters that describe differentmorphology
characteristics between all 3 groups. Results of the FAZ
characterization showed no significant differences in the DM
group in comparison to the healthy group, while the MDR group
had significantly higher FAZ area and perimeter in comparison
to the healthy and DM groups. Also, a significant difference in
roundness was only observed between DM and MDR groups.
These findings might indicate that the FAZ roundness might be
a good indicator of DR onset and progression. Intriguingly, as
reported in our previous study, the fact that the FAZ area was
larger in the MDR group but more asymmetric in the DM group
suggest a possible anisotropy in the mechanical properties of the
diabetic retina with no retinopathy. This anisotropy may trigger
the FAZ elongation in a preferred direction as probably a result
of autoregulation (Bates et al., 2018).

The findings in the current study support the loss of
symmetry in the FAZ expansion with worsening of the
retinopathy condition. Our results are in accordance with the
fact that the enlargement of the FAZ area is an indicator
of DR onset and progression besides being an indicator of
visual prognosis in patients with DME (Bates et al., 2018).
It is well known that larger FAZ area is associated with
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TABLE 3 | Linear regression results obtained for all three groups after analyzing the correlations between the FD and BFR. Significant results (p < 0.05) are highlighted in

bold.

Group Overall Arteries Overall Veins Overall Blood Vessels

Slope R2 p Slope R2 p Slope R2 p

Healthy 0.04 0.45 0.01 0.03 0.31 0.04 0.04 0.44 0.01

DM ∼0 <0.01 0.8 ∼0 <0.01 0.65 ∼0 <0.01 0.75

MDR 0.01 0.02 0.58 0.03 0.14 0.16 0.03 0.10 0.24

Results are presented as: Slope of linear regression, R2 value, and p-value. Slope listed as ∼0 refers to a slope of less than 0.001.

FIGURE 5 | (A–E) Linear regression results obtained for the DM group of patients, which is the only group that displayed significance when comparing the BFR to the

FAZ characteristics. Each figure is labeled with measured parameters. The line represents thel ine of best fit, of which the equation is displayed in the graph region. In

all cases, the “y-axis” represents BFR in µl/s and the “x-axis” represents FAZ area in mm2. (A) BFR vs. FAZ area in veins (B) BFR vs. FAZ area in all vessels (C–E) BFR

vs. FAZ Perimeter for arteries, veins, and all vessels, respectively. The R2 is the coefficient of determination, which compares the ratio of the average difference of the

data point and the line of the best fit with that of the data point and the average “y” value.

progression of DR, compared to healthy individuals, as reported
after using FA (Sakata et al., 2006). Additionally, Optical
Coherence Tomography-Angiography (OCTA) studies have

found a negative correlation between FAZ area and visual acuity.
However, FAZ size is not fixed among individuals; therefore, its
normal variation makes assessment of retinal pathology in terms
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of FAZ size very difficult (de Carlo et al., 2015b; Freiberg et al.,
2015; Mammo et al., 2015; Spaide et al., 2015; Takase et al., 2015;
Al-Sheikh et al., 2016; Bhanushali et al., 2016; Samara et al., 2016;
Tan et al., 2016).

There are many discrepancies in studies targeting retinal
blood flow, mainly due to differences in the device used and
in the study design. Particularly, the variability in these studies
is affected by factors including the recruitment of patients with
T1DM diabetes vs. T2DM, controlled vs. poorly controlled
diabetes, age, presence or absence of other co-morbidities such
as systemic hypertension (Kohner, 1975; Grunwald et al., 1993,
1996; Schmetterer and Wolzt, 1999; Pournaras et al., 2008). Our
study population consisted of age-matched groups composed
by healthy controls and T2DM subjects with and with no
mild DR. The diabetes disease condition in T2DM patients was
in control but most of the T2DM patients were hypertensive
(under control). The fastest BFR for overall vessels (that is,
arteries and veins taken together) was found in healthy subjects,
compared with the DM and MDR groups, whereas the slowest
BFR was observed in the MDR group. This is in correlation
with previous investigations where reduced retinal blood flow
and vessel stiffness seemed to be associated with nonperfusion
in the vasculature network (Kohner, 1975; Grunwald et al., 1996;
Schmetterer andWolzt, 1999; Sakata et al., 2006; Pournaras et al.,
2008).

In comparing the correlation of the BFR and FD for the
three groups, a significant correlation between FD and BFR was
obtained for the healthy group in all three groupings of the vessels
(overall arteries, overall veins and overall vessels). Nevertheless,
we did not find any significant correlation for the DM and
MDR groups. Also, the BFR and vascular FD among healthy
subjects and diabetic patients with and with no DR have not been
compared in previous studies. According to our findings, it seems
that the flow distribution of the retinal vessels loses complexity
while fractal branching does not adequately describe the vascular
structures involved in this process.

Although the BFR was lower in the MDR group than in the
DM and healthy groups, intriguingly, the correlation between
BFR and FAZ was statistically significant with low R-squared
values only for the DM group. It is possible that our data contain
an intrinsically higher amount of unexplainable variability. Also,
there was a negative correlation between FAZ perimeter and
BFR for the DM group when compared in overall arteries,
overall veins and overall vessels. As well as there was a negative
correlation between FAZ area and BFR for overall veins and
overall vessels. Interestingly, we saw no statistically significant
correlation between BFR and FAZ roundness in the DM group.
Also, there was no statistically significant correlation between
BFR and FAZ in the MDR and healthy groups.

The reduction in BFR in patients with DM may be due to
morphological changes of the vascular bed in combination with
lack of capability of vascular autoregulation and the decrease
of blood fluidity (Ashton, 1974; Sinclair et al., 1982; McMillan,
1989). Our results could be explained by the fact that an increase
in FAZ area and perimeter can result in decreased BFV, and
consequently a decreased BFR, as demonstrated by the negative
correlation observed between BFR and FAZ size. However, our

study does not have the full power to prove this outcome as
there are many factors that have an influence onmicrocirculation
in diabetic patients with DR, such as duration of disease,
changes in ocular biomechanics, and the presence of other
concomitant systemic diseases (e.g., controlled hypertension in
our diabetic groups) that can contribute to a slower BFR in
patients with DR. A statistically significant negative correlation
between capillary BFV and FAZ size in T2DM was found in a
previous study that used FA as the measurement method (Sakata
et al., 2006). However, a correlation between FAZ parameters
and BFR in patients with DR or a healthy control group
seems to be unavailable in the current literature. Our fractal
dimension results also revealed the potential use of this method
to quantify the progressive change in DR between the increased
and decreased vessel complexity stages. The complexity index of
the retinal vascular pattern characterized by fractal analysis may
uncover potential regulation of specific markers of disease status.

There are important limitations to the present study that
need to be addressed. There was a different sample size for
each one of the 3 groups due to the exclusion of eyes because
of the poor image quality obtained with the RFI unit in some
eyes with media opacities. Also, only subjects with T2DM were
included. Consequently, the degree to which our outcomes can
be generalized to individuals with Type 1 diabetes is uncertain.
Especially, retinal structure and function may be affected by
factors such as hyperlipidemia, older age, and hypertension in
Type 2 diabetes. Furthermore, we conducted our study in a
relatively small sample of patients. A better understanding of the
correlation between BFR, FD, and FAZmeasurements in a bigger
number of subjects and longitudinal studies is devised as a future
study.

CONCLUSION

There are many structural and hemodynamic parameters that
can play a role in the development of DR. Particularly, the
development of advanced imaging will facilitate that these
quantitative measurements can help with the identification of
changes in the retinal structure affected by various diseases with
greater precision and detail (Tian et al., 2016). Our results suggest
that the FD of the foveal vessel arborization in conjunction
with other functional and structural parameters could provide
useful information to identify early morphological changes in
the retinal tissue of patients with T2DM. The data also lead
us to believe that the enlargement and asymmetry of the FAZ
area might be related to a lower BFR associated with the
onset and progression of DR (Krawitz et al., 2017). Notably,
due to the lack of FAZ symmetry observed in DM and MDR
eyes, it appears that the distribution of flow within the retinal
vessels loses complexity as the vascular structures distributing
the flow are not well described by fractal branching. In addition,
despite the availability of many different studies about FAZ and
DM or FD and FAZ, to our knowledge, there are no known
studies that correlate FD with hemodynamic and structural
parameters. However, further longitudinal research is warranted
to determine how our approach may be used to aid diagnosis
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of retinal neurodegeneration and vascular impairment at the
early stage of DR. There is no doubt that there is a need for a
better understanding of structural and hemodynamic parameters
which are integrally interdependent. Specifically, the multimodal
measurements in our future work would not only provide details
of retinal pathophysiology but could possibly contribute as a
biomarker in disease staging.
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University of Belgrade, Serbia

Reviewed by:
Ali Jahanshahi,

Maastricht University Medical Centre,
Netherlands

Tifei Yuan,
Shanghai Mental Health Center, China

*Correspondence:
Ali Yadollahpour

yadollahpour.a@gmail.com

Specialty section:
This article was submitted to

Fractal Physiology,
a section of the journal
Frontiers in Physiology

Received: 03 March 2018
Accepted: 23 May 2018

Published: 18 June 2018

Citation:
Jalilifar M, Yadollahpour A,

Moazedi AA and Ghotbeddin Z (2018)
Quantitative Analysis of the

Antiepileptogenic Effects of Low
Frequency Stimulation Applied Prior
or After Kindling Stimulation in Rats.

Front. Physiol. 9:711.
doi: 10.3389/fphys.2018.00711

Quantitative Analysis of the
Antiepileptogenic Effects of Low
Frequency Stimulation Applied Prior
or After Kindling Stimulation in Rats
Mostafa Jalilifar1, Ali Yadollahpour1* , Ahmad Ali Moazedi2 and Zohreh Ghotbeddin3

1 Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,
2 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran, 3 Department of Physiology,
Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Background and Objective: Developing quantitative measures based on spectral
analysis of electroencephalograph (EEG) recordings of neural activities plays an
important role in developing efficient treatments for epilepsy. Such biomarkers can
be used for developing open or closed loop approaches for seizure prediction or
prevention. This study aims to quantitatively evaluate antiepileptogenic effects of low
frequency stimulation (LFS) applied immediately before or after kindling stimulations
using spectral power analysis of extracellular EEG in rat.

Methods: Nineteen adult rats were used: seven for kindle, six for LFS+Kindle (LFSK)
and six for Kindle+LFS (KLFS). Four packages of LFS (1Hz) were applied immediately
before or after rapid kindling stimulations. The power spectral densities of afterdischarge
(AD) sections of EEG corresponding to different stages of kindling for delta (0–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (12–28 Hz), gamma (28–40 Hz) sub-bands, and
theta/alpha ratio were comparatively investigated. Moreover, correlation between AD
duration (ADD) and its different frequency components was calculated.

Results: Both LFSK and KLFS significantly increased delta and reduced beta and
gamma oscillations, compared with kindle group. However, just the reduction in LFSK
group was significant. Both protocols increased theta/alpha ratio, but just LFSK showed
significant increase (p < 0.05). Although LFSK enhanced theta/alpha ratio more than
KLFS, the difference was not statistically significant. Furthermore, strong correlation
between each frequency sub band and ADD was not observed in kindle and LFS treated
groups (both LFSK and KLFS).

Conclusion: Although behavioral assessments showed relatively the same level
of antiepileptogenic effects for KLFS and LFSK, quantitative assessments showed
more significant differences in the quantitative measures between the two protocols.
Developing more quantitative EEG based measures correlated with LFS-induced effects
can facilitate developing open or closed loop seizure prevention modalities.

Keywords: kindling, low frequency stimulation, spectral power, extracellular EEG, quantitative assessment
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INTRODUCTION

Epilepsy is a chronic neurological disorder with 1.5% world
population prevalence (Demos, 2005). It is characterized by
recurrent seizures which disruptively propagate from the seizure
origin to other regions of the brain. Cortical excitability of
different areas of the brain is increased in epileptic patients
(Lerchl et al., 1990; de Boer et al., 2008). Temporal lobe
epilepsy (TLE) is the most common type of epilepsy in
adults that originates in medial or lateral temporal lobe and
spreads rapidly to other regions (Pritchard, 1986; Devinsky,
1991). Electrical kindling is a reliable experimental model
to study TLE where repetitive electrical stimulations with a
threshold intensity at particular sites of the brain induce
progressive, generalized seizures through long term potentiation
(LTP) mechanism (Goddard et al., 1969; Lothman et al.,
1985). During the kindling process, afterdischarge (AD) waves
appear in the electroencephalogram (EEG) baseline. ADs are
electroencephalographic responses to seizures and they stem
from the collective activity of neurons and produce consecutive
large spikes in the baseline of EEG signals (Peterson and
Albertson, 1982).

Animal studies have demonstrated that electrical stimulation
of the epileptic focus, particularly in low frequency stimulation
(LFS) may be an appropriate alternative treatment for intractable
epilepsy (Velìšek, Velìšková and Stanton, 2002; Ozen et al.,
2008; Jalilifar et al., 2017a). LFS can inhibit epileptic seizures
through increasing the threshold for evoking neuronal action
potentials (Albensi et al., 2004; Schrader et al., 2006). Moreover,
administration of LFS especially in hippocampus and amygdala
induces long term depression (LTD) as well as prevents kindling-
induced LTP (Fujii et al., 1999; Albensi et al., 2004). Studies
are ongoing to determine effective protocols of LFS for seizure
inhibition (Shahpari et al., 2012). Time of LFS administrations is
one of the main factors influencing the amount of antiepileptic
effects of LSF. The behavioral data of our previous study
showed that LFS application either before or after termination
of kindling stimulation significantly increased AD threshold,
inhibited kindling acquisition, and also increased the number
of stimulations required to achieve kindling stages, compared
with the control animals that received only kindling stimulation.
Although administration of LFS prior to kindling stimulation
produced a more inhibitory effect than the post kindling
protocol, the difference was not statistically significant. To
determine effective LFS parameters, efficient biomarkers should
be developed for quantitative assessments of epileptogenesis
process as well as the LFS induced effects. Most of the studies on
kindling have used the behavioral assessments based on kindling
stages and duration of AD to evaluate the LFS efficacy. However,
behavioral assessments suffer subjective and objective errors since
the identification of start and end of each stage, its duration,
as well as duration of AD are determined manually. EEG
signals have a high temporal and good spatial resolution making
them appropriate measures to identify efficient LFS parameters
as well as to determine the antiepileptic mechanisms of LFS
(Yadollahpour and Jalilifar, 2014). However, visual assessments of
EEG signals to identify and quantify the oscillatory activities and

their behavioral correlates yield no valuable information. Using
different spectral analysis methods of EEG enable researchers to
identify, quantify, and characterize the oscillatory components
in the EEG signals as well as to develop quantitative measures
which are correlates of different behavioral features (Kleinfeld,
2008). The two main advantages of using spectral analysis in
electrophysiological studies are determination of the number of
degree of freedom for calculation of confidence of interval is more
convenient in frequency domain than the time domain and two
the most of biological phenomena have simpler representation
in the frequency domain (Kleinfeld, 2008). In this regard,
the goal of quantitative EEG is to identify different measures
in frequency domain and consequently investigate the brain
functions. Fourier analysis is a main group of spectral analyses
where time series signals, namely EEG, are decomposed into
sinusoidal functions.

This study focuses on the frequency domain features of
the epileptic activities from the AD of the EEG signals that
could provide more clear understanding of the intrinsic neural
network involved in kindling process. Developing quantitative
and objective assessments of LFS effects on epileptogenesis using
EEG signals can reduce the objective and subjective errors
present in the behavioral assessments. In our previous studies
we determined the main spectral features of EEG signals in
different stages of kindling and also assessed the variations of
different EEG based measures during progression of kindling
(Jalilifar et al., 2016, 2017b). Our findings along with the
findings of previous studies showed significant correlations
between variations of specific sub-bands of EEG with different
phases of epileptogenesis: We classified EEG signal into different
sub-bands whose powers are considered as a synchronization
of neural discharge index. These sub-bands include delta
(1–4 Hz), theta (4–8 Hz), alpha (8–12), beta (12–28 Hz) and
gamma (28–40 Hz). Delta frequencies are synchronized in
deep sleep state, associated with seizure-like activities in the
brain (Walter, 1936). Theta waves are usually recorded from
Medial Septum area of hippocampus and they are related
with voluntary movements of rats. Alpha oscillations originate
from occipital and other sensory areas. Several studies have
demonstrated that alpha waves are affected by thalamus and
sensorimotor cortex in rats (Hughes and Crunelli, 2005; Shaker,
2006). Beta and gamma rhythms are predominant in the
neocortex and hippocampus of consciousness humans and
animals (Haenschel et al., 2000). Theses waves are also augmented
in generalization of epileptic seizures. Moreover, suppression
of beta and gamma frequencies can inhibit the progression of
epileptogenesis process (Tsuchiya and Kogure, 2011). In addition
to the above sub-bands, alterations of theta/alpha ratio have
shown a significant correlation with the level of alertness in
cognitive studies (Sadighi Alvandi et al., 2015) because theta
sub-bands are usually correlated with learning and alertness
disorders, and they are often emerged with high amplitude in
the epileptic patients while alpha frequencies are generally the
most stable brain waves. In line with our previous studies, this
study aims to quantitatively investigate the antiepileptogenic
effects of LFS applied either immediately prior or after daily
kindling stimulation in amygdale rapid kindling model in rats.
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FIGURE 1 | Schematic diagram of experimental groups. (A) Kindle group. (B) LFS + kindle (LFSK) group, (C) kindle + LFS (KLFS) group.

In addition, the time dependent effects of LFS on kindling
induced epileptogenesis are investigated using EEG spectral
power analyses. To do so, the effects of LFS in the two protocols

on the spectral powers of delta (1–4 Hz), theta (4–8 Hz), alpha
(8–12 Hz), beta (12–28 Hz), gamma (28–40 Hz), and theta/alpha
ratio are comparatively assessed.
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MATERIALS AND METHODS

Animals and Surgery
All of the experimental procedures of this study were
approved by local ethics committee of AJUMS which were
in complete accordance with the guide for the care and
use of laboratory animals set by the National Academy
of Sciences (National Institutes of Health Publication No.
86-23). Adult male Wistar rats (weighing 190–210 g at the
time of surgery) were obtained from the animal house
of Ahvaz Jundishapur University of Medical Sciences
(AJUMS) (Ahvaz, Iran). They were accommodated
individually in a colony room with an ambient temperature
(25 ± 2◦C) and artificial 12:12-h light-dark cycle (light on at
6.30–18.30).

The rats were anesthetized with intraperitoneal injection of
the mixture of Ketamine (100 mg/kg) and Xylazine (10 mg/kg)
(Esmaeilpour et al., 2013). and underwent surgery process: four
holes were drilled stereotaxically on the skull two holes for
anchor screws, one for implantation of a monopolar stainless
steel electrode used as ground and another for placement of a
tripolar stainless steel electrode (two poles for stimulation and
one for recording) in the right amygdala according to the Paxinos
and Watson atlas coordinates: anteroposterior:−2.5 mm; lateral:
4.8 mm; vertical: 7.2 and 0.2 mm below the skull (Paxinos et al.,
2009). After the placement in the coordinates, the electrodes
were attached into a socket and maintained with dental acrylic
cement.

Kindling and LFS
Nineteen rats were randomly divided into 3 groups including
one kindle (n = 7) as control group and two treatment
groups of LFS + kindle (LFSK) (n = 6) and kindle + LFS
(KLFS) (n = 6). Following a 10-day recovery period after
surgery, the threshold intensity for kindling stimulation was
determined as the minimum intensity required to evoke at
least 6 s ADs with the amplitude of at least 2.5 times higher
than the baseline EEG (Yadollahpour et al., 2014). It was
determined by a 3 s of monophasic square wave of 50 Hz
applied initially at 30 µA and increased in increment of 15 µA
at minimum of 30 min intervals. The rats that represented no
AD with maximum 350 µA current intensity were excluded
from the experiment. Moreover, the animals that entered in
deep inhibitory state and those animals showed unusual response
including severe reactions at the kindling threshold intensity were
excluded from the study. All rats were subjected to kindling
stimulation consisting of a 3 s of monophasic square wave
(1 ms duration) of 50 Hz with the threshold intensity applied
12 times per day at 5 min intervals (Shahpari et al., 2012). The
kindling stages for the further assessments were recorded by
the researchers based on the following behavioral characteristics:
stage 1 characterized by mouth and facial movements, stage
2 by head nodding, stage 3 by Forelimb clonus, stage 4 by
rearing, and stage 5 characterized by falling and loss of balance
(Racine, 1972). Kindling stimulations in the kindle group were
continued until the observation of the stage 5 of kindling.

The average days in the control group to reach the stage 5
was 4.42 ± 0.53 days. Therefore, to compare the behavioral
data between the control and LFSK and KLFS groups on a
standard basis, the animals of these groups were stimulated for
5 days. In the LFSK group, four packages of LFS with 5 min
interval were applied immediately before the start of 12 daily
kindling stimulations, while in the KLFS group these packages
were applied immediately after termination of 12 daily kindling
stimulations (Figure 1). Each LFS package consisted of 200
monophasic square pulses, 0.1 ms pulse duration at 1 Hz with
the threshold intensity (Yadollahpour et al., 2014). After the
completion of the experiments the animals were sacrificed using
Co2 in a euthanizing chamber. All efforts were made to minimize
animal suffering and reduce the number of animals used in this
study.

Spectral Analysis of afterdischarge
Electroencephalograph signals were recorded through the
electrode implanted in the amygdale and monitored with
the Electromodule system (ScienceBeam Co, Iran). Data were
digitized at a sampling rate of 10 KHz. During the kindling
acquisition, the time and duration of each kindling stage
were saved as an event file which should be considered
in extracting each stage. It should be noted that only the
AD parts of EEG were selected and treated with Hann
window function with an overlap of 50% and then were
transferred into the frequency function by Fast Fourier
Transform (FFT) and their power spectrum and the power
of each sub band including delta (1–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), beta (12–28 Hz), gamma (28–40 Hz), and
theta/alpha ratio were determined using MATLAB version 2013b
for Windows.

Statistical Analysis
Data were represented as the mean ± standard error of
mean (SEM). The normality of the data was evaluated using
Kolmogorov–Smirnov test. A one-way analysis of variance
(ANOVA) following Bonferroni’s post hoc was used to compare
different sub bands power of baseline periods between the
experimental groups. A two-way ANOVA following a post hoc
Bonferroni’s test was performed to compare different sub bands
power of AD related to Racine stages and also theta/alpha ratio of
EEG between kindle (n = 7), LFSK (n = 6), and KLFS (n = 6)
groups. The correlation between AD duration (ADD) and the
spectral powers of different EEG sub bands were assessed using
Pearson’s correlation coefficient. All Statistical analyses were
performed with IBM SPSS 21 for windows. For all analyses,
the tests were carried out two-sided and significance was set at
p < 0.05.

RESULTS

Kindling Induced EEG Features
In the recently published papers, we identified the main
quantitative features of different kindling stages during
epileptogenesis (Jalilifar et al., 2016) and then for the main
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phases of seizure acquisition initial, localized and generalized
seizure stages in the amygdale rapid kindling model (Jalilifar
et al., 2017b) (detailed data not provided here). The main features
of kindling were as follows: The kindling acquisition process was
accompanied by increase in delta (1–4 Hz) and theta (4–8 Hz)
waves in the stages of 3, 4, and 5, compared with the control
group. Moreover, with the progression of the kindling process,
high beta (20–28 Hz) and gamma (28–40 Hz) oscillations were
reduced. Delta sub-band power significantly increased during
generalized seizure stages (GSSs) (stages 4 and 5). Furthermore,
the theta/alpha ratio in the localized seizure stage (stage 3) (LSS)
was higher than GSSs and the sham group.

General EEG Features of the
Experimental Groups
Afterdischarge duration was significantly decreased following
application of LFS either before or after the kindling stimulation
as compared with the kindle group (F[2,78] = 19.682, p < 0.05)
(Jalilifar et al., 2017b). LFS could also significantly prevent the
generalization of behavioral stages during the kindling procedure
in a way that all animals in the kindle group represented GSSs
of the kindling process within 5 stimulation days while only one
animal in the LFSK group (16%) and two animals (32%) in the
KLFS showed GSSs at the end of the experiment. The animals
in both LFSK and KLFS groups received higher numbers of
numbers to exhibit LSS and GSSs of the kindling in comparison
with the kindle group (for stage 2: H[2] = 6.725, p > 0.05, stage
3: H[2] = 8.498, p < 0.05, stage 4–5: H[2] = 13.658, p < 0.05).

Animals in the LFSK group showed LSS and GSSs of the kindling
process with higher numbers of stimulation than the KLFS;
however, the difference was not significant (p > 0.05) (Jalilifar
et al., 2017a). Moreover, the daily stages represented in the LFSK
and KLFS groups were significantly decreased compared with
the kindle group (for day 2: H[2] = 10.191, p < 0.05, day 3:
H[2] = 13.696, p < 0.05, day 4: H[2] = 12.003, p < 0.05, day 5:
H[2] = 10.667, p < 0.05) (Jalilifar et al., 2017a).

Animals in the experimental groups showed different number
of main phases of seizures. However, in the kindle group all
animals achieved 61 times initial seizure stages (stages 1 and 2)
(ISSs), 42 LSS, and 35 times GSSs, whereas the LFSK animals
showed 38 times ISSs, 13 LSS, and 4 times GSSs. Besides, the KLFS
rats showed 39, 14, and 6 times ISSs, LSS, and GSSs, respectively
which were registered for further analyses (Jalilifar et al., 2017a).

Figures 2A,B respectively show the baseline and the epileptic
(AD section) EEG records in the kindle group. Figures 3A,B
respectively show examples of baseline and AD section EEGs in
the LFS treated group. We recorded a 7 s length EEG of baseline
neural activities prior to kindling stimulation and performed the
FFT analyses on the 7 s length EEGs of baseline and epileptic
activities in different groups. Figure 3 represents a baseline EEG
and epileptic EEG in the LFSK group (Figure 3). The FFT
analyses for the baseline and epileptic activities of the LFSK and
KLFS did not significantly differ; therefore, we presented one
example from the LFSK. In the all experimental groups, delta and
theta components [Low Frequency Band (LFB) (0–8 Hz)] were
dominant bands during baseline activity, while Mid Frequency
Band (8–12 Hz) (MFB) and High Frequency Band (12–40)

FIGURE 2 | Example of the EEG record and corresponding FFT analysis in the kindle group. (A) A continuous baseline EEG record from the baseline period (I) to the
AD duration (II). (B) The power spectrum corresponding to each phase of the EEG using FFT analysis.

Frontiers in Physiology | www.frontiersin.org June 2018 | Volume 9 | Article 711220

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00711 June 18, 2018 Time: 13:50 # 6

Jalilifar et al. Quantifying LFS Effects in Kindling

FIGURE 3 | The spectral powers of the baseline and AD section of EEGs and the corresponding FFT analysis in the LFSK group. The LFSK and KLFS groups
showed no significant differences in spectral powers. (A) A continuous baseline EEG (I) to the AD section EEG (II). (B) The spectral powers corresponding to baseline
EEG and epileptic activities of the EEG signals.

(HFB) activities were enhanced along with the spreading epileptic
activities (emerging AD waves). Moreover, during the AD
period, larger spikes occurred at higher frequencies in the power
spectrum of the EEG, compared with the baseline periods
(Figures 2, 3).

The power spectral density percentages of LFB, MFB, and
HFB of the baseline EEG were compared between the three
experimental groups. A one-way ANOVA test showed no
significant difference in the LFB power [F(2,16) = 1.778,
p > 0.05], MFB [F(2,16) = 2.053, p > 0.05], and HFB
[F(2,16) = 1.372, p > 0.05] between the Kindle, LFSK and KLFS
groups (Figure 4).

Spectral Analysis of AD
To clarify the effect of LFS on the frequency components
of AD, the power spectrums of the kindling stages were
compared between the experimental groups. Figures 5A,B are
representative EEG signals of ISSs of the kindling acquisition in
the kindle and also in the LFSK or KLFS groups, respectively.
Since the induced changes in the power spectrum of both the
LFSK and the KLFS in ISSs were relatively similar, we only
demonstrated an example of the LFSK in Figure 5. There was
no significant difference in the power spectrum of ISSs between
the kindle and LFS treated animals (Figures 5A,B). According to
Figure 5C, the LFB was dominant in ISSs of all the experimental
groups. However, there was no significant difference in the LFB
[F(2,18) = 0.2, p > 0.05], MFB [F(2,18) = 0.613, p > 0.05], and
HFB [F(2,18) = 0.164, p > 0.05] power between the experimental

FIGURE 4 | The spectral power density percentage of the three experimental
groups for the baseline activities. There was no significant difference in the low
(LFB), mid (MFB), and high frequency band (HFB) powers between the
experimental groups (p > 0.05).

groups (Table 1). It should be noticed that the animals in
the kindle group showed totally 61 times ISSs while the LFSK
and KLFS animals represented totally 38 and 39 times ISSs
respectively which were included in this part of the analysis.

Figures 6A–C show examples of the power spectrum of LSS of
the kindling acquisition in the kindle, LFSK, and KLFS groups,
respectively. Application of LFS immediately either before or
after the kindling stimulation reduced mid frequency (8–12 Hz)
and high frequency (12–40 Hz) oscillations induced in LSS
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TABLE 1 | The raw values and descriptive statistics of the LFB, MFB, and HFB in ISSs between the experimental groups.

Stage Group Sub band Mean Standard deviation (SD) Statistics P-value

ISSs LFB Kindle 0.828 0.088 F (2,18) = 0.2 P = 0.821

LFSK 0.845 0.043

KLFS 0.851 0.057

MFB Kindle 0.082 0.041 F (2,18) = 0.613 P = 0.554

LFSK 0.065 0.032

KLFS 0.065 0.019

HFB Kindle 0.088 0.046 F (2,18) = 0.164 P = 0.851

LFSK 0.081 0.035

KLFS 0.074 0.047

There was no significant difference in the power of different sub-bands between the experimental groups.

FIGURE 5 | (A-I) An example of EEG power spectrum and (A-II) corresponding EEG signal of the ISS in the kindle group. Spectral power of only AD section or
epileptic waves is performed. (B-I) The power spectrum of the ISS in the LFSK group. The LFSK and KLFS groups showed no significant differences in spectral
powers. (B-II) An example EEG signal of ISS in the LFSK group. There was no significant difference between the control and intervention groups. (C) The power
spectrum density percentage of the ISS sections of the EEG signals in the experimental groups. There was no significant difference in the power of different
sub-bands between all groups (p > 0.05).

than the kindle group. We compared the power spectrum
density percentages of LSS in the kindle, LFSK, and KLFS
groups (Figure 6D). A One-Way ANOVA indicated a significant
difference in the LFB power between the experimental groups
[F(2,12) = 8.788, p < 0.05]. In this regard, application of the
LFS either before or after the kindling stimulation significantly
increased the LFB power, compared with the kindle group
(p < 0.05).

In addition, there was a significant difference in the MFB
[F(2,12) = 5.543, p < 0.05] and HFB [F(2,12) = 7.417, p < 0.05]
power between the experimental groups (Table 2). In fact, MFB
and HFB powers were significantly decreased in LSS of the LFSK,
compared with the kindle group (p < 0.05). Although the MFB
and HFB powers in the KLFS group were lower than the kindle,
the difference was not significant (p > 0.05) (Table 2). Moreover,
there was no significant difference in different sub-bands power

of the EEG signals between the LFSK and KLFS groups (p> 0.05)
(Table 2).

In the kindle group, the mid frequency (12–40 Hz) oscillations
in LSS are more than the ISSs (Figures 5A and 6A). Interestingly,
not only did these figures confirm our result, but other power
spectrum figures related to LSS of the experimental animals also
supported the above idea and our results convinced us to only
show one figure as a representative. It is worth noting that all
animals in the kindle group demonstrated 42 times LSS which
took on average 12.4285 s, and animals in the LFSK and KLFS
showed 13 times LSS with an average of 9.373 s and 14 times with
an average of 10.064 s, respectively.

Figures 7A–C are respectively examples of the power
spectrum of the GSSs in the kindle and LFS treated groups.
There were large peaks at mid (8–12 Hz) and high (12–40 Hz)
frequencies in the kindle group (Figure 7A). Moreover, fewer
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FIGURE 6 | (A-I) An example of EEG power spectrum of the LSS and (A-II) corresponding EEG signal in the kindle group. The mid frequency (8–12 Hz) oscillations
were evident in this stage. The peaks occurred at higher frequencies compared with ISSs of the kindle group. Furthermore, high frequency activities were more than
ISSs of the kindle group. (B-I) The power spectrum of the LSS in the LFSK group. (B-II) An EEG signal example of LSS in the LFSK group. There were two peaks at
2.25 Hz and 4.58 Hz in the low frequency range (0–8 Hz). (C-I) The power spectrum of LSS in the KLFS. C-II: An EEG signal example of LSS in the KLFS group.
(D) The power spectrum density percentage of LSS sections of the EEG signals in the experimental groups.

TABLE 2 | The raw values and descriptive statistics of the LFB, MFB, and HFB in LSS between the experimental groups.

Stage Group Sub band Mean SD Statistics P-value

LSS LFB Kindle 0.7091 0.1005 F (2,12) = 8.788

LFSK 0.9124 0.0223 P = 0.014

KLFS 0.8825 0.0465 P = 0.034

MFB Kindle 0.1323 0.0556 F (2,12) = 5.543

LFSK 0.0451 0.0058 P = 0.049

KLFS 0.0582 0.0172 P = 0.1

HFB Kindle 0.1557 0.0595 F (2,12) = 7.417

LFSK 0.042 0.0219 P = 0.023

KLFS 0.0592 0.0330 P = 0.053

There was no significant difference in the power of different sub-bands between the experimental groups. The p-value represented the level of significance against the
kindle group. LFSK and KLFS groups showed no significant difference in the power of different sub-bands in the LSS phase (p > 0.05).

peaks occurred at MFB and HFB in the GSSs in the LFSK and
KLFS groups, compared with the Kindle (Figures 7B,C). The
MFB and HFB components in the kindle group exceeded both
LFS and KLFS groups (Figures 7A–D).

There were three peaks in the power spectrum of GSSs in
the kindle group. These peaks were much larger and occurred at
higher frequencies as compared with LSS of the kindle group. In
addition, high frequency activities (12–40 Hz) were much higher
than the LSS in the kindling group.

Only one rat in the LFSK and two rats in the KLFS group
showed GSSs. Animals in the kindle group showed 35 times GSSs
with an average length of 22.28 s, whereas animals in the LFSK

and KLFS groups exhibited 4 and 6 times GSSs with length of
16.9 and 17.82 s, respectively. Therefore, to determine the power
spectrum density percentage, we compiled these two groups into
one LFS treated group (Figure 7D). Due to the imbalanced nature
of the sample and fewer animals in both LFSK and KLFS groups
showed GSSs than the kindle group, the statistical results were
hardly reliable hence not reported here.

Comparisons of ADD Frequency
Components
The power of different sub bands of EEG in the Racine stages
was compared between different groups. A two-way ANOVA
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FIGURE 7 | (A-I) An example of EEG power spectrum and (A-II) corresponding EEG signal of the GSSs in the kindle group. The mid (8–12 Hz) and high frequency
(12–40 Hz) oscillations increased during epileptogenesis. (B-I) The power spectrum and (B-II) corresponding EEG signal of the GSSs in LFSK group. High frequency
activities (12–40 Hz) were lower than the GSSs of the kindle group. (C-I) The power spectrum and (C-II) corresponding EEG of GSSs in the KLFS group. (D) The
power spectrum density percentage of the GSSs in the kindle and intervention groups. Contribution of MFB and HFB in the LFS treated animals decreased.

test showed a significant difference in the power of delta, beta
and gamma sub bands between the groups (p < 0.05) (Table 3).
A significant increase of delta power was observed in LFS treated
groups compared with the kindle group (p < 0.05) (Figure 8A).
However, there was no significant difference between the KLFS
and LFSK groups (p > 0.05). In addition, administration
of LFS only before kindling significantly reduced beta and
gamma powers compared with the kindle group (p < 0.05),
however these reductions were not significant in the KLFS
group (Figures 8D,E). The LFSK protocol reduced the high
frequency (12–40 Hz) power much more than the KLFS which
likely lead to more inhibitory effects. The theta/alpha ratio
increased in both LFSK and KLFS groups, compared with the
kindle group; however, only the LFSK group was significantly
different than the kindle group (p < 0.05). Moreover, the
LFSK protocol increased the theta/alpha ratio more than KLFS

TABLE 3 | Results of a two-way ANOVA.

Sub band F(2, 33) P-value

Delta 5.974 0.006

Theta 1.261 0.297

Alpha 0.91 0.412

Beta 6.282 0.005

Gamma 4.373 0.021

Theta/Alpha 7.84 0.002

According to the Table, there was a significant difference between the experimental
groups in delta, beta, gamma power, and theta/alpha ratio (p < 0.05).

protocol, whereas the difference was not statistically significant
(p > 0.05).

Comparison of Theta/Alpha Ratio
Due to the emergence of theta waves in the epileptic seizures
and the association of alpha waves with alertness disturbances,
in recent years the theta/alpha ratio has been considered as
an important index to analyze the level of alertness as well as
epileptic depolarization. In this regard, the theta/alpha ratio was
evaluated in different stages of kindling and also it was compared
between the kindle, the LFSK, and the KLFS groups. Seven
animals in the kindle group, 6 in the LFSK, and 6 in the KLFS
contributed to these analyses.

According to Figure 8F, application of LFS caused an increase
of the theta/alpha ratio either before or after termination
of kindling stimulation as compared with the Kindle group.
However, the increase only in the LFSK group was significant
(p < 0.05) (Figure 8F) (Table 3). Although application of LFSK
could enhance theta/alpha ratio more than KLFS, the difference
was not statistically significant.

Correlation Between Frequency
Contents and Duration of Epileptic
Activities
The correlation analysis of ADD and powers of different EEG
sub bands was determined. We aimed to quantitatively analyze
the inhibition effect of LFS and only describe the difference
between the Kindle and the LFS treated groups. Three rats
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FIGURE 8 | Contribution of each sub band to different groups. (A–E) Showed the power of Delta, Theta, Alpha, Beta, and Gamma for the kindle, LFSK, and KLFS,
respectively. (F) Comparison of the Theta/alpha ratio in the experimental groups. The data were represented as Mean ± SEM. ∗: significant difference compared with
kindle group (P < 0.05).

in each LFSK and KLFS group showed LSS and one rat in
the LFSK and 2 in the KLFS showed GSSs. Therefore, we
combined the LFSK and KLFS animals into one LFS treated
group to use the correlation test. To perform correlation analysis,
EEG signals in each stage of Racine were divided into 3 sub
bands including LFB (0–8 Hz), MFB (8–12), and HFB (12–
40). We then determined the Pearson’s correlation coefficients
between each of three sub bands and ADD for different kindling
stages.

In the kindle group, no significant correlation observed
between each frequency band and the different seizure stages.
There was a low negative correlation between MFB and ADD in
ISSs (r = −0.4, p > 0.05). In addition, a small correlation was
observed between ADD and different frequency bands in GSSs
(Table 4).

In the LFS treated animals, a significant or strong correlation
was not observed between each frequency band and ADD in ISSs
and LSS of the kindling. There was a low positive correlation
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TABLE 4 | Statistical data of the correlation test between EEG sub-bands and
ADD in ISSs, LSS, and GSSs in the kindle group.

Stage R P-value

1&2 (ISSs) ADD & LFB 0.38 0.4

ADD & MFB −4.0 0.364

ADD & HFB −233.0 0.466

3 (LSS) ADD & LFB −172.0 0.557

ADD & MFB 0.2 0.667

ADD & HFB 0.282 0.54

4&5 (GSSs) ADD & LFB −851.0 0.735

ADD & MFB 0.168 0.718

ADD & HFB 0.124 0.791

between ADD and LFB in LSS (r = 0.427, r > 0.05) whereas a
low negative correlation was witnessed between ADD and HFB
(r = −0.448, p > 0.05) (Table 5). Since only three animals in
the LFS treated groups developed GSSs, we cannot rely on the
correlation test in GSSs in this group.

DISCUSSION

The results of this study demonstrated that LFS administration
either immediately before or after the kindling stimulation
significantly inhibited kindling progression. Our behavioral
results showed LFS immediately before kindling stimulation
induced greater inhibition effects than the LFS applied
immediately after kindling. However, the difference was
not statistically significant. Wu et al. (2008) reported that
therapeutic application of LFS was strongly time dependent in
such a way that applying daily LFS immediately after kindling
stimulations produced an antiepileptogenesis effect while
delayed LFS applied after the cessation of AD not only could
not retard kindling acquisition, but it also accelerated kindling
progression (Wu et al., 2008). In addition, Sun et al. (2010)
showed that LFS administration immediately after daily kindling
stimulation could suppress the epileptogenesis process, whereas
LFS administration before the termination of daily kindling
stimulation, did not result in inhibitory effect (Sun et al., 2010).
However, the findings of the previous studies on the time

TABLE 5 | Statistical data of the correlation test between EEG sub-bands and
ADD in ISSs, LSSs, and GSSs in LFS treated groups.

Stage LFSK-KLFS R P-value

1&2 (ISSs) ADD & LFB −123.0 0.536

ADD & MFB 0.25 0.962

ADD & HFB 0.4 0.432

3 ADD & LFB 0.427 0.399

ADD & MFB 0.2 0.704

ADD & HFB −844.0 0.373

4&5 (GSSs) ADD & LFB 0.721 0.488

ADD & MFB −557.0 0.456

ADD & HFB −927.0 0.48

dependency of LFS effects were controversial necessitating
further studies in this regard (Kile et al., 2010; Lucas et al.,
2012; Shahpari et al., 2012; Ghotbedin et al., 2013; Jalilifar et al.,
2017a,b). Therefore, the present study aimed to investigate the
time-dependent effects of LFS using kindling signal processing.
In this regard, we comparatively evaluated the quantitative
features of kindle group, and LFS-induced changes in two
protocols of LFSK and KLFS with spectral assessments using FFT
analysis.

Quantitative assessments of EEG signals demonstrated that
administration of LFS reduced beta and gamma oscillations as
well as increased delta sub band power. Moreover, alpha power
decreased following application of LFS, but the reduction was not
statistically significant (Figures 5–7). Application of LFS prior the
kindling stimulation (LFSK) reduced beta and gamma sub bands
power more than KLFS but the difference remained insignificant
(Figure 8).

Since we aimed to quantitatively analyze EEG signals related
to the Racine stages, we only focused on the part of the AD
that occurred with emerging different seizure stages. Therefore,
other parts of the AD which corresponded to other behavioral
states were excluded from the analysis. According to the power
spectrum figures (Figures 5–7), with progression of the kindling
acquisition, larger peaks occurred in the mid (8–12 Hz) and high
(12–40 Hz) frequencies and also a remarkable shift toward higher
frequencies was evident at higher frequencies. However, there was
no significant difference in the power spectrum figures between
the LFSK and KLFS groups.

Our results showed no significant difference in the power
of LFB, MFB, and HFB components in ISSs, LSS, and GSSs
between the experimental groups. MFB and HFB components
were considerably higher in the kindle group than the LFSK
and KLFS animals, whereas LFB increased in both LFSK and
KLFS groups (Figure 6D). Moreover, our findings demonstrated
that high frequency components were increased at GSSs in
all the experimental groups vis-a-vis LSS of the kindling
(Figures 6 and 7).

We have analyzed the background EEG of the experimental
groups for 7 s before the start of the kindling stimulation to
clarify whether LFS only changed seizure activities or whether it
also affected the background EEG. Since the results confirmed
no significant differences in LFB, MFB, and HFB powers of
the baseline EEG signals between the experimental groups,
it is claimed that the group differences can only account
for the seizure activity but not the background EEG. We
previously reported increase of delta and theta oscillations with
generalization of the kindling process (Jalilifar et al., 2016). In this
regard, power spectrum results confirmed that the LFB (delta and
theta sub-bands) is dominant with the progression of the kindling
acquisition. We also found increase of HFB components in the
GSSs. It can be observed that application of LFS especially in LSS
and GSSs of the kindling acquisition reduced HFB components.
Besides, more peaks occurred in the power spectrum figures of
GSSs at higher frequencies as compared with LFS treated animals.
In fact, there were larger peaks in GSSs of kindle animals at
frequencies above 15 Hz whereas in the GSSs of the LFS treated
group these picks were located at lower frequencies. To prove
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the above mentioned idea, application of LFS either before or
after the kindling stimulation significantly increased delta power
(Figure 8A). Moreover, the results showed that HFB power was
increased in both LFSK and KLFS groups but the difference in
the LFSK was only significant (Figure 8). Our behavioral data
showed that ADD in the kindle group was significantly higher
than the LFSK and KLFS (p < 0.05). However, to determine
power spectrum figures and also EEG signal processing, we
only focused on the part of AD that includes Racine stages
and the parts of ADD related to other behavioral states were
excluded from the signals. Therefore, we only quantitatively
analyzed the duration of different stages of the kindling. Different
studies have offered the ratio of theta/alpha as an important
index for analyzing epileptic seizures (Fernández et al., 2003;
Sadighi Alvandi et al., 2015). Our data indicated increase of
theta/alpha ratio following the application of LFS. However, this
increase would be much higher if LFS was applied before the
kindling stimulation, compared with the application of LFS after
the termination of kindling stimulation. The difference may be
related to greater inhibitory effect of LFS when it was applied
before the kindling stimulation than KLFS.

The results showed no significant correlation between each
frequency sub band and ADD in different stages of Racine in the
kindle group. There was a low negative correlation between ADD
and MFB and also low positive correlation between ADD and
LFB in ISSs in the kindle group. In addition, a weak correlation
between ADD and different frequency sub bands was observed in
the LFS treated animals.

The exact mechanisms of the antiepileptogenesis effects of
LFS are not clearly determined, but two main theories have been
proposed on the mechanism of action of LFS or more widely
electromagnetic modulations on neural activities: dispersion
theory and LTD. In the dispersion theory, the main idea is that
injecting an external energy, usually in the form of electrical
or electromagnetic fields can disturb or disperse the ongoing
intrinsic neural activities. The impaired ongoing neural activities
can be disturbed by an external electric field in appropriate
frequencies.

Tsuchiya and Kogure (2011) found a strong positive
correlation between an increase of high frequency components
(12–30 Hz) and the behavioral progression of kindling, whereas
decrement of these high frequency activities was associated with
incomplete kindling stages which cannot support our findings
(Tsuchiya and Kogure, 2011). Similar to our results, Musto
et al. (2009) demonstrated that electrical kindling development
could be suppressed by reducing gamma oscillations (21–
40 Hz) indicating that the beta (12–20 Hz) and gamma
waves in hippocampus were involved in the propagation of
kindling seizures (Musto et al., 2009). Likewise, Dugladze et al.
(2007) surveyed chemical kindling using kainic acid and they
found suppressing theta waves meanwhile increasing gamma
oscillations with behavioral progression of kindling (Dugladze
et al., 2007). In this regard, application of LFS before the
kindling stimulation, though not considerable, reduced beta and
gamma power more than the KLFS group which confirmed more
inhibitory effect of LFS when applied immediately before the
kindling stimulation (Figure 7B).

Low frequency stimulation can also inhibit epileptogenesis
process through LTD phenomenon (Goodman et al., 2005; Ozen
et al., 2008). In this regard, application of LFS seems to suppress
the release of glutamate and increase of inhibitory receptor
activity and consequently leads to decrease of beta and gamma
frequencies.

Furthermore, alteration in the glutaminergic neural activity
following amygdala kindling may happen in CA1 neurons of
hippocampus. In this regard, Ueda and Tsuru (1995) reported
increase of the amount of NMDA receptors and release of
glutamate during amygdala kindling which might be involved in
generalization of kindling seizures (Ueda and Tsuru, 1995). Thus,
reducing NMDA receptors can be another antiepileptogenesis
mechanism of LFS and the reason for decrease of high frequency
components (12–40 Hz). There are many reports that the
disappearance of high frequency activities causes a relative
increase of low frequency oscillations of the targeted neurons,
which in turn inhibit the development of epileptogenesis. Delta
and theta frequencies are implicated in maintenance of inhibitory
system of hippocampus and amygdala regions (Miller et al.,
1994). Moreover, increase of LFB contribution including delta
band following application of LFS occurred due to decrease of
the excitatory neural network activity (Dugladze et al., 2007).

Our findings showed that LFS immediately before or
after kindling stimulations significantly inhibit kindling-induced
epileptogenesis where the LFSK showed greater inhibiting effects
than KLFS. It indicates that time of LFS application does not
result in significantly different antiepileptic effects. However,
some of the previous studies have reported the time of LFS
application is an important factor in exerting the antiepileptic
effects. In a similar study, Shahpari et al. (2012) compared the
antiepileptic effects of LFS with the same protocol of our study
immediately before kindling and 5 min after the termination
of kindling and reported that LFS immediately before kindling
stimulation induced more inhibiting effects (Shahpari et al.,
2012). Considering the non-significant difference between LFSK
and KLFS in antiepileptic effects, it seems that LFS partly exerts its
inhibiting effects through the dispersion mechanism. This can be
concluded that time of LFS application However, the difference
resulted from the different studies conducted in two separate
laboratories should be accounted. It can be concluded that a
combination of wide dispersion and LTD might be the main
responsible mechanism of action of LFS antiepileptic effects.

Administration of the same LFS protocol immediately before
or after kindling stimulations significantly inhibit the kindling
induced epileptogenesis in a way that LFS before the kindling
stimulations exerts greater inhibiting effects than the KLFS
protocol but the difference was not significant. Similarly,
the quantitative measures including delta, beta and gamma
oscillations, and theta/alpha ratio showed the greater changes in
the LFSK than the KLFS group.

One of the main limitations of the present study is that the
number of rats that reached the GSSs in the LFSK and KLFS
groups was low. Investigating the effects of LFS alone on the
baseline EEG signals of the amygdala could result in usefull
information on determining markers for treatment response
monitoring. Moreover, it is recommended to study the effects of
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kindling and LFS on the other regions in the brain to identify
the associated measures and the spatial distribution of the effects.
In our studies due to technical limits in the recording system we
did not investigate these effects. Further studies are needed with
bigger sample sizes and with more rats showing stages 4–5 to
reach more reliable results.

CONCLUSION

The LFS in both protocols can inhibit the kindling induced
epileptogenesis. Our findings showed that application of LFS
can increase the delta power while decreasing beta and gamma
oscillations. It seems that LFS can provide antiepileptogenic effect
through increasing LFB, meanwhile decreasing high frequency
components which can be a helpful index for identifying LFS-
induced antiepileptogenesis. Moreover, application of LFS before
the kindling stimulation decreased beta and gamma oscillations
and theta/alpha ratio more than the KLFS protocol which may be
related to more inhibitory effects of the LFSK protocol compared
with the KLFS. Behavioral assessments showed relatively the
same level of antiepileptogenic effects for KLFS and LFSK,
quantitative assessments showed more significant differences in

the quantitative measures between the two protocols. Developing
more quantitative EEG based measures correlated with LFS-
induced effects can facilitate developing open or closed loop
seizure prevention modalities.
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Background and objective: Chronic kidney disease (CKD) has a covert nature in its

early stages that could postpone its diagnosis. Early diagnosis can reduce or prevent the

progression of renal damage. The present study introduces an expert medical decision

support system (MDSS) based on adaptive neuro-fuzzy inference system (ANFIS) to

predict the timeframe of renal failure.

Methods: The core system of the MDSS is a Takagi-Sugeno type ANFIS model that

predicts the glomerular filtration rate (GFR) values as the biological marker of the renal

failure. The model uses 10-year clinical records of newly diagnosed CKD patients and

considers the threshold value of 15 cc/kg/min/1.73 m2 of GFR as the marker of renal

failure. Following the evaluation of 10 variables, the ANFIS model uses the weight,

diastolic blood pressure, and diabetes mellitus as underlying disease, and current GFR(t)

as the inputs of the predicting model to predict the GFR values at future intervals. Then, a

user-friendly graphical user interface of the model was built in MATLAB, in which the user

can enter the physiological parameters obtained from patient recordings to determine the

renal failure time as the output.

Results: Assessing the performance of the MDSS against the real data of male and

female CKD patients showed that this decision support model could accurately estimate

GFR variations in all sequential periods of 6, 12, and 18 months, with a normalized mean

absolute error lower than 5%. Despite the high uncertainties of the human body and the

dynamic nature of CKD progression, our model can accurately predict the GFR variations

at long future periods.

Conclusions: The MDSS GUI could be useful in medical centers and used by experts

to predict renal failure progression and, through taking effective actions, CKD can be

prevented or effectively delayed.

Keywords: chronic kidney disease, adaptive neuro fuzzy inference system, medical decision support system, renal

failure progression, prediction
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INTRODUCTION

Early and differential diagnosis or prediction of disease

progression and improving diagnosis reliability are today

becoming prerequisite needs in medicine and health systems
(Anagnostou et al., 2003; Al-Shayea et al., 2013). In this regard,

developing expert and intelligent systems based on machine
learning approaches for efficient diagnosis, prediction, and
effective management of diseases has drawn considerable
research attention among physicians and researchers
(Anagnostou et al., 2003; Ohlsson, 2004; Ubeyli and Güler,
2005; Parthiban and Subramanian, 2008; Pandey and Mishra,
2009; Lee and Wang, 2011; Al-Shayea et al., 2013). Decision
support systems (DSSs) taking advantages of recent advances in
software and computational knowledge in medicine can reduce
or even prevent the adverse effects of diseases (Hunt et al.,
1998; Montgomery et al., 2000; Garg et al., 2005; Pandey and
Mishra, 2009; Lee and Wang, 2011). Medical decision support
systems (MDSSs) are intelligent and expert systems used in
medicine to help medical experts make appropriate decisions
in different fields (Smith et al., 2003). Physicians and health
experts could use these systems to eliminate the biases associated
with humans, such as tiredness, and environmental interfering
factors and to make knowledge-based decisions (Ohlsson, 2004;
Garg et al., 2005). Artificial intelligence has gained considerable
research interest and has been utilized in different domains
of modern medicine such as alarm producing, reminders,
and approving diagnostic decisions. In medicine, there is an
integrated relationship between data and knowledge, in which

knowledge of detection, diagnosis, interpretation, and treatment
of a disease is influenced by the data of that disease (Miller,
1994). The level of this relation varies depending on the disease
type and interfering and biasing factors. In this regard, intelligent
computing models as a category of artificial intelligence prefer
to work with data rather than knowledge (Pandey and Mishra,
2009). The artificial intelligence-based MDSSs compared with
other MDSSs are more robust and rigorous systems (Ohlsson,
2004; Hayward et al., 2010). The MDSSs can reduce uncertainties
and processing time, and produce the knowledge extracted
from raw data to be used by medical experts. Computer-based
MDSSs can be implemented in web-based frameworks with
full time online access in healthcare systems (Hunt et al., 1998;
Ohlsson, 2004; Garg et al., 2005). The adaptive neuro-fuzzy
inference system (ANFIS) integrates neural networks and fuzzy
logic principles into a single framework with learning capability
to approximate non-linear functions and works as a universal
estimator (Jang, 1992, 1993). ANFIS is a type of neural network,
based on the Takagi–Sugeno fuzzy inference system, developed
in the early 1990s. The learning networks in this model are
based on mathematical computations capable of solving complex
problems. ANFIS-based predicting models resembling human
brain functions can accurately predict diseases (Jang and Sun,
1997; Ubeyli and Güler, 2005). This system has been used for
predicting the onset, classification or differential diagnosis of
different disorders including heart failure, cognitive disorders,
Alzheimer disease, ischemia, multiple sclerosis, etc. (Brier et al.,
2003; Lauer et al., 2005; Ubeyli and Güler, 2005; Ercelebi and

Subasi, 2006; Krug et al., 2008; Emam et al., 2010; Al-Kasasbeh
et al., 2011; Yadollahpour and Jalilifar, 2014; Norouzi et al.,
2016; Zhao et al., 2017). Clinical decisions based on fuzzy logic
models are cost effective and beneficial in improving healthcare
systems. One of the significant features of fuzzy logic approaches
is removing uncertainties of dynamic systems. Uncertainties
can be represented and controlled effectively (Parthiban and
Subramanian, 2008). Fuzzy logic models were used in predicting
appendicitis with high accuracy (Pandey and Mishra, 2009;
Al-Shayea et al., 2013). Different expert systems have been used
in medicine (Buchanan and Shortliffe, 1984; Ohlsson, 2004;
Lee and Wang, 2011; Ma, 2012). MYCIN is one of the early
clinical decision systems developed at Stanford University in the
early 1970s. This DSS was an expert system based on artificial
intelligence to identify bacteria causing severe infections in
order to recommend specific antibiotics for patients (Buchanan
and Shortliffe, 1984). This DSS used the results of physical
and laboratory tests of subjects to diagnose blood infections.
Chronic kidney disease (CKD) is a global health problem with
8 to 16 percent worldwide prevalence (Nugent et al., 2011). The
prevalence of the disease has dramatically increased worldwide
(Meguid El Nahas and Bello, 2005). Variations in population
censuses, different diagnoses in different racial populations, a
lack of diagnosis in early stages and risk factors contribute to
the rapid increase of the disease (Coresh et al., 2002; Bello et al.,
2005; El Nahas, 2005). Annual costs of CKD patients are high,
and so the disease imposes high costs on each country. Annual
costs of CKD patients in the USA exceeded 39.46 million US$
for 2008, equaling 23 percent of healthcare expenditures (Coresh
et al., 2002). Despite the high medical costs and advances in
dialysis treatments for CKD patients, mortality and morbidity
rates of the disease are still high and the patients have a low
quality of life (Pickle et al., 1996).

Reviewing the recent literature in MDSSs showed that fuzzy
intelligent systems, especially neuro-fuzzy inference systems,
have been widely used in predicting the state and progression
of various diseases (Ubeyli and Güler, 2005; Parthiban and
Subramanian, 2008; Lee and Wang, 2011). Findings of these
studies showed that utilizing these expert systems in combination
with the knowledge and diagnosis of clinical specialists can
significantly reduce diagnostic errors. Such systems yield more
accuracy compared with machine learning techniques.

Early diagnosis of CKD disease is a necessary step to reduce
or even prevent the progression of renal damage. Because of
the covert nature of the disease in early stages, the uncertainties
governing the disease’s status, and progression resulting from
dynamic features of the human body, we need a robust model
to accurately predict the disease’s progression. To our knowledge
there has not been any study using fuzzy intelligent systems to
build a DSS to predict the time of renal failure. In this study we
propose a MDSS based on the ANFIS system to predict renal
failure progression. We first designed three models to predict
the worsening time frame of CKD, including linear regression,
multilayer perceptron neural network, and ANFIS models to
assess their accuracy (data not presented). Among the three
predicting models, ANFIS showed the greatest accuracy (more
than 95%) in predicting GFR (Norouzi et al., 2016). Therefore, in
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this study, we used the ANFIS as the core computing model to
build an MDSS for predicting renal failure in CKD patients with
a user-friendly interface.

In computerized MDSSs different techniques and algorithms
can be used, including rule based reasoning, case based
reasoning and machine learning techniques (Pandey andMishra,
2009). Among these methods, various machine learning-based
methods have been used in medicine and healthcare, such
as decision trees, artificial intelligence network support vector
machines, and Bayesian networks. However, fuzzy intelligent
techniques have not yet been used to predict worsening renal
function. Furthermore, no MDSS is available to monitor kidney
disease progression or to predict the appropriate time for
renal replacement therapy (RRT) in CKD patients. ANFIS
systems have significant potential for predicting systems high
in uncertainty and with a highly dynamic nature, such as CKD
progression in the human body as the modeled environment
(Parthiban and Subramanian, 2008; Ghumbre and Ghatol, 2010).

EXPERIMENTAL SECTION

Patients and Data Collection
All the data of the present study were comprised of the clinical
records of a cohort study of newly diagnosed CKD patients
who were serially admitted to the Clinic of Nephrology, Imam
Khomeini Hospital (Tehran, Iran) during October 2002-October
2011. All the procedures of the present study were approved
by the ethics committee of the Tehran University of Medical
Sciences, which coincide completely with the Declaration of
Helsinki Ethical Principles for Medical Research Involving
Human Subjects (General Assembly of the World Medical
Association, 2014). Written consent was obtained from all
patients who participated in the study. The inclusion criteria
for CKD were small-sized kidneys in ultrasound images or GFR

<60 cc/kg/min/1.73 m2 for more than 3 months. All the patients
whose records were used for the analysis had visited the clinic
for at least 6 months. A total of 465 CKD patients participated in
the study. They were divided into two groups according to their
adherence patterns to the follow-up schedule in the clinic. The
test group consisted of 389 patients who continuously (at least
every 6 months) were visited in the clinic. The control group
consisted of 76 patients who did not regularly follow their visit
schedule in the clinic. The patients whose visits postponed for at
least 1 year were categorized as control group.

At each visit, a set of clinical and physiological parameters was
recorded and monitored for each patient. The variables included
the patient’s weight, diastolic and systolic blood pressure, serum
creatinine level, fasting plasma glucose, lipid profile, calcium,
phosphorus, hemoglobin, uric acid, and GFR. Then, the patients
were administered suitable treatments for blood pressure, bone
mineral metabolism indices, and hemoglobin control. The GFR
was estimated using the Modification of Diet in Renal Disease
(MDRD) equation. The end point for the patient’s follow-up was
a GFR value <15 cc/kg/min/1.73 m2 or start of RRT or patient
death. The MDRD is a formula for estimating GFR based on
creatinine and patient characteristics (Levey et al., 1999). This
equation is used only for CKD patients, so for acute kidney
failure it may result in an inaccurate estimation. All quantitative
variables were considered as continuous to have a better training
of the model. The recorded clinical and physiological variables
along with the demographic data were used to create a dataset.
We initially selected 10 variables that were expected to influence
the CKD status and progression based on the previous studies
and the viewpoints of nephrology specialists (Figure 1). These
variables were then used as the input of the predicting models to
calculate GFR values at future intervals. The variables included
age, sex, weight, underlying diseases, diastolic blood pressure,
creatinine, calcium, phosphorus, uric acid, and GFR. In next

FIGURE 1 | Schematic diagram of predicting model and input variables.
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step, Pearson’s correlation coefficient test was used to determine
the variables that significantly influence the GFR values. The
four variables weight, diastolic blood pressure, diabetes mellitus
as underlying disease, and current GFR showed significant
correlation with GFR values and were selected as the inputs of
the GFR predicting models.

To develop an MDSS for predicting renal failure we
first should develop a predicting model to forecast the
renal failure time and the time frame where kidney disease
worsens. According to the clinical measurements (independent
physiological parameters) and clinical outcomes, when GFR
reaches <15cc/kg/min/1.73 m2, RRT including dialysis or
transplant is necessary for the patient’s survival (Gaspari et al.,
2004). Regarding the previous studies and clinical data, GFR is
the only reliable parameter of renal function and progression
of CKD (Gaspari et al., 2004). Therefore, to predict renal
failure, GFR values should be predicted over time. Predicting
the variations of GFR values, we can predict the time at which
the GFR reaches the threshold value of 15 cc/kg/min/1.73 m2

indicating the time for RRT. The real data recorded during a 10-
year period were recorded at 6-month intervals. Therefore, the
GFR values were predicted for three sequential 6-month intervals
at 6-, 12-, and 18-month intervals. The GFR(t+p) with p = 1,2,3
represents the GFR values at 6-, 12-, and 18-month intervals.

We used three predicting models, including improved linear
regression, ANFIS, and multilayer perceptron neural networks,
to predict the GFR in future time intervals (data not presented).
Among the three predicting models, ANFIS was capable of
accurately predicting GFR with more than 95% precision
(Norouzi et al., 2016). Therefore, ANFIS was used as a core
predicting model in building the MDSS.

Model Description
The ANFIS model used in the present study (Figure 2) is based
on the model proposed by Jang (Jang, 1992), which is a learner
network equivalent to the Takagi-Sugeno fuzzy inference system.
Learning in this network is a continuous update of the network
parameters. Factors of layer I and layer IV are of the learner
type. Factors of the first layer determine membership functions.
Factors of layer IV determine the first-order estimated function.
The ANFIS training algorithm is a hybrid algorithm, which uses
the ordinary least squares algorithm to update coefficients of
output functions (fi), while the error back propagation algorithm
is used to update fundamental factors of the system (Jang, 1992;
Jang and Sun, 1997).

The results of our predicting models support the previous
findings, which showed a higher predicting efficacy from ANFIS
compared to the linear regression and multilayer perceptron
neural network (Norouzi et al., 2016). The ANFIS model could
predict the GFR values for future 6-month intervals with
normalized mean square error lower than 5%. Therefore, the
ANFIS model was used to build the MDSS system. The detailed
features of the predicting model can be found in Norouzi et al.
(2016). In brief, the ANFIS model works as below: Data of
465 CKD patients were divided into training and test datasets.
Training data were used to optimize the weights and other
parameters in the model. The test data were used to evaluate the
quality of estimates and forecasts. In all further processing and
modeling, the test dataset was not used for training models. The
test data were randomly selected so that all data had an equal
chance to participate in the selection process. The test dataset
is usually selected from 30 to 40% of the available data. In this
study, 30 and 70% of the data were selected as the test and the

FIGURE 2 | Structure of the ANFIS model used in the present study.
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training datasets, respectively. The input variables were fuzzified
with Genfis3 code in MATLAB and then a fuzzy rule base was
established using the Fuzzy C-Means (FCM) clustering approach.
The membership functions of the input variable were created.
The resulting fuzzy rules in the rule base were used to estimate
GFR values. Themembership functions were Gaussian. The fuzzy
rules in the rule base build a fuzzy inference system and after
training, which was converted to an ANFIS model. The trained
ANFIS was used for predicting the GFR values at a 6-month
interval and the predicting performance of ANFIS model for
training dataset for the 6, 12, and 18-month future intervals was
evaluated against the real measured GFR values.

RESULTS

Implementing the MDSS
Regarding the framework and nature of neuro-fuzzy based DSS,
whose functions are based on learning, the data of all patients
in this study were divided into training and test datasets. The
data from the test dataset were used to evaluate the predicting
performance of accuracy of the predicting model.

Three criteria were selected to evaluate and compare the
accuracy of the two neural network models: Mean Square Error
(MSE), Mean Absolute Error (MAE), and Normalized MSE
(NMSE). Of them, the NMSE is preferred since it provides the
normalized error ranged from 0 to 100 percent. The formula for
error criteria is expressed by Equations (1) to (3) as follows:

MSE =

N
∑

i=1
(yi − ŷi)

2

N
(1)

MAE =

N
∑

i=1

∣

∣yi − ŷi
∣

∣

N
(2)

NMSE =

N
∑

i=1
(yi − ŷi)

2

N
∑

i=1
(yi)

2

× 100 (3)

Table 1 shows the ANFIS predictions of GFR values at sequential
GFR(t+1, 2, 3) for the training and test datasets based on the
error criteria. The results show that the ANFIS neural network
can accurately predict the GFR values for both training and
test datasets at all three periods of 6, 12, and 18 months
(Figures 3, 4). Despite increasing the predicting interval to 12
and 18 months, the ANFIS was still able to accurately predict the
GFR values. Given the low error rate of the test data, the proposed
ANFIS could be generalized to predict GFR values in new
patients.

Assessment of the MDSS Performance
In addition to GFR prediction, the model produces a fuzzy rule
base. The fuzzy rule base converts the complex relationships
between experimental inputs and GFR as simple linear models
in different modeling environments. The transparency of the
GFR membership function in the ANFIS is the advantage of

TABLE 1 | Error criteria for the training/test datasets for 6, 12, and 18-month

periods i.e., GFR (t+1,2,and3).

Training dataset Test dataset

6-month MSE 58.6253 58.6253

MAE 4.7654 4.7654

NMSE 4.7676% 4.7676%

12-month MSE 54.885 54.885

MAE 5.5010 5.5010

NMSE 4.3019% 4.3019%

18-month MSE 64.0022 64.0022

MAE 5.9302 5.9302

NMSE 4.8787% 4.8787%

MSE, Mean Square Error; MAE, Mean Absolute Error; NMSE, Normalized MSE.

ANFIS compared to other predicting models such as linear
regression and multilayer perceptron neural network. The
trained ANFIS system could effectively predict the GFR values
at sequential 6-, 12-, and 18-month intervals. In assessing
the performance of the model, we evaluated the modeling
results for different patients through assessing the effects of
underlying disease, gender, and initial GFR values. The predicting
results showed a different disease progression between male and
female CKD patients when the underlying disease was diabetes
mellitus+ urologic disease (Figure 5). The predicted GFR values
for male patients reached 7 during the 18-month interval,
GFR(t+3), indicating a failure of renal function (Figure 5A).
However, female CKD patients showed a GFR(t+3) value of
about 37, indicating the improvement of kidney function
(Figure 5B). The predicted data followed the real measurements
well.

Following the performance assessment of the predicting
model, we designed a friendly-use graphical user interface
(Meguid El Nahas and Bello, 2005) in MATLAB to build
an MDSS for predicting the GFR values of CKD patients
(Figures 6A,B). The MDSS uses the ANFIS model as its core
computing model with appropriate topological structure. This
system can be used by personnel with no programming or
computer knowledge. The user defines the input variables, which
are the results of laboratory and clinical assessments, and the
system predicts the GFR values at three sequential 6-month
intervals. The error of each computation is also represented
by the model that helps the physicians to take appropriate
decisions on the treatment options for each CKD patient. The
model gives the minimum and maximum range of GFR at each
interval. The average predicting error of the model, obtained
through different comparisons with the real test data, was
lower than 5%. The error range of our proposed model is
sufficiently low to effectively support medical decisions in CKD
management.

DISCUSSION

The present study introduces a new MDSS for monitoring
and predicting renal failure progression in CKD patients. We
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FIGURE 3 | Comparison of the ANFIS prediction and real GFR(t+ 1) values for the training dataset.

FIGURE 4 | Comparison of the ANFIS prediction and real GFR(t+ 1) values for the test dataset.

evaluated the performance of three predicting models: improved
linear regression model, MLP, and ANFIS neural networks.
Of these, the latter showed the highest accuracy. The user-
friendly MDSS was then built based on the predicting model.
The MDSS showed high efficiency in predicting the GFR values.
This DSS can reduce the cost of CKD management as well
as reducing the mortality rate of the disease. In combination
with the experience and knowledge of expert nephrologists,
the proposed MDSS can significantly improve the quality of

life of CKD patients. It is possible to use this system more
in practice to help the management team to support patients
effectively.

Several authors have attempted to predict the survival time
of hemodialysis patients. Among them, Ma (Ma, 2012) worked
with artificial neural and neuro-fuzzy models while other authors
used machine learning based methods (Brier et al., 2003; Gaspari
et al., 2004; Sengur, 2008; Hussain et al., 2011). A comparison
of the results mentioned above, alongside ours, allowed us to
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FIGURE 5 | Predicted GFR variation among CKD patients with underlying disease of diabetes mellitus + urologic disease for sequential three 6-month interval.

(A) Male patient; (B) female parient.

FIGURE 6 | (A) Graphical user interface of the proposed MDSS based in ANFIS predicting model. (B) The output of GUI in a test patient.

affirm that our predicting models provide a reliable method
to foresee the timeframe of worsening renal function in CKD
patients. The strong point of our proposed MDSS was its
high reliability in the prediction of GFR. This reliability comes
from incorporating sequential measurements of GFR in CKD

patients for an extended period of follow up (mean: 37.6
months). However, our DSS needs further improvement to
include all influential parameters on CKD progression as well
as to improve its ability to predict GFR variations in shorter
intervals.
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The present study aims at identifying the lowest number of fish (European seabass) that
could be used for monitoring and/or experimental purposes in small-scale fish facilities
by quantifying the effect that the number of individuals has on the Shannon entropy
(SE) of the trajectory followed by the shoal’s centroid. Two different experiments were
performed: (i) one starting with 50 fish and decreasing to 25, 13, and 1 fish, and (ii) a
second experiment starting with one fish, adding one new fish per day during 5 days,
ending up with five fish in the tank. The fish were recorded for 1h daily, during which
time a stochastic event (a hit in the tank) was introduced. The SE values were calculated
from the images corresponding to three arbitrary basal (shoaling) periods of 3.5 min
prior to the event, and to the 3.5 min period immediately after the event (schooling
response). Taking both experiments together, the coefficient of variation (CV) of the SE
among measurements was largest for one fish systems (CV 37.12 and 17.94% for
the daily average basal and response SE, respectively) and decreased concomitantly
with the number of fish (CV 8.6–10% for the basal SE of 2 to 5 fish systems and
5.86, 2.69, and 2.31% for the basal SE of 13, 25, and 50 fish, respectively). The SE
of the systems kept a power relationship with the number of fish (basal: R2 = 0.93
and response: R2 = 0.92). Thus, 5–13 individuals should be the lowest number for
a compromise between acceptable variability (<10%) in the data and reduction in
the number of fish. We believe this to be the first scientific work made to estimate
the minimum number of individuals to be used in subsequent experimental (including
behavioral) studies using shoaling fish species that reaches a compromise between the
reduction in number demanded by animal welfare guidelines and a low variability in the
fish system’s response.

Keywords: fish monitoring, biological warning systems, fish welfare, the 3Rs, Shannon entropy, non-linear signal
processing, non-invasive monitoring, intelligent aquaculture
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INTRODUCTION

Large scale production aquaculture platforms, such as offshore
exploitations, alone or within offshore multipurpose structures,
are considered to hold the key to solve some of the challenges
that must be addressed in order to increase the total production
and the efficiency of fish farming to provide food for the
exponentially growing human population (Bostock et al., 2010;
Anon, 2011; European Aquaculture Technology and Innovation
Platform-Eatip, 2012; Kalogerakis et al., 2015; FAO, 2016).
One requisite for the optimal functionality of such production
platforms is the implementation of intelligent structures that
should be able to identify, register and respond to changing
external and internal environments. In answer to this need
and to improve the farmer’s ability to monitor, control and
document biological processes in fish farms by applying control-
engineering principles, the concept of precision fish farming
(PFF) has been introduced (Føre et al., 2018). Unfortunately,
in contrast to the increasing amount of works devoted to the
study of the physical and intelligent design of the farming
structures, there are few published works devoted to the
automatic monitoring of the real fish being farmed and to
the integration of that information into the whole intelligent
system (Eguiraun et al., 2015). Monitoring of the fish behavior
is important for at least three main reasons: (i) to avoid
escapes, (ii) for the early detection of abnormalities in their
behavior that may be an indication of disease, parasites or the
presence of contaminants that may compromise their health and
wholesomeness, and (iii) to document the fish welfare during the
production.

Fish cognition and behavior is a well-established research field
(Vila Pouca and Brown, 2017 and references therein), and the
characterisation of fish model systems’ behavior, using behavioral
measurable changes, has found several practical applications,
such as the detection of leaders in a group (Mwaffo et al.,
2017), the identification of information flows within a school
of fish (Crosato et al., 2018), the presence in the aquatic
environment of contaminants including caffeine (Ladu et al.,
2015), drugs (Liu et al., 2011), hypochlorite (Magalhães et al.,
2007; Nimkerdphol and Nakagawa, 2008; Teles et al., 2015),
methyl-mercury (Eguiraun et al., 2014, 2016), the Se:Hg molar
ratio in their feeds (Eguiraun et al., 2018) and alterations
in environmental parameters such as hypoxia, feeding regime
(Polonschii et al., 2013), and high fish density (Papoutsoglou
et al., 1998; Di Marco et al., 2008).

Consequently, and following Hellou’s (2011) recommen-
dations to assess the environmental quality of water, Eguiraun
et al. (2015) recommended the implementation of biological
warning system (BWS) into aquaculture by using fish of the
same species being cultivated as the system’s sensor. The working
hypothesis was that undesirable agents capable of altering
biochemical and/or physiological processes of the fish would also
alter the Shannon entropy (SE) of the system in a quantifiable
manner (as shown by Eguiraun et al., 2014), and that this
alteration could be used as an indicator of a deviation from
the desired working point established by the fish farmer. Once
the farmer detects a deviation, a series of pre-established rules

included in the obligatory Hazard Analysis and Critical Control
Point plan of each facility must be followed.

Each cage may hold several hundred thousand fish in intensive
farming, i.e., up to several million fish per farm (Føre et al.,
2018), which complicates the monitoring of all fish for control
purposes. Therefore, to implement the BWS in an effective
manner, one alternative is to construct a small-scale facility
with fish of the same characteristics and subject to the same
conditions as those in the commercial farming cages. Such
a small-scale monitoring set-up would resemble and impose
similar demands to the set-up for experimental studies with fish.
These demands include respecting the ethical principles (Russell
and Burch, 1959) and legal framework (European Commission,
2010) concerning the 3Rs. These three Rs (3Rs), necessary for a
more ethical use of animals in testing, were initially mentioned
by Russell and Burch (1959). They stand for Replacement: the
adoption of methods which avoid or replace the use of animals
in research (for example the use of mathematical models to study
animal behavior instead of using live organisms); Reduction: the
application of methods to obtain adequate information from
fewer animals, or to obtain more information from the same
number of animals and Refinement: the use of methods to
eliminate or minimize potential pain, suffering or distress, and
enhance animal welfare for the animals used. The present work
can only contribute to the Reduction in the number of individuals
for procedures that demand the use of live fish. To identify this
lowest possible number is in itself a challenge, since there is
usually no explanation regarding the criteria used to select the
number of fish in physiological and toxicological experiments.
The studies published on the effect of perturbations on fish
systems, as well as behavioral studies, use different numbers of
fish: some use only one fish (Magalhães et al., 2007; Brodin et al.,
2013), while others use three fish (Teles et al., 2015), five fish
(Crosato et al., 2018), fewer than 15 fish (Krause, 1993; Huth
and Wissel, 1994; Krause and Tegeder, 1994; Ladu et al., 2015),
18–40 fish (Sadoul et al., 2014), 19–26 fish (Eguiraun et al., 2016),
30–300 fish (Tunstrøm et al., 2013), and 81 fish (Eguiraun et al.,
2014). However, we have not been able to find any publication
providing any scientific explanation about the reasons that led the
authors to use those particular numbers of individuals.

In order to select the number of fish to test, the shoaling
nature of the species must be taken into consideration. Studies
on the collective behavior of different species have indicated
that many observed features of social interactions can be
predicted assuming that the individuals follow behavioral rules
that maximize their entropy (Mann and Garnett, 2015) and
that the collective behavior is determined by the number of
topologically interacting neighbors, as proposed by Ballerini et al.
(2008). These authors reconstructed 3D positions of airborne
birds in flocks of thousands of individuals and showed that their
interactions were based on their topological, and not metrical,
distance, i.e., each bird interacted on average with a fixed number
of neighbors (6–7), and not with all the neighbors within a fixed
metric distance. Examples of interactions are orientation toward
other fish, collective swarming, schooling, or flocking behaviors.
Thus, in flocking starlings, each individual topologically interacts
with 6–8 neighbors and the interaction with about 10 neighbors
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speeds up the rate of convergence (both speed and time to initiate
the flocking behavior) irrespective of the total size of the swarm
(Shang and Bouffanais, 2014). Studies on the social behavior
of fish (Hemelrijk, 2002) indicate that fish schooling behavior
emerge from the interaction of at least four neighbors (Huth and
Wissel, 1994) and Crosato et al. (2018) used five fish to examine
their interactions during the performance of U-turns in a circular
tank of water. Consequently, considering the shoaling nature of
the European seabass (Dicentrarchus labrax), our hypothesis was
that there would be critical differences between the SE of, on one
hand, the basal (shoaling) behavior of the systems of only one fish
and those of more than one fish, and, on the other, the SE of the
response to the event (schooling) of systems with fewer than five
fish and systems with five or more fish (Huth and Wissel, 1994).

Accordingly, and given that previous studies (Kadota et al.,
2011; Liu et al., 2011; Spasic et al., 2011; Quach et al., 2013; Bae
and Park, 2014; Eguiraun et al., 2014, 2016, 2018; Forlim and
Pinto, 2014) have identified the SE of the system as a variable with
the potential to serve for fish health and welfare monitoring, the
present work was designed to understand how the variation in the
fish number affects the system dynamics in order to answer the
following research questions: (i) Does the SE of a fish system vary
according to the number of fish? (ii) if it does vary, how is this
relationship? and, finally (iii) is it possible to identify the lowest
number of individuals which could be used in monitoring and/or
experimental settings? To answer these questions two different
experiments were performed: (i) one experiment starting with 50
fish and decreasing the number to 25, 13, and finally one fish, and
(ii) a second experiment, studying the system with initially one
fish, then adding one new fish per day during 5 days, and ending
with five fish in the tank.

Based on the experimental results, the main scientific
contribution of the present work is to provide a key piece of
information to set up a BWS, namely the minimum number
of fish necessary to be monitored. The last part of this study
presents a theoretical BWS model that integrates all the empirical
knowledge obtained in order to provide results, in a non-invasive
manner, about the health status of monitored or experimental
fish.

MATERIALS AND METHODS

Ethics Statement
The experimental protocols and procedures conducted in
the present experiment had been approved by The Ethical
Committee of the University of the Basque Country UPV/EHU
for Animal Welfare No. CEBA/285/2013MG.

Animals and Acclimation Conditions
European sea bass (Dicentrarchus labrax) generously provided
by Grupo Tinamenor (Cantabria, Spain) had been acclimated
in the Research Centre for Experimental Marine Biology and
Biotechnology – Plentzia Marine Station of University of
the Basque Country UPV/EHU for 3 months in two flow-
through 1,800 L epoxy-coated fiberglass tanks containing aerated,
naturally sand filtered seawater pumped from the Cantabric

Sea in the North of the Iberian Peninsula (43◦24′49.5′′N
2◦57′06.5′′W). During this period, the seawater conditions
oscillated according to the natural environmental variation, and
they were always within the values for optimal growth for
the species. The fish were fed INICIO Plus feed from BioMar
(56% crude protein, 18% crude fat) following the manufacturer
specifications for fish size, biomass and water temperature.

The length and weight of the fish used in Experiment A
are shown in Table 1 and the approximate total biomass for
Experiment B is shown in Table 2. Fish of this size are considered
sexually immature (Pickett and Pawson, 1994; Fishbase.org,
2015).

Experimental Conditions
The salinity was measured using a multiparametric meter
HANNA HI98192 and the O2 saturation with the JBL O2 kit.
Water temperature, pH, and ammonium were monitored daily in
both tanks using a thermometer (±0.5◦C), a CRISOM pH-meter
Basic 20+ and Sera NH4-NH3 ammonium kit, respectively. The
values are shown in Table 3. Water flow (fixed at 0.54 m3/h) and
additional air supply diffused by stone were kept constant and
were interrupted, in order to avoid artifacts in the images, only
during the time necessary to record the fish. The experiments
were performed in the period November-December during
which only small variations were detected in the seawater
temperature and pH following the usual seasonal changes.

Two identical fiberglass tanks were used (100 cm ×

100 cm × 90 cm) under direct white artificial light (2 × 58 W

TABLE 1 | Experiment A.

n = 50 fish Tank 1 Tank 2

Size [mm] Weight [g] Size [mm] Weight [g]

Avg 159.5 36.02 158.1 35.28

Max 200.0 60.00 197.0 64.00

Min 135.0 18.00 130.0 17.00

Median 154.5 33.50 156.0 33.00

Total biomass 1,801 1,764

Biomass at the beginning of the experiment. Tanks 1 and 2 were filled with 50 fish
each. Data on individual fish are shown in Supplementary Data Sheet S1.

TABLE 2 | Experiment B.

Day
number

Tank 1 Tank 2

Fish
name

Total biomass
[g]

Fish
names

Total biomass
[g]

1 a 77 b 78

2 c 51 a,b 155

3 d 53 a,b,c 206

4 e 58 a,b,c,d 259

5 f 53 a,b,c,d,e 312

Daily biomass in Tank 1. The biomass in Tank 2 is an approximation estimated by
adding the weights of the fish coming from Tank 1, but the individual fish were not
taken out of the Tank 2 and weighted every day.
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TABLE 3 | Water/environmental conditions.

Min Max

Temperature [◦C] 16.9 18.5

pH 7.76 7.93

Ammonium 0.0 0.0

Water flow [m3/h] 0.54 0.54

Salinity [g/l] 33 33

O2 Saturation >80% >80%

Minimum and maximum values in relevant seawater parameters during
the experimental period (November–December). Daily values are listed in
Supplementary Data Sheet S2.

and 5,200 lm), avoiding the formation of shadows into the tanks
and using the same light conditions in both. The tanks, equipped
with a flow through system, were filled up to 81 cm from the
upper border with 810 L of naturally sand filtered seawater. One
camera was placed in each tank and exactly in the same position
in both tanks, obtaining in both situations the same visual angle.
The photoperiod was fixed at 12h/12h dark/light.

Experimental Set-Up
Experiment A was performed reducing the number of fish
to imitate the usual procedure in many physiological and
toxicological experiments. The fish are exposed to a given
condition or contaminant and every x-days a certain number
of fish (usually between 10 and 20, depending on the type of
analyses to be performed, their cost and the expected variability of
the parameter measured) are removed and sacrificed to perform
biochemical and histological analyses, while the rest remains in
the tank. After a new period of x-days the same number of fish
is removed and so on. This is usually done to examine the effect
of the contaminant, or the treatment, along time. In addition, we
were interested in having more replicates of the measurements
in tanks with only one fish, because, if it was a reliable system,
that would be the most convenient from the point of view of
reducing costs and animal suffering, and because many protocols
use only one-fish to perform diverse studies, as mentioned in the
introduction. Therefore, Experiment B was designed with two
purposes: firstly, to obtain more replicates from one-fish system,
but using different individual fish, and, secondly, to study the
behavior of the system for 1–5 individuals, since Experiment A
did not cover than range. In both, A and B Experiments, however,
the individuals came from a larger group of fish and had been
acclimated for at least 23 h to the identical settings as those used
for this study.

Experiment A – Systems With 1 to 50 Fish
Each of the two replicate groups consisted of 50 fish with a
biomass as similar to each other as possible (Table 1). The fish
were acclimated for 12 days to the new conditions, and they
were monitored and recorded during the next 5 days following
the procedure described below. After that, both groups were
reduced to 25 fish, trying to maintain a similar biomass in both
groups. The remaining 25 fish per group were acclimated for
another 2.5 days and subsequently monitored and recorded for

5 days. Past those 5 days both groups were reduced to 13 fish per
group, acclimated for 2.5 days and recorded for 5 days. Finally,
the groups were reduced to only one fish. Again, after 2.5 days
of acclimation, they were recorded for the final 5 days of the
experiment (Figure 1).

Experiment B – Systems With 1–5 Fish
The experimental schedule is shown in Figure 2. In this particular
case and during the 5 days the experiment lasted, tank 1 had only
one fish and every day the fish that had been 1 day in tank 1
was transferred to tank 2, and a new fish was placed in tank 1.
The new fish introduced every day in the experimental tank was
taken from the acclimation tank not used for the experiments.
All fish had an acclimation period of 23 h to the new experimental
conditions. For a better understanding of the procedure, each fish
has been named with a letter from a to f in Figure 2 and Table 2.
The approximate biomass is summarized in Table 2.

Data Acquisition
Data acquisition was done by video camera as described in
Eguiraun et al. (2014). In short, recording was performed using a
GoProHero3 camera with underwater housing inside each tank.
Raw data were recorded in 1080p high definition format, 24
frames per second (fps) and 16:9 video size and it was stored in
SanDisk 32Gb UltraMicroSDHCTM (Class 10) secure cards.

As already mentioned, the water flow and air intake were
halted during the recording period to avoid bubbles and
disturbances in the images. Recording was set to 1 h per day and

FIGURE 1 | Description of Experiment A. The fish number is halved in each
step except the last one, when it was reduced from 5 to 1 individual. T1 and
T2 indicate tank 1 and 2, respectively, and the sub-index the number of fish.
The number of days the activities lasted is shown under “Days” on the left.
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FIGURE 2 | Description of Experiment B. The fish number is kept constant,
only one fish, in tank 1. Each day the fish that had been for 1 day in tank 1
was transferred to tank 2. Thus, the number of fish in tank 2 increased by one
individual every day. T1 and T2 indicate tank 1 and 2, respectively. The
number of days the activity lasted is shown under “Days” on the left; each
letter within the tanks, a, b, c, d, e, and f refer to an individual fish.

approximately in the middle of that period a stochastic event (a
disturbance) consisting of a hit in the tank was introduced. The
disturbance is a stochastic event, because it is meant to occur in
a random manner, i.e., the fish must not be able to predict when
it will take place The images to be processed consisted of three
measures of the basal state, of 3.5 min each, and the 3.5 min
after the disturbance, as described in Eguiraun et al. (2014) and
in Figure 3.

Image Post-processing
It was performed as described by Eguiraun et al. (2014). Once
the four video clips (three arbitrary clips of the basal state
and one clip containing the system’s response to the event) per
tank and per day were located in the 1 h recording, they were
transformed into a 640 pixel× 480 pixel format image sequences
per video clip at 24 fps using the iMovie commercial software and
MPEG Streamclip free software. Subsequent image and feature
extraction were carried out with MATLAB R2014a (MathWorks
Inc.) running on a MacBookPro 2,6 GHz Intel Core i7 laptop with
a SSD storage disk and 16 Gb of RAM. The procedure used for
image and feature extraction is detailed in Supplementary Data
Sheet S3.

Trajectory Estimation
The methodology used from image acquisition to fish group
centroid trajectory estimation is depicted in Figure 4 and was
based on that described in Eguiraun et al. (2014) with the
modifications detailed in Supplementary Data Sheet S4 and
already used in Eguiraun et al. (2016). It was performed using
MATLAB R2014a (MathWorks Inc.). Firstly, the trajectory of the
cluster’s centroid was built computing the elements center’s in
every single frame, which led to a very noisy signal unsuitable
for the subsequent non-linear signal analysis. Thus, the noise of
the signal was reduced calculating the cluster’s centroid applying
the K-means algorithm to the number of elements in each frame
using the centers of the elements in the first frame as input
coordinates. Secondly, the trajectories in X and Y were analyzed
in the same format they were obtained although they have
different scale dimensions. X trajectories have dimension from 0
to 640 and Y trajectories have dimension from 0 to 480 due to the
640 × 480 pixel image size. The results indicated that analyzing
those raw trajectories leads to satisfactory results and differences
were not found between the results obtained analyzing the raw
and the normalized trajectories. However, and with the purpose
of building a more robust algorithm for future applications, the X
and Y trajectories presented in the current work were normalized
using Z-score technique. Supplementary Data sheet S5 contains
the data for each of the 200 calculated trajectories.

FIGURE 3 | Recording procedure. Three basal and one event response measurements were processed from the total recorded period of 1 h.
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FIGURE 4 | Data acquisition and processing workflow. Taken from Eguiraun et al. (2016).

Non-linear Trajectory Analysis
Shannon entropy has been used because our previous work
(Eguiraun et al., 2014) showed it to be the most sensitive
among five algorithms tested, namely: Shannon and permutation
entropies, and Katz, Higuchi, and Katz-Castiglioni’s fractal
dimensions, to serve as a tool for the non-invasive quantification
of fish responses and has subsequently been successfully applied
to the study of the effect of certain chemicals (methylmercury
and sodium selenite) on the complexity of the seabass centroid
trajectories (Eguiraun et al., 2014, 2016, 2018). The Shannon
entropy was initially described as an expression of the amount
of missing information within a message, since the concept
of entropy, within this particular context, was developed
by Shannon in his works on a mathematical theory of
communication (Shannon, 1948, 1951). Thus, the SE is a measure
of the predictability of the value of a variable. The variable
in our case is a time series consisting of samples constructed
as successive positions of the fishes’ cluster’s centroid (xi,yi)
in the frame of the image (640 pixels × 480 pixels; i.e.,
0 < xi < 640 and 0 < yi < 480). If the predictability of the
value of variables (x and y) is high, then the SE is low (i.e.,
if, knowing the values of xi−1 and yi−1, then it is easy to
predict xi and yi, respectively). On the other hand, the higher
the difficulty to predict xi and yi, the higher the SE. Thus, the
highest SE will correspond to a system whose centroid may
jump from any one position to any other one from frame to
frame (i.e., all the pixels will have the same probability (1/640

will be the probability for every xi and 1/480 for every yi).
The lowest SE will correspond to a system whose centroid
moves in a completely predictable manner: the centroid will
occupy some few positions with a very high probability and the
probability of occupying any other position will be practically
zero. A real-life system will be somewhere between these two
extremes.

We are aware of the fact that SE is not the optimal algorithm
to explain sophisticated mental or behavioral processes, but
we wish to stress that it is not our aim to study complex
behavioral characteristics, as may be the orientation of the
individuals, their interactions, how the shoal is formed, the
presence of leaders, how the information flows among the
individuals initiation and characteristics of collective behavior,
etc. That kind of complex studies requires a completely different
technical set up regarding image acquisition, data extraction,
and analysis (see all the above mentioned papers on collective
behavior and Gauvrit et al. (2017) for a recently published
method of analysis for complex human behavior). We use the
SE because we aim at implementing a system as simple and
robust as possible and with the sole purpose of characterizing
the trajectory signals of different experimental cases to perform
comparisons among them. This very same simplicity, already
described in our previous work (Eguiraun et al., 2014) and
particularly regarding the 2D analysis of a 3D event together
with the image segmentation method, makes our approach not
suitable for complex behavioral studies, but adequate for routine
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monitoring of normal/not normal behaviors of the fish system,
not of individual fish.

As already mentioned, the SE was first described by Shannon
(1948, 1951) and it is calculated by the equation:

H(X) = −
∑
xi∈2

p(xi) logp(xi) = −E[logp(xi)]

Where X represents a random variable with a set of values
2 and probability mass function p (xi) = Pr {X = xi }, xi ∈

2, and E represents the expectation operator. Note that
p log p = 0 if p = 0. The implementation in MATLAB
R2014a (MathWorks Inc.) of the SE function is described in
Supplementary Data Sheet S6.

Statistical Parameters
The coefficients of variation (CV), defined as the ratio of the
standard deviation to the mean, were calculated in Microsoft
Office Excel 2007 and the curve fittings were performed using the
Curve Fitting Toolbox 3.4.1 that is included in MATLAB R2014a
(MathWorks Inc.).

RESULTS

Table 4 and Figure 5 show the daily evolution in both tanks
of the SE corresponding to the basal trajectories (T1-b and T2-
b in Figure 5) and to the trajectories followed in response to
the stochastic event (T1-e and T2-e in Figure 5) of Experiment
A. The responses obtained in both tanks were very similar and
the SE of the system kept a power relationship with the number
of fish (Table 5). In addition, the SE of the basal and response
trajectories in tanks with 13 or more fish had always values higher
than 3.97, while the in one-fish systems they were lower than 2.79.
The coefficient of variation (CV) of the basal SE values also kept
a relationship with the number of fish, being largest in the 1 fish
systems (60.8% vs. about 4–8% for 50–13 fish, see Table 6). The
raw data are listed in Supplementary Data Sheet S7.

The results of Experiment B are shown in Figure 6. As in
Experiment A, the SE of one-fish systems always kept similarly
low values (lower than 2.2 for the basal and 2.7 for the response)

and the SE of both the basal and response trajectories increased
with increasing number of fish (Figure 6) following a power
function (Table 5). Also as in Experiment A, the CV of the SE
in the one-fish systems was much larger than in any of the other
ones: 43.7% vs. about 10% for the 2–5 fish systems (Table 6). The
raw data are listed in Supplementary Data Sheet S8.

Taken the results of both experiments together improved the
goodness of the fit of the power relationship between the SE
and number of fish (R2 = 0.93 for the basal and R2 = 0.92 for
the response) and confirmed the higher variability in the SE of
low-fish number systems, particularly those with only one-fish
(Tables 5, 6 and Figure 7).

BWS Model
The purpose of measuring the SE of the basal and of the disturbed
states was to obtain information on two relevant statuses (i.e.,
shoaling and schooling) in a healthy system in order to be
integrated in a BWS. Since we found that both SE values kept a
similar relationship with the number of fish, but they were not
identical (Figure 7), we considered that the inclusion of both
might strengthen a potential model that would ultimately permit
their integration into a BWS monitoring tool, an example of
which is described below. As already mentioned, our hypothesis,
supported by previous works on the alteration of the SE in seabass
systems contaminated with MeHg (Eguiraun et al., 2014, 2018), is
that those SE values would be different in a healthy system than
in an unhealthy one, and that this information may make possible
to construct a model for a BWS.

The first step in the construction of the model would be the
collection of data corresponding to the healthy system under
the same conditions in which the monitoring is going to be
performed. These data include the size and number of the fish,
and all the other environmental parameters. From these data,
the SE of both the basal and disturbed states of both the control
(healthy) system and of the system being monitored should be
estimated. Using these four measurements, three sub-models
would be constructed whose combination would provide the
integrated or “overall” model, as shown in Figure 8. The three
sub-models are: (i) Basal reference sub-model: built using the
entropy generated by the fish system in its basal state; (ii) Event

TABLE 4 | Daily evolution of the Shannon entropy in Experiment A in tanks 1 (T1) and 2 (T2).

Day 1 Day 2 Day 3 Day 4 Day 5

# fish Tank # Basal Event Basal Event Basal Event Basal Event Basal Event

50 T1 4.92 ± 0.14 5.16 4.98 ± 0.15 5.23 4.73 ± 0.11 5.00 4.79 ± 0.04 4.77 5.09 ± 0.28 4.82

T2 4.62 ± 0.07 4.62 4.66 ± 0.09 5.68 4.60 ± 0.04 4.89 4.63 ± 0.08 4.84 4.68 ± 0.10 4.81

25 T1 4.71 ± 0.01 4.85 4.47 ± 0.10 4.53 4.50 ± 0.14 4.41 4.30 ± 0.05 4.75 4.46 ± 0.11 5.46

T2 4.76 ± 0.04 4.98 4.78 ± 0.22 4.76 4.67 ± 0.11 4.73 4.67 ± 0.10 4.58 4.69 ± 0.36 5.41

13 T1 4.11 ± 0.23 4.27 4.05 ± 0.11 3.88 4.75 ± 0.45 4.43 4.20 ± 0.34 4.05 4.34 ± 0.55 4.40

T2 3.97 ± 0.17 4.47 3.99 ± 0.20 4.40 4.21 ± 0.27 4.16 3.99 ± 0.08 4.02 3.97 ± 0.08 4.06

1 T1 0.59 ± 0.39 2.79 1.84 ± 0.63 2.63 0.97 ± 0.77 2.26 1.34 ± 0.34 2.15 0.87 ± 0.03 1.49

T2 0.52 ± 0.23 2.79 0.73 ± 0.19 1.63 0.38 ± 0.13 2.07 1.40 ± 0.47 1.50 2.01 ± 0.49 2.31

Shannon entropy (SE) of the basal (average of six different measurements; two tanks and three measurements per tank) and event responses are shown. The raw data
are listed in Supplementary Data Sheet S7.
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FIGURE 5 | Daily evolution of the Shannon entropy (SE) for Experiment A showing the SE values obtained in tanks 1 and 2 for the basal state (T1-b and T2-b) and in
response to the stochastic event (T1-e and T2-e). The number of individuals is indicated on the Top-Left of each plot.

TABLE 5 | Curve fitting parameters and goodness of the fit of the Shannon entropy (SE) vs. fish number.

y = a . xb + c Basal 95% confidence bounds Response 95% confidence bounds

For 1–5 fish systems

Coefficients a −143.6 −22700, 22400 −0.92 −11.77, −0.06

b −0.01 −1.48, 1.47 −1.89 −7.80, 4.01

c 145.10 −22400, 22700 3.42 2.60, 4.23

Goodness of the fit SSE 8.07 0.42

R2 0.72 0.79

Adjusted R2 0.70 0.73

RMSE 0.55 0.24

For 1–50 fish systems

Coefficients a −4.17 −4.70, −3.64 −5.92 −11.77, −0.06

b −0.49 −0.64, −0.34 −0.16 −0.38, 0.05

c 5.40 4.87, 5.94 8.21 2.31, 14.10

Goodness of the fit SSE 28.24 5.90

R2 0.93 0.92

Adjusted R2 0.92 0.91

RMSE 0.44 0.35

The SE values (y) of the basal state and of the response to the event were fitted as a function of the fish number (x). a, b, and c are the coefficients of the curve. The
goodness of the fit was estimated by the sum of squares due to error (SSE), R-square, adjusted R-square, and root mean squared error (RMSE).

reference sub-model: built using the entropy of the fish system in
response to a disturbance; (iii) Basal/Event relationship reference
sub-model: built using the ratio between the “basal” and the
“event” SE values.

The difference between the expected SE of the healthy system
and the online signals measured by the monitoring tool detecting
the actual SE of the system (for both the basal and disturbed
statuses) will be called “error signal.” These error signals are

the outputs of the proposed “overall” model and they should be
integrated in knowledge models of higher order, i.e., as inputs to
the “Model Integration” block in Figure 8. Error signals larger
than the previously estimated normal variation in a healthy
system should be interpreted as a deviation from the norm in
the system (i.e., the introduction of a possibly undesirable agent)
and the supervisor in charge of the monitoring operation should
proceed to identify the cause of such deviation and follow the
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TABLE 6 | Coefficients of variation (CV) of the measured SE values for Experiments A and B.

Number of fish

SE 50 25 13 5 4 3 2 1

Experiment A, all measurements Basal 4,19 4,34 8,10 60.83

Experiment B, all measurements Basal 9,90 10,03 8,63 9,85 43.66

Experiments A+B

All measurements Basal 4,19 4,34 8,10 9,90 10,03 8,63 9,85 55,15

AVG of three replicates Basal 2,31 2,69 5,86 37,12

All measurements Response 6,12 7,20 4,93 19,51

The CV of “All measurements” were calculated including all the SE values obtained, i.e., three basal and one response for each day. The “AVG of 3 replicates” were
calculated including only the average of the three basal replicates obtained each day. There were no replicates of the responses to the event.

FIGURE 6 | Daily evolution of the Shannon entropy in Experiment B. Tank 1 (Left plot) contained only one fish, but a different fish every day, during the 5
experimental days. The number of fish in Tank 2 (Right plot) increased by one individual daily. The number of fish is indicated on the Top-Left of the panels. The
square markers correspond to the SE values for the basal states and the crosses to the SE in response to the event.

FIGURE 7 | Curve fitting of the Shannon entropy as a function of the fish number. The basal state (Left) and the response to the event (Right) are shown together
with the 95% confidence bounds. The parameters of the curve fitting are shown in Table 5.

previously established corrective actions. Since it is desirable that
the normal variation is a low as possible, one-fish systems (with
CV of up to 60%) should be avoided.

DISCUSSION

The aim of the present work was to obtain an essential piece
of information for BWS design purposes and for physiological
research: to elucidate whether the number of fish affected the

SE of the system in a known shoaling fish species (European
seabass) and, if so, what type of relationship these two variables
kept. As we have already mentioned, it must be noted that we
did not aim at mapping behavioral characteristics such as time
swimming or resting, aggressive behavior, the kind of shoaling
and schooling itself or inter-individual interactions which would
require a different methodological approach and algorithms more
sophisticated than the SE to analyze the data (see for example the
works by Tunstrøm et al., 2013; Teles et al., 2015; Gauvrit et al.,
2017; Crosato et al., 2018).
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FIGURE 8 | Schematic representation of the model defining inputs, generated outputs due to error signals, internal variables, and sub-model interactions. The
output error signals should feed the subsequent phase of the model where all this information is integrated in the Model Integration box.

The two experiments performed, A and B, are considered
to contribute equally to the study of the system’s behavior
with different number of fish, and whether the experiment was
performed by decreasing or by increasing the number of fish in
the tank should not have a bearing on the results because the fish
had been acclimated for a long enough period of time prior to
the recordings. The acclimation periods we have used (12 and
2.5 days and 23 h) are longer or similar to most of those reported
in the literature, for example Stienessen and Parrish (2013) used
only 1 day and Melvin et al. (2017) indicated that these kind
of studies should be preceded by an acclimation period of at
least several hours to evaluate normal baseline behaviors. For
the freshwater species they used, mosquitofish (Gambusia affinis),
this period was 8 h. Moreover, in both Melvin et al. (2017) and our
present work, the fish had been acclimated to the laboratory tanks
for 3 months prior to the initiation of the experiment, which was
carried out in similar tanks and conditions to those to which they
had been acclimated to.

Implementation of a BWS, or establishment of an
experimental fish system, requires the characterization of
the “normal” or “healthy” biological system, in order to be
able to detect alterations provoked by the introduction of
undesirable agents (such as predators, infectious or parasitic
agents, contaminants or others) that would make the system
become unbalanced, stressed or unhealthy. The healthy
system will have a basal and a disturbed state, each with
their corresponding SE values that will be “normal,” meaning
that those will represent the shoaling basal state and the
schooling reaction to a stochastic stimulus. The introduction
of a detrimental agent (chronic stress, a toxicant, pathogen,

parasite, etc.) should initiate the transformation of the “healthy”
system into an “unhealthy” one and, consequently, induce
alterations in the SE of both the basal and altered statuses. We
initially thought that the SE in the response to a disturbance
(i.e., the schooling reaction) might reflect better the health
status of the system, so that if the fish had been affected for
example, by a contaminant, its reflexes might have been altered
and hence the initiation of the schooling should be different
from the response of a healthy one (Eguiraun et al., 2014).
On the other hand, it was also possible that the SE of the
shoaling basal state itself might be different in healthy than in
contaminated fish-systems and, in any case, it was likely that
the information obtained from both measurements would be
more robust than the information provided by any one of them.
Therefore, we decided to include the analysis of both, the basal
and disturbed states, in the present work and in the proposed
model.

The number of fish is a characteristic intrinsic to the system
and it should, a priori, not have a bearing on its health status.
However, in the mid to long-term it may affect the health of the
system if the number is too high or too low. Thus, in order to
save costs, animal suffering and to respect the legal framework,
it is desirable to select the lowest number that affects as little as
possible the health status of the system, i.e., the lowest number of
fish that provides results according to the variables being tested,
such as contaminant concentration, and not to the composition
of the system itself.

The one-fish systems had unusually low SE values, which
may be explained by the shoaling nature of the species: when
placed alone, we observed that fish moved very little, and
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this will translate in a low SE value due to the fact that it
would be easier to predict the positions xi and yi (knowing
xi−1 and yi−1) of a one-fish system that is hardly moving
(we hypothesize that this is probably due to fear, as explained
in the next paragraph), than the centroid of a cluster of
fishes feeling safer within a shoal of increasing size that will
probably display increased unpredictability of movements due
to either free, random swimming, or to schooling to escape
predators. The increased difficulty in predicting the trajectory
of the shoal would result in concomitantly increasing SE values,
as shown in Tank 2 of Experiment B and in Experiment
A.

To explain the above hypothesis, we would like to introduce
the selfish herd theory proposed by Hamilton (1971), according
to which individuals in a herd will try to avoid the periphery
where the risk of predation is greatest. This theory was
empirically proven in a situation of stress for the minnow
(Phoxinus phoxinus) (Krause, 1993) and for sticklebacks
(Gasterosteus aculeatus) (Krause and Tegeder, 1994). Applying
this theory, it is reasonable to assume: (i) that a fish which
would naturally shoal, being alone in a clean tank where
it cannot even exhibit full mimicry, will feel exposed and
stressed, and will try to move as little as possible to avoid
attracting undesired attention from potential predators, (ii) that
the intensity of the response to this stress will vary according
to the individual genotype, stock of origin and possibly life
history of the individual, as shown by Herbert-Read et al.
(2017), and (iii) that those factors will, in turn, contribute to
the large CV of individual SE values of 1-fish systems, which
must necessarily reflect the variability in the responses from each
different individual.

Consequently, we would not recommend performing
physiological or toxicological experiments, nor set up a BWS,
with only one fish, given that the set up itself will likely
influence the well being of the individual. Rather, it should be
selected a system with the lowest number of fish that allows
the individuals to feel safe, i.e., the lowest number that allow
the fish feel that they are in a shoal and with possibilities to
school and escape predators if necessary. For our fish and
experimental conditions, somewhere between 5 and 13 fish
would be acceptable. It is interesting to note that this number
agrees with the 6–10 number of interacting neighbors to initiate
convergence to swarming in birds (Shang and Bouffanais, 2014)
and with the “at least four neighbors” necessary to achieve
schooling behavior in fish (Huth and Wissel, 1994) previously
mentioned.

The concepts and results shown here may apply not only to
European seabass, but also to other similarly shoaling species.
Although the behavior and response of the system will likely
be species-specific, this approach might be applied with few
modifications to monitoring species such as salmon, seabream,
charr, cod, trout, and others of high relevance to the aquaculture
industry. Furthermore, once the number of fish to be used in
live systems has been scientifically selected, complex behavioral
studies may be carried out using some of the more sophisticated
analytical methods described by different authors and software
(see references from the section “Introduction,” “Material and

Methods,” and the free available software1). The main use of the
present work would be to contribute to animal welfare and to
scientifically justify the selection of the lowest possible number
of individuals to be experimented upon when applying for the
permit to perform experiments to the respective Animal Welfare
Committees.

CONCLUSIONS

We believe this to be the first scientific work designed to estimate
the minimum number of individuals to be used in studies of
shoaling fish species (albeit not of the shoaling itself) that reaches
a compromise between the Reduction in number demanded by
animal welfare guidelines and a low (or as low as possible)
variability in the fish system’s response. This work also presents
for the first time a potential model using the SE of the biological
system, for the robust and practical implementation of a small-
scale BW-monitoring system (to monitor the health and welfare
of the fish) into an intelligent aquaculture platform.

Several conclusions can be drawn from the present study. One
is that to set-up a monitoring BWS or an experiment using a
shoaling species such as the European seabass, one should avoid
using 1-fish systems. The second is that the minimum number
of fish to monitor should be between five and 13 fish since that
number is a good compromise between acceptable variability in
the results and the concept of Reduction to satisfy the criteria
for animal welfare in experimental settings. A third conclusion
is that one should use both the basal SE and the SE in response
to an event in the design of the practical model, since they give
complementary information and both parameters are relevant.
Finally, there is still a significant amount of work that needs to
be done, as described in the next section, in order to further
develop the BWS approach in practical aquaculture settings and,
in particular, in Intelligent Aquaculture structures.

Future Work
Further work within this line of research should include the
validation of the present results using individuals of different size
and species, as well as the development and validation of an early
response model (such as the one presented above) of the system
integrating all the relevant information needed to establish the
“normal” response of the system. Once the monitoring system is
defined, the next step will be its integration within the intelligent
aquaculture structure. Additionally, it must be borne in mind that
data on the system’s SE can be obtained by processing images,
as we have done here, but infrared images, echo signals and
labels carried by the fish are also methods with potential to
provide such relevant information that have been tested and offer
great promise (Føre et al., 2011, 2017). Last, but not least, the
use of more complex methods for the acquisition of behavioral
data and of algorithms for their analysis may provide further
evidence as to the type of disturbance that may affect the system,
when such disturbance takes place. The current procedure is only
designed to identify a normal operating system from a deviated

1http://complexitycalculator.com
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one, which may be enough for the farmer or the researcher to
identify the presence of an agent causing an alteration into the
system but, as mentioned above, more fine analyses might help
to elucidate the type of alteration suffered and/or the type of
external agent introduced that one should look for. The latter
may be particularly interesting in the case of novel or unexpected
contaminants.

It is a challenge to speculate on how a very large fish system, for
example with several hundred thousand fish, may behave. This
question, however, is very important if one wishes to optimize, in
a rational manner, the building of large off-shore fish aquaculture
structures. Whether it is the SE or some other better suited
algorithm the one that may help us to understand the dynamics
of such large systems and optimize them and the welfare of
the fish, we cannot say at this time, but it is with no doubt
a very interesting and challenging field of research that will
contribute practical data to fish farmers. Future works in this field
will require the contribution from experts with wide and very
different fields of expertise.
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