
The Serbian Society for Ceramic Materials The Academy of Engineering Sciences of Serbia Institute for Multidisciplinary Research - University of Belgrade Institute of Physics - University of Belgrade Vinča Institute of Nuclear Sciences - University of Belgrade

Edited by: Branko Matović Zorica Branković Dušan Bućevac Vladimir V. Srdić Programme and Book of Abstracts of The Third Conference of The Serbian Society for Ceramic Materilas **publishes abstracts from the field of ceramics, which are presented at international Conference.**

Editors-in-Chief

Dr Branko Matović Dr. Zorica Branković Dr. Dušan Bučevac Prof. Vladimir V. Srdić

Publisher

Institute for Multidisciplinary Research, University of Belgrade Kneza Višeslava 1, 11000 Belgrade, Serbia

For Publisher Prof. Dr Sonja Veljović Jovanović

Printing layout Vladimir V. Srdić

Press Zonex, Beograd, Serbia

CIP – Каталогизација у публикацији Народна библиотека Србије, Београд

666.3/.7(048) 66.017/.018(048)

DRUŠTVO za keramičke materijale Srbije. Konferencija (3 ; 2015 ; Beograd)

Programme ; and the Book of Abstracts / 3rd Conference of the Serbian Society for Ceramic Materials, 3CSCS-2015, June 15-17, 2015, Belgrade, Serbia ; [organizers] The Serbian Society for Ceramic Materials... [et al.] ; edited by Branko Matović ... [et al.]. - Belgrade : Institute for Multidisciplinary Research, University, 2015 (Beograd : Zonex). - 128 str. ; 24 cm

Tiraž 140. - Str. 6: Welcome Message / Branko Matovic. - Registar.

ISBN 978-86-80109-19-0

а) Керамика - Апстракти b) Наука о материјалима - Апстракти c) Наноматеријали - Апстракти

COBISS.SR-ID 215704332

The Serbian Society for Ceramic Materials The Academy of Engineering Sciences of Serbia Institute for Multidisciplinary Research-University of Belgrade Institute of Physics-University of Belgrade Vinča Institute of Nuclear Sciences-University of Belgrade

PROGRAMME AND THE BOOK OF ABSTRACTS

3rd Conference of The Serbian Society for Ceramic Materials

June 15-17, 2015 Belgrade, Serbia 3CSCS-2015

Edited by: Branko Matović Zorica Branković Dušan Bućevac Vladimir V. Srdić 0-11

HIGHLY CONDUCTIVE LANTHANOIDE STABILIZED $\delta\text{-}Bi_2O_3$ PHASES

<u>Aleksandra Dapčević¹</u>, Dejan Poleti¹, Jelena Rogan¹, Aleksandar Radojković², Goran Branković²

¹Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia ²Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1a, Belgrade, Serbia

Due to the increasing demands for new highly efficient and environmentally friendly energy conversion technologies, the oxide ion conductors applicable in solid oxide fuel cells (SOFCs) have widely been investigated. The aim is to find a suitable electrolyte with the ionic conductivity high enough at intermediate temperatures in order to reduce the operating temperature of SOFCs. The high temperature δ -Bi₂O₃ phase has been proposed as a good candidate for electrolyte in SOFCs because it is the fastest known ionic conductor.

In this study, the possibility to stabilize O^{2^-} ion conductors related to the δ -Bi₂O₃ polymorph in Bi₂O₃-Tm₂O₃ and Bi₂O₃-Lu₂O₃ systems was investigated. Six starting mixtures with the following compositions (Bi_{1-x}Tm_x)₂O₃, x = 0.11, 0.14 and 0.20, and (Bi_{1-y}Lu_y)₂O₃, y = 0.15, 0.20 and 0.25, were dry homogenized in an agate mortar, heat treated at 750 °C for 3 h and then slowly furnace cooled. The samples were characterized by XRD, TEM/SAED, SEM, DTA and SEI techniques.

Based on XRD and TEM/SAED, the targeted cubic δ -Bi₂O₃ single-phase samples (space group $Fm\bar{3}m$) were successfully obtained within all six systems. The unit cell parameter of both Tm- and Lu-doped δ -Bi₂O₃ decreases as dopant content increases. By comparing Tm- and Lu-doped δ -Bi₂O₃ phases mutually, an expected increase of the unit cell parameters with larger ionic radii of dopant was found [$r_i(Tm^{3+}) = 0.88$ Å, and $r_i(Lu^{3+}) = 0.86$ Å in the octahedral environment¹].

Electrochemical impedance of δ -Bi₂O₃ phases was measured between 300 and 800 °C. At temperatures 550 – 800 °C the conductivities are of the same order of magnitude (0.1 – 0.4 S cm⁻¹), but with lowering temperature they rapidly decrease resulting in two activation energies. This is due to the changes in conductivity mechanism which will be discussed. According to the cyclic DTA curves, no phase transitions were observed in the following samples: (Bi_{0.8}Tm_{0.2})₂O₃, (Bi_{0.8}Lu_{0.2})₂O₃ and (Bi_{0.75}Lu_{0.25})₂O₃, indicating that these δ -Bi₂O₃ phases are stable within the whole investigated interval, *i.e.*, from room temperature to 985 °C. This means that the application of these electrolyte materials could result not only in the significant enhancement of IT-SOFC electrochemical performance, but also in their good structural stability over long time service in a wide temperature range.

1. R. D. Shannon, Acta Cryst. A, 32 (1976) 751