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Excitation of guided waves in materials with negative refraction
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Abstract

We study, both analytically and numerically, electromagnetic beam transmission through a layered structure that includes a wave-
guide slab of metamaterial with negative refraction. The resonant excitation of the leaky guided modes, via attenuated total reflection
configuration, can lead to the formation of an anomalous lateral shift in the transmitted beam, as well as to the zero reflection (i.e., high
or even total transparency). However, we demonstrate a trade-off between high transparency and high lateral beam shift.
� 2007 Elsevier B.V. All rights reserved.

PACS: 78.68.+m; 42.25.Bs; 42.79.Gn
1. Introduction

Many years ago, electromagnetic wave propagation in
an isotropic medium with a negative dielectric permittivity
e(x) < 0 and negative magnetic permeability l(x) < 0, over
a common band of frequencies x, has been studied theoret-
ically by Veselago [1]. It was demonstrated that propaga-
tion of light, under such conditions, can exhibit very
unusual properties: negative refraction, reversed Doppler
shift and inverse Cerenkov radiation. Since in such media,
the wave vector~k, the electric field~E, and the magnetic field
~H of a wave form a left-handed orthogonal set, they are
labeled as left-handed (LH) media, as opposite to the con-
ventional right-handed (RH) media. In addition, there
appears a negative group velocity (directed oppositely to
the wave phase velocity). No naturally existing LH medium
has yet been discovered. Therefore, it became necessary to
turn to artificial, man-made materials, called metamateri-
als. Initially, LH metamaterials (LHM) have been fabri-
cated in the gigahertz range of frequencies [2] and, quite
recently, in telecommunication [3] and visible [4,5] range
of wavelengths. From the point of view of possible applica-
tions, it is worth noting that actual LHM are composed of
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unit cells of finite dimensions and thus are heterogeneous.
In order to consider them as continuous media and intro-
duce an effective dielectric permittivity and effective mag-
netic permeability that are simultaneously negative, it is
necessary to observe the homogenization limit [6]. Never-
theless, the optical properties of such LHM have attracted
considerable attention in the past several years in efforts to
develop novel optical devices, including perfect lenses [7].

One of the possible applications of LHM, that have not
yet been fully explored, is their ability to guide modes along
a waveguide (with LHM core and RH cladding) in unusual
fashion, as compared to a waveguide that is made
completely of conventional RH materials. Although the
guiding conditions of a waveguide slab with negative
refraction [8,9] and excitation of guided modes [10] have
been studied to a degree, more comprehensive investigation
of these phenomena is needed. In order to excite guided
waves, it is necessary to satisfy phase-matching conditions
that can only be achieved with the use of a properly chosen
layered structure. In that case, the energy of the guided
modes can leak out of the layered structure and thus, lead
to their reversible damping. This is in contrast to an irre-
versible damping that is due to the energy absorption
within the layered structure itself. Namely, a reversibility
of the leaky guided wave (LGW) damping allows for a res-
onant energy pumping by an incident beam, that makes
possible the perfect matching of the source and the sink
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and leads to zero reflectivity or, when losses can be
neglected, to the total transparency of a waveguide slab
[11]. The crucial role of a LGW is well established as a
mean of the giant lateral reflected beam shifts when a
LGW is guided by a single interface between RH and LH
materials [12]. A study of the structure and the basic prop-
erties of electromagnetic waves guided by a LH waveguide
slab show their dramatically different properties from those
in a conventional waveguide. For the purpose of this paper,
we are interested only in the excitation of the so called
‘‘fast’’ guided modes with the phase velocity higher than
the phase velocity in an infinite medium with the same
refractive index. This is in contrast to the ‘‘slow’’ guided
modes that are out of the scope of this paper. A LH wave-
guide can support the fast guided modes of both TE and
TM polarizations, but the sign of their total energy flux
depends on the properties of the waveguide cladding and
core. Thus, they can be ‘‘forward’’ propagating (the total
energy flux or the group velocity is directed along their
wave vector) or ‘‘backward’’ propagating in the opposite
case. This is in contrast with a bulk plane wave in LHM,
when a group velocity has to be negative (backward). In
fact, the total energy flux of a guided mode consists of
the two parts: one from the LH core that is always negative
and, one from the RH cladding that is always positive. As a
consequence, the group velocity will be positive (forward)
when the part from the RH cladding is grater than the part
from the LH core and, negative (backward) in the opposite
case.

2. Formulation of the problem

The excitation of LGW is usually realized via attenuated
or frustrated total internal reflection. The so called Otto
configuration (prism-air gap-dielectric) has been used to
study the excitation of LGW, replacing a dielectric or a
metal by a sufficiently thick LH waveguide slab (semi-infi-
nite LHM) [10,12]. In the present paper, however, in order
to study the transport of an incoming radiation beam
across the layered structure of the finite width, we add
the mirror-symmetrical air gap-prism structure on the rear
side of the LH waveguide slab (see Fig. 1). We consider a
Gaussian beam that has the beam width w and that is obli-
quely incident from a medium 1 (usually a prism) upon a
two-dimensional, three layered structure (media 2, 3 and
Fig. 1. Geometry of the problem.
4) and can leak through the medium 5 that is the same as
a medium 1. The angle of incidence hi is defined with
respect to the normal to the interface (z-axes) so that the
wave vector component along the interface is ki = kpsinhi,
where kp = x(eplp)1/2/c represents the wave number within
the prisms, and ep, lp are relative dielectric permittivity and
relative magnetic permeability of the prisms. In numerical
calculations we will assume the media 2 and 4 (waveguide
cladding) to be the air gaps. However, our analytical results
are generally valid for e1l151, too. Both air gaps have the
width a, while we denote the width of the LH core by d

(medium 3, characterized by e2(x), l2(x)). If the beam is
TE polarized it is convenient to work with the electric field,
while for TM polarization one will rather use the magnetic
field of the beam. In both cases, the fields are oriented nor-
mally to the plane of incidence, i.e., along y-axis, and are
consequently continuous across the boundaries between
the media. In the present paper, however, we confine our-
selves to the case of TE polarization. The results for TM
case can be obtained by mutual replacement of the permit-
tivity and the permeability within the gaps and within the
LH core. The electric field of the incident beam at the inter-
face z = 0 has the form: Eiðx; z ¼ 0Þ ¼ expð�x2=2w2

x � ikixÞ,
where wx = w/cos(hi). The prisms and the gap layers are
assumed non-dispersive and non-dissipative, while the
LH core (medium 3) is assumed to be a non-dissipative
LHM with negative both e2(x) and l2(x) that have to be
frequency dependent and are shown to be of the following
form [2]:

e2ðxÞ ¼ 1�
x2

p

x2
; l2ðxÞ ¼ 1� F x2

x2 � x2
r

ð1Þ

Here, the parameters that have been chosen to fit experi-
mental data of Ref. [2] are: xp/xr = 2.5; F = 0.56. Since
the input beam is incident from an optically dense medium
(eplp > e1l1) at an incident angle larger than the angle of
total internal reflection, an interface between media 1 and
2 generates a reflected wave and a wave transmitted in
the form of evanescent fields that can couple with the eva-
nescent fields of the guided modes supported by the LH
waveguide core. These guided waves appear to be eigen-
modes of a LH waveguide slab (when the prisms are
removed), that satisfy the following dispersion relations:

Dm � 1� a tanðj2d=2� mp=2Þ ¼ 0; m ¼ 0; 1; 2; . . . ð2Þ
Here, a ¼ l1j2=l2j1;j1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � e1l1

p
;j2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2l2 � j2

p
;j¼

kic=x; dx=c! d. The modes are symmetric (with respect to
the field profile within the core) or even for m = 0, 2, 4, . . .
and anti-symmetric or odd for m = 1, 3, 5, . . ..They are fast
(with respect to their phase velocity) when j2 is real, and
they are slow when j2 is imaginary (j1 has to be real for
a guided wave). At the same time, the modes can be ‘‘for-
ward’’ (with respect to their group velocity vg) when vg > 0
and they are ‘‘backward’’ when vg < 0. The group velocity
of a guided wave is defined as vg = Px/W, where P x ¼R1
�1 Sxdz represents the integrated x-component of the

Poynting vector Sx, while W > 0 represents the integrated
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Fig. 2. Existence regions for symmetric m = 2, 4, 6, . . . (a), and anti-symmetric m = 1,3,5, . . . (b) modes and d = 5. No fast modes exist in the shaded
regions. Solid lines represent boundary curves below which modes with the labeled or higher values of m do not exist. Dotted lines represent jl2(x)j as a
function of je2(x)j according to expressions (1). Points A–F correspond to the plots (a)–(f) in Figs. 3 and 4.
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(also with respect to z) energy density of the dispersive med-
ia. Thus, the sign of the total energy flux determines the sign
of the group velocity, as expected. It follows from (2), that
the fundamental (m = 0) mode can be slow, but the fast
(m = 0) mode does not exist at all in a LH waveguide slab.
For m = 1, the modes can be either slow or fast, while the
higher order modes (m = 2, 3, 4, . . .) are obviously fast.
Since in the present paper, we are dealing with the fast
modes, the lowest order mode to investigate is m = 1 anti-
symmetric mode. The regions of existence of fast guided
modes are presented in Fig. 2a and b, for symmetric
(m = 2, 4, . . .) and anti-symmetric (m = 1, 3, . . .) modes,
respectively. No fast modes exist in the shaded regions.
The solid lines represent boundary curves for each particu-
lar m, below which the modes with the labeled and the high-
er values of m do not exist. Let us mention that e2(x) and
l2(x) are both negative in the frequency range
xr < x < xr/(1 � F)1/2, and this is imposed for the existence
of the guided waves if e1 = l1 = 1, i.e., when gaps are cho-
sen to be the air. Then, for the parameter values given above
1.75 < je2(x)j < 5.25 and jl2 (x)j > 0. Dotted lines represent
jl2(x)j as a function of je2(x)j in the above mentioned range
of frequencies. Notice that the frequency decreases when
going from the point A towards the point F.

3. Results and discussion

When the prisms are included, the fast LGW can be
excited if the angle of incidence hi satisfies the following
relation e1l1=eplp < sin2 hi < e2l2=eplp. For an incident
plane wave, zero reflection jRj2 = 0 (or total transparency
jTj2 = 1 when losses are negligible) can be achieved if the
following condition is satisfied:

sinh½2j1a� cos½j2d� � 1� a2

2a
cosh½2j1a� sin½j2d�

¼
b2

p � 1

b2
p þ 1

1þ a2

2a
sin½j2d� ð3Þ
Here, bp ¼ l1jp=lpj1; jp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eplp � j2

q
. It is worth noting

that when the losses are taken into account, e2 and l2

become complex, and both real and imaginary parts of
Eq. (3) have to be simultaneously equal to zero in order
to achieve zero reflectivity (see Ref. [12]). Of course, in that
case, the total transparency cannot be achieved. Neverthe-
less, the transparency may remain high when the condition
(3) is fulfilled. However, within the plane wave approxima-
tion, no lateral shifts in the reflected and the transmitted
waves can be observed. If we consider an input beam rather
than an incident plane wave, an anomalous lateral shift in a
transmitted wave can appear. In fact, there is a trade-off
between the effects of high transparency and high lateral
shift. As an incident beam narrows, the transparency peak
declines from unity while the lateral shift becomes more
and more pronounced. The shift can be in forward or back-
ward direction, depending on the gap and the slab widths,
as well as on the frequency of the incident radiation. We
have solved the problem both analytically and numerically.
The following expression describes transmitted electric field
distribution of the transmitted beam (the amplitude of the
input beam is assumed to be equal to unity):

Et ¼ R12

ffiffiffi
p
2

r
j dm j wx expð� x2

2w2
x

þ ikixþ c2
mÞ�erfcðrmcmÞ;

m ¼ 1; 2; 3; . . . ð4Þ

where R12 is the reflection coefficient from a single bound-
ary between media 1 and 2 (j R12j2 ¼ 1Þ; dm ¼
½4bp=ð1þ b2

pÞ� expð�2j1aÞðoDm=ojÞ�1
Dm¼0 and is inversely

proportional to the integrated energy flux (carried by the
excited fast guided mode) over the gaps and LH slab;

cm¼ 1ffiffi
2
p dmwx� x

wx
þ iwxðki� km0Þ

h i
; rm¼ sgnðdmÞ¼ sgnðvgm),

where vgm is the group velocity of the m mode; a = xa/c
is the normalized width of the gaps; km0 is the solution of
the dispersion Eq. (2) with respect to ki, and erfc (cm) is
the complementary error function of the real argument
when ki = km0. One can see, that the sign of vgm determines
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whether the shift of the transmitted beam will be in the for-
ward or backward direction with respect to the obliquely
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Fig. 3. Contour plots of the transparency as a function of the angle of incidenc
Plots (a)–(f) correspond to the points A–F in Fig. 2, and different modes for: (a)
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incident electromagnetic beam. The expression (4) is in
excellent agreement with our numerical calculations that
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are presented in Figs. 3 and 4. In Fig. 3, we present the con-
tour plots of the transparency jEtj2 as a function of the an-
gle of incidence hi and the gap width a (d = 5, ep = 10 and
lp = 1) and various frequencies (plots (a)–(f)) that corre-
spond to the points A–F in Fig. 2. As can be seen, when
a increases, the intensity of transmitted light decreases,
but the positions of the transparency maxima become more
close to the resonant angles of incidence for LGW excita-
tion, i.e., forki = km0. In Fig. 4, we present the contour
plots of the transparency jEtj2 as a function of the normal-
ized lateral coordinate x/wx and the angle of incidence hi

(a = 0.5 and the other parameters are the same as in
Fig. 3). Since a is much smaller than d in these numerical
examples, lateral beam shifts are always in the negative
direction. The trade-off between high transparency and
anomalously high lateral shift is clearly seen in all the cases
(a)–(f).

4. Conclusions

We have investigated electromagnetic beam transmis-
sion through a layered structure that contains metamateri-
als with negative refraction. The excitation of fast guided
modes within a LHM slab, by using the attenuated total
reflection configuration, has been studied in detail. The
effect of total transparency in the plane wave approxima-
tion has been extended to a beam, and the trade-off
between high transparency and anomalously high lateral
shift has been demonstrated, both analytically and numer-
ically. However, to complete the insight in the phenomena,
it is necessary to take into account losses within LHM, as
well as to study the excitation of slow guided modes.
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