CEECHE 2016

Central and Eastern European Conference on Health and the Environment

Hotel Diplomat Prague, Czech Republic

Program & Abstract Book

Committees

Organizing Committee

Radim Sram | Conference Co-Chair

Institute of Experimental Medicine AS CR, Czech Republic

Bernhard Hennig | Conference Co-Chair

University of Kentucky SRC, USA

Xabier Arzuaga

US Environmental Protection Agency, NCEA, USA

David Carpenter

University at Albany – State University of New York, USA

Yvonne Fondufe-Mittendorf

University of Kentucky, USA

Aleksandra Fucic

Institute for Medical Research and Occupational Health, Croatia

Stanislaw Gawronski

Warsaw University of Life Sciences, Poland

Annette Gatchett

US Environmental Protection Agency, NCEA, USA

Eugene Gurzau

Babes Bolyai University, Romania

Heather Henry

National Institute of Environmental Health Sciences, USA

Katerina Honkova | Trainee

Institute of Experimental Medicine AS CR, Czech Republic

Daniel Hryhorczuk

University of Illinois, USA

Gary Hunt

TRC Environmental Corporation, USA

Erin Jackson | Trainee

University of Kentucky, USA

Lisbeth Knudsen

University of Copenhagen, Denmark

Philip Landrigan

Icahn School of Medicine at Mount Sinai, USA

Slawo Lomnicki | Past CEECHE Co-Chair

Louisiana State University, USA

Erin Madeen | Trainee

Oregon State University, USA

Raina Maier

University of Arizona, USA

Marian Pavuk

US Centers for Disease Control and Prevention, CDC, USA

Kelly Pennell

University of Kentucky, USA

Michael Petriello | Trainee

University of Kentucky, USA

Larry Robertson

University of Iowa, USA

William Suk

National Institute of Environmental Health Sciences, USA

Jitka Stolcpartova | Trainee

Institute of Experimental Medicine AS CR, Czech Republic

Tomas Trnoveć

Slovak Medical University, Slovakia

p 77 The seasonal changes in genotoxic potential of the Danube river assessed by comet assay using freshwater bream

J. Kostic¹, S. Kolarevic², M. Kracun-Kolarevic³, M. Aborgiba², Z. Gacic¹, M. Lenhardt¹, B. Vukovic-Gacic²

- Institute for Multidisciplinary Research- University of Belgrade, Department of Natural Resources and Environmental Sciences, Belgrade, Serbia
- ² Faculty of Biology- University of Belgrade, Chair of Microbiology- Center for Genotoxicology and Ecogenotoxicology, Belgrade, Serbia
- Institute for Biological Research "Siniša Stanković" University of Belgrade, Department of Hydroecology and Water Protection, Belgrade, Serbia

Aquatic ecosystems constant deterioration requires regular monitoring of the genotoxic potential since unrepaired changes in DNA molecule of aquatic organisms may cause consequences on various levels of biological organisation. Fish are one of the most frequently used groups of bioindicator organisms in ecotoxicological field studies. The seasonal changes in genotoxic potential of the Danube River were assessed by comet assay on three tissues of freshwater bream *Abramis brama*, which is a wide spread, autochthonous species in this river, often used in human nutrition. For assessment of DNA damage we used Comet assay (single cell gel electrophoresis) SCGE.

The study was carried out on the site Višnjica, situated downstream Belgrade (Serbian capitol) which is identified as one of the major hotspots of faecal pollution along the Danube River. Basic physico-chemical and microbiological parameters of water quality were monitored along with the sampling of fish blood, liver and gills in February, April, August and November 2014. Comets were randomly scored and analyzed using Comet IV computer software (Perceptive Instruments, UK). DNA damage level is expressed using Tail Intensity (TI).

All three tissues had highest level of DNA damage in August, which was month with the highest water temperature. Blood had the lowest DNA damage level in November, gills in April and liver in February. Similar response in all tissues was noticed with slight variations which is expected considering the differences in the level of exposure and metabolism in the selected tissues. Freshwater bream is shown to be a potentially good indicator organism in field studies of genotoxic potential.