EMF-2007 IIth European Meeting on Ferroelectricity # Programme and Book of Abstracts Bled, Slovenia, 3-7 September 2007 ### II th European Meeting on Ferroelectricity #### MONDAY, 3 September 2007 | 9:15 - 9:45 | OPENING
BREAK | | | |---------------|--|---|---| | 9:45 - 10:00 | | | | | | Session 1 – Festival Hall
PHASE TRANSITIONS, CRITICAL
PHENOMENA AND
PRECURSORS | Session 2 – Cankar Hall
RELAXORS | Session 3 – Prešeren Hall
NANOSTRUCTURES AND
NANOPARTICLES | | | Chair: R. Blinc | Chair: S. Lushnikov | Chair: M. Glinchuk | | 10:00 - 10:30 | Naresh Dalal (Invited) Coexisting Order-Disorder and Displacive Behavior in KDP and Squaric Acid Analogs Revealed by High Resolution | Stanislav Kamba (Invited) Dielectric Spectroscopy of Relaxors and Multiferroics from Hz to THz Region | Vladimir Fridkin (Invited) The Absence of the Critical Thickness in the Ferroelectric Langmuir-Blodgett Copolymen Films | | | Sylvain Ravy | Alexei Bokov | Takuya Hoshina 🤺 | | 10:30 - 10:45 | First High-pressure Study of X-
ray Diffuse Scattering in BaTiO ₃
and KNbO ₃ | Can Hydrostatic Pressure Induce
the Ferroelectric-to-Relaxor
Crossover? | Complex Structure and Size
Effect of Barium Titanate Fine
Particles | | 10:45 – 11:00 | Igor Flerov Mechanism of Ferroelectric and Ferroelastic Phase Transitions in Elpasolite-Related Oxyfluorides A ₂ AMoO ₃ F ₃ (A=NH ₄ , K) | Jean Toulouse
The Three Characteristic
Temperatures of Relaxor
Dynamics and Their Meaning | Johannes Koppensteiner The Glass Transition in Nano- confined Geometry Probed by DMA | | 11:00 - 11:30 | COFFEE BREAK | | | | | Chair: M. Itoh | Chair: A. Levstik | Chair: V. Fridkin | | 11:30 - 12:00 | Jan Dec (Invited) Dielectric and Heat Capacity Responses of Strontium-Barium Niobate | Sergey Lushnikov (Invited)
Relaxation Mode and Central
Peak in Relaxor Ferroelectrics | Maya Glinchuk (Invited) Ferroelectricity Induced by Confinement Conditions in the Incipient Ferroelectric Nanoro | | 12.00 – 12:15 | María del Carmen Gallardo
Memory Effect in TGS Induced by
a Transverse Electric Field:
Specific Heat Measurement | Brahim Dkhil
A New Critical Temperature in
Lead-based Relaxors | Gil Rosenman (Invited) Physics and Engineering of Ferroelectric Nanodomain Configurations for Nonlinear Photonics | | 12:15 – 12:30 | Vadim Grebenev High Temperature Phase Transitions with the Change of Chemical Composition in K ₃ H(SO ₄) ₂ | Miguel Algueró Size Effect on the Transition Between the Ferroelectric and Relaxor States in 0.8Pb(Mg _{1/3} Nb _{2/3})0 ₃ -0.2PbTiO ₃ Ceramics | | | 12:30 - 12:45 | Petr Hána
Phase Transition Ultrasonic
Study in Lead Zinc Niobate - Lead
Titanate Single Crystal Solid
Solutions Near Morphotropic
Phase Transition | Vitaliy Bondarev
Electric Field Effect on Heat
Capacity of Ferroelectric -
Relaxor PbMg _{1/3} Nb _{2/3} O ₃ | Jelena Bobić Structure and Properties of Barium Bismuth Titanate Prepared by Mechanochemica Synthesis | | 12:45 – 13:00 | Akira Kojima
Ferroelectric Transition of
Barium Titanate Suggesting
Monoclinic-Sandwiched Domain
Formation | Michail Gorev Heat Capacity and Thermal Expansion Study of Ba _{1-y} Bi _{2y/3} (Ti _{1-x} Zr _x)O ₃ Ceramics | Dieter Michel
NMR on Ferrolectrics Confined
Porous Matrices | #### 11" European Meeting on Ferroelectricity ## **Determination of ¹⁷O EFG Tensor in BaTiO**₃ and SrTiO₃ Single Crystals **Quadrupole-Perturbed NMR** H. KRAKAUER⁴. V. V. LAGUTA², B. ZALAR¹, M. ITOH³ AND Jefur Institute, Jamova 39, 1000 Ljubljana, Slovenia Physics, AS CR, Cukrovarnicka 10, 16253 Czch Republic æs. SE and Structures Laboratory, Tokyo Institute of Magatsuta, Midori, Yokohama, 226-8503, William and Mary, Williamsburg, VA, USA states of ferroelectricity in perovskites have been marked after a low temperature ferroelectric phase has been [1] in ¹⁸O isotopically enriched SrTiO₃. Most models of ferroelectricity in oxide perovskites such as SrTiO₃ are electrostatic ionic models [2,3] with oxygen ions. Covalent bonding models have as proposed [4]. Some basic information about the marketity and bonding of the titanium and oxygen ions in some is however still missing. Le bave determined the ¹⁷O electric field gradient (EFG) tensors in the paraelectric and ferroelectric statement of 150 per Mach. R. Wang, Y. Inaguma, T. Yamaguchi, Y- J. Shan Nakamura, Phys. Rev. Lett. 82, 3540 (1999). □ ■ Bilz. G. Benedek and A. Bussmann-Holder, Phys. Rev. ■ 43-40 (1987). Zhong. R. D. King-Smith and D. Vanderbilt, Phys. Lett. 72. 3618 (1994); R. Sommer, M. Maglione and J. J. Maglione and J. Maglione and J. Maglione and J. Maglione and E D Megaw, Acta Cryst. 7, 187 (1954). #### Structure and Properties of Barium Bismuth Titanate Prepared by Mechanochemical Synthesis $\frac{\text{J. D. Bobi\'e}^{1^*}, \text{C. O. Paiva-Santos}^2, \text{C. D. Jovaleki\'e}^1,}{\text{M. M. Vijatovi\'e}^1 \text{ and B. D. Stojanovi\'e}^1}$ ¹Center for Multidisciplinary Studies of the Belgrade University, Serbia *E-mail address: bobic jelena@neobee.net ²Instituto de Quimica-UNESP, Araraquara, Brazil Recently there has been renewed interest in the properties of the Aurivillius phases as temperature-stable ferropiezoelectrics [1]. Several bismuth-layered crystal structures and their properties have been investigated in detail [2]. However, a lot of aspects of the preparation and properties of barium bismuth titanate remain unexplored, whereas being promising candidate for memory aplications. In present work barium bismuth titanate (BaBi₄Ti₄O₁₅-BBT) was prepared from stoichiometric quantities of barium titanate and bismuth titanate obtained via mechanochemical synthesis. Barium titanate (BaTiO₃-BT) has been synthesised from mixture of BaO and TiO₂ and bismuth titanate (Bi₄Ti₃O₁₂-BIT) was prepared starting from Bi₂O₃ and TiO₂, commercially available. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill, for BT during 60 min and for BIT during 360 min. Milling conditions were: zirconium oxide jars and zirconium oxide balls, ball-to-powder weight ration 20:1 and determined basic disc and disc with jars rotation speed. The powder mixture of BT and BIT was homogenized for 60 min. $BaBi_4Ti_4O_{15}$ ceramics were sintered at $1100^{\circ}C$ for 2, 4 and 12 hours without pre-calcination step. The heating rate was $10^{\circ}C/min$. The formation of phase and crystal structure of $BaTiO_3$, $Bi_4Ti_3O_{12}$ and $BaBi_4Ti_4O_{15}$ were approved by XRD analysis. The morfology of obtained powders and microstructure were exhamined by SEM method. The electrical properties of sintered samples were carried out. [1] Isumandar, T. Kamiyama, A. Hoshikawa, Q. Zhou, B.J.Kennedy, Y. Kubota, K. Kato, J. Solid State Chem., 177, 4188-4196 (2004). [2] I. Pribošić, D. Makovec, M. Drfenik, J. Eur. Ceram. Soc. 21, 1327-1331 (2001).