Book of abstracts

PHOTONICA2021

VIII International School and Conference on Photonics

& HEMMAGINERO workshop

23 - 27 August 2021, Belgrade, Serbia

Editors

Mihailo Rabasović, Marina Lekić and Aleksandar Krmpot Institute of Physics Belgrade, Serbia

Belgrade, 2021

ABSTRACTS OF TUTORIAL, KEYNOTE, INVITED LECTURES, PROGRESS REPORTS AND CONTRIBUTED PAPERS

of

VIII International School and Conference on Photonics PHOTONICA2021

23 - 27 August 2021

Belgrade Serbia

Editors Mihailo Rabasović, Marina Lekić and Aleksandar Krmpot

Publisher Institute of Physics Belgrade Pregrevica 118 11080 Belgrade, Serbia

Printed by Serbian Academy of Sciences and Arts

Number of copies 200

ISBN 978-86-82441-53-3

CIP - Каталогизација у публикацији - Народна библиотека Србије, Београд 535(048) 621.37/.39:535(048) 621.37/.39:535]:61(048) 66.017/.018(048)

INTERNATIONAL School and Conference on Photonic (8; 2021; Beograd)

Book of abstracts / VIII International School and Conference on Photonics PHOTONICA2021 & HEMMAGINERO workshop, 23 - 27 August 2021, Belgrade, Serbia; editors Mihailo Rabasović, Marina Lekić and Aleksandar Krmpot. - Belgrade: Institute of Physics, 2021 (Belgrade: SASA). - V, 192 str.: ilustr.; 30 cm

Tiraž 200. - Bibliografija uz većinu apstrakata. - Registar.

ISBN 978-86-82441-53-3

1. Hemmaginero Workshop (2021; Beograd)

а) Оптика -- Апстракти б) Оптички материјали -- Апстракти в) Оптоелектроника -- Апстракти г) Оптоелектроника -- Биомедицина -- Апстракти д) Телекомуникације -- Апстракти

COBISS.SR-ID 44290057

Committees

Scientific Committee

- Aleksandar Krmpot, Serbia
- Aleksandra Maluckov, Serbia
- Bojan Resan, Switzerland
- Boris Malomed, Israel
- Branislav Jelenković, Serbia
- Carsten Ronning, Germany
- Concita Sibilia, Italy
- Darko Zibar, Denmark
- Dmitry Budker, Germany
- Dragan Inđin, United Kingdom
- Edik Rafailov, United Kingdom
- Francesco Cataliotti, Italy
- Giannis Zacharakis, Greece
- Goran Isić, Serbia
- Goran Mašanović, United Kingdom
- Ivana Vasić, Serbia
- Jasna Crnjanski, Serbia
- Jelena Radovanović, Serbia
- Jelena Stašić, Serbia
- Jerker Widengren, Sweden
- Jovan Bajić, Serbia
- Ljupčo Hadžievski, Serbia
- Luca Antonelli,UK
- Marco Canepari, France
- Marko Krstić, Serbia
- Marko Spasenović, Serbia
- Milan Kovačević, Serbia
- Milena Milošević, Serbia
- Milivoj Belić, Qatar
- Mirjana Novaković, Serbia
- Nikola Stojanović, Germany
- Nikola Vuković, Serbia
- Nikos Pleros, Greece
- Pavle Andjus, Serbia
- Petra Beličev, Serbia
- Sergei Turitsyn, UK
- Vladan Pavlović, Serbia
- Vladan Vuletić, USA
- Vladana Vukojević, Sweden
- Zoran Grujić, Serbia

Organizing Committee

- Marina Lekić, Institute of Physics Belgrade (Chair)
- Aleksandar Krmpot, Institute of Physics Belgrade (Co-Chair)
- Danica Pavlović, Institute of Physics Belgrade (Secretary)
- Stanko Nikolić, Institute of Physics Belgrade (Webmaster)
- Mihailo Rabasović , Institute of Physics Belgrade
- Tanja Pajić, Faculty of Biology, University of Belgrade
- Aleksandra Gočanin, Faculty of Physics, University of Belgrade
- Jadranka Vasiljević, Institute of Physics Belgrade
- Uroš Ralević, Institute of Physics Belgrade

Technical Organizer

Solution Lufthansa City Center

Panacomp Wonderland Travel

http://www.panacomp.net/ Tel: +381 21 466 075 Tel: +381 21 466 076 Tel: +381 21 466 077

Narrowing of laser beam propagating through biological suspension

<u>A. Kovacevic</u>¹, T. Pajic², D. Pavlovic¹, M. Stanic³, M. Lekic¹, S. Nikolic¹, B. Jelenkovic¹ ¹ Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia ² Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia ³ Institute for Multidisciplinary Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia e-mail: aleksander.kovacevic@ipb.ac.rs

Recent demonstration of nonlinear self-action of laser beams in suspension of biological materials, like marine bacteria and red blood cells, has been reported [1-3]. In this work, we demonstrate nonlinear optical effects of laser beam propagation through the freshwater green microalga *Chlorela sorokiniana*, cultivated in Bold basal medium with 3-fold nitrogen and vitamins (3N-BBM+V).

Chlorella sorokiniana is a species of single-celled freshwater green microalga in the division *Chlorophyta*. Its spherical or ellipsoidal cells (3 x 2 μ m in small cells to 4.5 x 3.5 μ m in large cells, sometimes >5 μ m) divide rapidly to produce four new cells every 17 to 24 hours [4]. The non-pathogenic species has been chosen as a model organism due to its small cell dimension, rapid growth, non-mobility and non-toxicity. The algae were kept in the light chamber and the temperature was maintained at 22°C. Mid-exponential growth phase of algal culture was used for the experiments.

In the experiments, the 532 nm CW laser beam is directed to the glass cuvette that is filled either with the medium or with algae suspended in the medium. We have monitored the laser beam diameter at the entrance and exit of the cuvette, and its axial profile through entire cell length. The concentration has been determined by optical microscopy and optical density and has been varied between 10⁶ and 10⁸ cm⁻³.

The concentration of the algae and the laser beam power affect the beam radius. Our preliminary results have shown the effect of light self-trapping, i.e., the decrease of laser diameter when the algae concentration exceeds 10⁶ cm⁻³ while laser power is above 1 W. The difference of the refractive indexes of the algae and the medium can induce optical trapping of algae, which subsequently changes the concentration of the algae within the laser beam. This in turn can explain different behavior of the beam in the medium with and without algae.

We discuss the mechanisms which led to narrowing of the beam including nonlinear effects as well as potential applications in waveguiding, medical imaging and optimal propagation of laser beam in biological suspensions.

Acknowledgments. The authors appreciate valuable and helpful comments of Dr. Najdan Aleksic from the Moscow State Technological University "STANKIN".

REFERENCES

[1] A. Bezryadina, T. Hansson, R. Gautam, et al. Phys. Rev Lett. 119, 058101 (2017).

[2] R. Gautam, Y. Xiang, J. Lamstein, et al., Light: Sci. Appl. 8, 31 (2019).

[3] R. Gautam, A. Bezryadina, Y. Xiang, et al., Adv. Phys. X 5 (2020), doi: 10.1080/23746149.2020.1778526.

[4] I. Shihira, R. W. Krauss. *Chlorella*. Physiology and taxonomy of forty-one isolates, pp.1-97. Maryland: University of Maryland, College Park (1965).