Improved multiferroic properties of Nb doped BiFeO₃

<u>A.Radojković</u>; D. L. Golić¹; J. Ćirković¹; D. Pajić²; F. Torić²; A. Dapčević³; Z. Branković¹; G. Branković¹

¹Institute for Multidisciplinary Research, University of Belgrade, Belgrade ²Department of Physics, Faculty of Science, University of Zagreb, Zagreb ³Faculty of Technology and Metallurgy, University of Belgrade, Serbia e-mail: aleksandarrr@imsi.bg.ac.rs

Pure BiFeO $_3$ (T_N = 370 °C and T_C = 826–845 °C) exhibits poor ferroelectric (high electrical conductivity) and weak ferromagnetism. In this study, up to 1% Nb $^{5+}$ was introduced to replace Fe $^{3+}$ (B-site doping) since it could disturb the nearly antiparallel spin ordering of the adjacent Fe $^{3+}$ ions responsible for cycloidal (spiral) spin structure. On the other hand, the pentivalent Nb cations will compesate the negatively charged defects and consequently reduce the electrical conductivity.

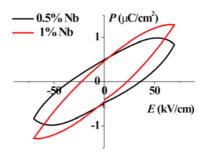


Figure 1 Hysteresis loops of BiFeO₃ samples doped with 0.5 and 1 % Nb at 70 kV/cm.

Unlike pure BiFeO $_3$, the sample with 1% Nb exhibits hard magnetic behaviour due to its high coercive magnetic field of ~7460 Oe (at H=50~000~Oe). The ferroelectric response for the sample with 0.2 % Nb was unstable above 40 kV/cm, while at 70 kV/cm only the sample with 1 % Nb showed a regular ferroelectric response with remnant electrical polarization of 0.5 μ C/cm 2 and coercive electrical field of 22.2 kV/cm. Thus, by doping with Nb, both magnetic and ferroelectric properties of BiFeO $_3$ were improved.