

15TH ECerS CONFERENCE FOR YOUNG SCIENTISTS IN CERAMICS

BOOK OF ABSTRACTS

October 11-14, 2023 Faculty of Technology Novi Sad Novi Sad, Serbia

15th ECerS CONFERENCE for YOUNG SCIENTISTS in CERAMICS

PROGRAMME and BOOK OF ABSTRACTS

October 11-14, 2023 Novi Sad, Serbia Programme and Book of Abstracts of The ECerS 15th Conference for Young Scientists in Ceramics (CYSC-2023) publishes abstracts from the field of ceramics, which are presented at traditional international Conference for Young Scientists in Ceramics.

Editors-in-Chief Prof. Dr. Vladimir V. Srdić Dr. Soňa Hříbalová

Publisher

Faculty of Technology, University of Novi Sad Bul. cara Lazara 1, 21000 Novi Sad, Serbia

For Publisher

Prof. Dr. Biljana Pajin

Printing layout

Vladimir V. Srdić, Marija Milanović, Ivan Stijepović

Press

TRI 0 Štamparija, Aranđelovac

СІР – Каталогизација у публикацији Библиотека Матице српске, Нови Сад

666.3/.7(048.3)

CONFERENCE for Young Scientists in Ceramics (15; 2023; Novi Sad)

Programme and book of abstracts / 15th ECerS Conference for Young Scientists in Ceramics, October 11-14, 2023, Novi Sad ; [editor-in-chief Vladimir V. Srdić, Soňa Hříbalová]. - Novi Sad : Faculty of Technology, 2023 (Aranđelovac : Tri 0). - XV, 137 str. : ilustr. ; 24 cm

Tiraž 130. - Str. III: Preface / editors. - Registar.

ISBN 978-86-6253-174-2

a) Керамика - Технологија - Апстракти COBISS.SR-ID 126081289

The Book of Abstracts of the 15th ECerS Conference for Young Scientists in Ceramics is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

OA-26

MAGNESIUM SUBSTITUTION WITH NICKEL AND ITS INFLUENCE ON THE SENSING PROPERTIES OF MgFe₂O₄

<u>Milena Dojčinović</u>¹, Zorka Vasiljević¹, Lazar Rakočević², Vera P. Pavlović³, Souad Ammar-Merah⁴, Jelena Vujančević⁵, Maria Vesna Nikolić¹

¹Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade Serbia
²Institute of Nuclear Sciences of Vinca, University of Belgrade, 11351 Belgrade, Serbia
³Faculty of Mechanical Engineering, University of Belgrade, 11120 Belgrade, Serbia
⁴ITODYS Laboratory, Université Paris Cité, CNRS UMR-7086, 75013 Paris, France
⁵Institute of Technical Sciences of SASA, 11000 Belgrade, Serbia

e-mail: milena.dojcinovic@imsi.rs

Mixed spinel ferrites $Mg_xNi_{1-x}Fe_2O_4$ were synthesized via sol-gel combustion synthesis with citric acid as fuel, followed by calcination at 700 °C for 3 hours. Obtained powders were characterized via X-ray diffraction analysis (XRD), X-ray photoelectron (XPS), FTIR and Raman spectroscopy and FESEM microscopy. Elemental composition was examined via energy dispersive spectroscopy (EDS). Humidity sensing properties were tested by measuring AC impedance in a climactic chamber at 25 °C and in the relative humidity range of 40–90%. Temperature sensing properties were tested by measuring DC resistance at 40% RH in the temperature range 40–90 °C.

Synthesized powders were proven to be pure spinel $Fd\bar{3}m$ phase with spherical, slightly agglomerated particles. Substitution of Mg with Ni results in structural changes such as a change in inversion parameter and particle agglomeration, which influences sensing properties of the material. Results show that the sensing properties of magnesium ferrite, which is already a well-established NTC sensor, can be improved by incorporating 10% of nickel in the spinel lattice structure. Mg_{0.9}Ni_{0.1}Fe₂O₄ exhibited higher temperature sensitivity and higher sensitivity towards humidity compared to MgFe₂O₄, while further substitution of Mg with Ni resulted in the decline of sensing properties, increase in particle size and agglomeration degree.