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Abstract: We demonstrate transitional dimensionality of discrete diffraction in radial-elliptical
photonic lattices. Varying the order, characteristic structure size, and ellipticity of the Mathieu
beams used for the photonic lattices generation, we control the shape of discrete diffraction
distribution over the combination of the radial direction with the circular, elliptic, or hyperbolic.
We also investigate the transition from one-dimensional to two-dimensional discrete diffraction
by varying the input probe beam position. The most pronounced discrete diffraction is observed
along the crystal anisotropy direction.
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1. Introduction

The ability to tailor and manipulate light in photonic lattices is an important topic of scientific
investigations and practical applications in optics [1]. Photonic lattices or arrays of evanescently
coupled waveguides are typical examples of structures where discrete effects and dynamics can
be investigated. Light focused into one waveguide that linearly propagates along the waveguide
array will tunnel to neighboring sites, exhibiting a characteristic diffraction pattern with the
intensity mainly focused in the outer lobes. This phenomenon, called the discrete diffraction
of light [2] was theoretically and experimentally observed in one-dimensional (1D) waveguide
arrays [3] and two-dimensional (2D) photonic lattices [4]. It is also investigated in aperiodic
photonic lattices [5–8] as well as in other systems, such as atomic photonic lattices [9–11].

The truncation of periodic photonic lattice causes an additional distortion in the periodicity
and results in the formation of optical surface states that are analogous to the surface states in
the electronic theory of periodic systems [12,13]. Optical self-trapped discrete surface waves -
surface solitons - have been demonstrated in 1D waveguide arrays [14,15] and in 2D photonic
lattices [16]. Physical systems with dimensionality crossover have attracted huge attention, for
example, the continuous transformation of photonic lattice from one dimension to two dimensions
[17]. In such systems, intermediate states can occur that do not exist in either 1D or 2D geometries.
For these structures, there are still open questions: How, when and why does a system cross over
from one to two dimensions?

Nondiffracting beams are convenient for the generation of 2D photonic lattices, since they
can retain propagation-invariant structure even under weak nonlinearity [18]. There are four
major nondiffracting beam families that are exact solutions of the Helmholtz equation in different
coordinate systems [19,20]: plane waves in Cartesian, Bessel beams in circular cylindrical
[21], Mathieu beams in elliptic cylindrical [22], and parabolic beams in parabolic cylindrical
coordinates [23]. We opt for Mathieu beams, since they are used for optical lattice-writing that
allows solitons or even elliptically shaped vortex solitons [24]. They are also used for the creation
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of different aperiodic photonic lattices by the optical induction technique in photorefractive
crystals [8,25], as well as for particle manipulation [26].

In this paper, we investigate the conditions for discrete diffraction occurrence and its properties
in the aperiodic Mathieu photonic lattices, both experimentally and theoretically. Owing to their
shape, Mathieu beams enable one-pass experimental realization of naturally truncated aperiodic
photonic lattices, supporting surface states as well as discrete diffraction on the surface. We focus
on the aperiodic photonic structures in elliptical-radial geometries, since they offer a broad range
of shapes, including ellipticity as an additional degree of freedom. They also allow to raise the
question on the dimensionality of discrete diffraction. For difference, in periodic photonic lattices
there are only two parameters affecting discrete diffraction: the lattice period and the refractive
index modulation depth, and they are uniform over the whole lattice. However, the lattice period
and the refractive index modulation of Mathieu lattices are not independent parameters; they are
connected via Mathieu beam parameters (the beam order, characteristic structural size, and the
ellipticity of the beam). Due to the aperiodicity of Mathieu lattice, there are various probing
local environments supporting discrete diffraction influenced by the nearest neighbors. During
the propagation, diffracting probe can pass through changed local enviroments, unlike in the
periodic lattice, causing additional variations in the discrete diffraction effects.

Here, we demonstrate elliptical-radial discrete diffraction in photonic lattices realized by a
single Mathieu beam. By changing the order, characteristic structure size, and ellipticity of the
Mathieu beam, we are able to control discrete diffraction in the radial direction, as well as the
shape of their distributions in the perpendicular directions: circular, elliptic, or hyperbolic. By
changing the input probe beam position, we observe switching from the 1D to the 2D discrete
diffraction. In our medium - the photorefractive birefringent cerium-doped strontium barium
niobate (SBN61:Ce) - the crystal anisotropy plays an important role in the discrete diffraction
phenomenon: we observe the most pronounced 2D discrete diffraction along the crystal anisotropy
direction.

2. Numerical modeling and experimental realization of light propagation in Math-
ieu photonic lattices

We investigate the light propagation in Mathieu photonic lattices in the photorefractive medium
and study the conditions for the discrete diffraction of light in such lattices. We model linear light
propagation in a photonic lattice by solving the coupled system of two equations: the nonlinear
Schrödinger equation for the scalar electric field, as the propagation equation, and the diffusion
equation for the electrostatic potential as the potential equation [27,28]. We solve both equations
numerically, by employing a spectral split-step beam propagation method [29]. The propagation
equation of the scalar electric field A with longitudinal wave vector kz is given by:

i∂zA +
1

2kz
∆⊥A +

kz

2n2
o,e
δn2A = 0, (1)

where the wave number k = 2π/λ =
√︂(︁

k2
⊥ + k2

z
)︁

is defined by the laser wavelength λ = 532nm.
The potential in the propagation equation is specified by δn2 = −n4

o,er13,33E, where ne = 2.325
and no = 2.358 are the extraordinary and ordinary indices, and r13 = 47pm/V and r33 = 237pm/V
are the corresponding electro-optic coefficients of the birefringent SBN61:Ce crystal. The total
electric field E = Eext + Esc that builds up inside the crystal is a superposition of an external
electric field Eext = 2000V/cm aligned with the optical c = x axis and an internal space charge
field Esc that results from the incident intensity distribution within the potential equation.

In order to take the electric bias of the crystal into account and the photorefractive material
response, we implement an anisotropic potential equation for the spatial evolution of the
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electrostatic potential ϕsc of the optically-induced space-charge field Esc

∆⊥ϕsc + ∇⊥ ln (1 + I) · ∇⊥ϕsc = Eext∂x ln (1 + I) , (2)

where I = |A|2 is obtained from Eq. 1. Subsequently, Eq. 1 is updated with the optically induced
space-charge field

Esc = ∂xϕsc, (3)

obtained by solving Eq. 2. This procedure is iteratively repeated along the propagation direction.
The process of generation of the propagation-invariant Mathieu photonic lattice is modeled

through the distribution I = Ilatt from Eq. (2), which we refer to as the writing lattice pattern in
the experiment [25]. Thus, we obtain first the spatial distribution of Ilatt in a separate numerical
simulation of Eqs. (1) and (2), by propagating an ordinary Mathieu beam in the weak nonlinear
case. Then we use such a nearly diffractionless lattice distribution as a lattice potential, to
simulate an extraordinary Gaussian probe beam propagation. For this, we use the same equations
but with the modified total intensity distribution I = Ip + Ilatt, where the Gaussian probe beam
intensity Ip = |A|2 is obtained from Eq. 1. In our simulations with the probe beam, Ip is kept
sufficiently weak, so as not to cause an excessive nonlinear modification.

To experimentally investigate the linear light propagation of narrow probe Gaussian beam in
Mathieu photonic lattices, we use the experimental setup shown in Fig. 1. As a light source, we
use a frequency-doubled Nd:YVO4 laser that emits continuous wave laser light at a wavelength
of λ = 532nm. The expanded and collimated laser beam (telescope L1-L2) illuminates as a plane
wave the phase-only spatial light modulator (SLM). Both the amplitude and phase of the reflected
light field are modulated. This is accomplished by addressing to the SLM a precalculated
hologram containing the information on the complex light field of the Mathieu lattice, encoded
with an additional blazed grating [25,30]. In this way, an ordinary polarized beam is spatially
modulated and we use it as the writing beam. We demagnify it by a telescope (L3-L4), to
illuminate a crystal. The diffraction pattern of the Mathieu lattice is bandpass filtered in Fourier
space (FF) [30]. The SBN61:Ce crystal with dimensions of 5 × 5 × 20mm3 is externally biased
with an electric field of Eext aligned with the optical c = x axis, perpendicular to the direction of
propagation, z axis, and parallel to the long axis of the crystal. As a result, the ordinary polarized
beam optically induces a refractive index modulation, using the lattice writing beam power P,
corresponding to the numerically calculated Mathieu lattice. After the fabrication of the Mathieu
lattice, the writing beam and the external electric field are switched off. Then an extraordinary
polarized narrow Gaussian probe beam illuminates the specified lattice position and we observe
linear light propagation in the Mathieu photonic lattice. A half-wave plate rotates the probe
beam’s linear polarization by 90◦ relative to the writing beam’s polarization, addressing the

Fig. 1. Experimental setup for the light beam propagation investigation in the two-
dimensional Mathieu photonic lattice.
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stronger electro-optic coefficient. We use an imaging system formed by a microscope objective
(MO) with the camera to detect the transverse intensity distribution of the writing and/or probing
beam at the back face of the crystal. A low probe beam’s power keeps the propagation in a linear
regime, and the lattice refractive index modulation remains unmodified (until erased by white
light). The probe beam of full-width-at-half-maximum of 8µm is directly positioned in front of
the crystal and its transverse position defines the input center. We determine the beam size to be
adequate to illuminate one lattice site.

3. Transition from 1D to 2D discrete diffraction

Mathieu beams are a class of nondiffracting beams suitable for the realization of photonic lattices.
We base our study on even Mathieu beams Mm(ξ, η) of order m, which are mathematically
described as a product of the radial cem and angular Jem Mathieu functions of order m: Mm(ξ, η) =
Cm(q)Jem(ξ; q)cem(η; q). Here, Cm(q) is a weighting constant that depends on the ellipticity
parameter q = f 2k2

t /4 that is related to the positions of the two foci f and the transverse wave
number kt = 2π/a, where a is the characteristic structure size. Elliptical coordinates (ξ, η) are
related to the Cartesian coordinates (x, y) by x + iy = fcosh(ξ + iη). Mathieu beams Mm are used
for generating lattice intensity distribution Ilatt by numerical simulation of Eq. 1 and Eq. 2. By
changing some of the main characteristics of Mathieu beams, defined by the parameters: beam
order m, ellipticity q, and characteristic structure size a, we are capable of managing various
spatial intensity distributions of Mathieu lattices [25]. The refractive index change and the lattice
period of such a lattice are not independent parameters, but are connected via Mathieu beam
parameters m, q, and a. Various probing local environments in Mathieu lattices support the
formation of different discrete diffraction patterns. By changing the ellipticity of the Mathieu
lattice, one changes the curvature of the lines connecting nearest neighbour sites (which is zero
in the periodic lattice), thus influencing discrete diffraction patterns. Similarly, the anisotropy
of our medium (SBN61:Ce crystal) enables the conditions for supporting discrete diffraction in
certain directions.

We start by using Mathieu lattice with zero ellipticity (q = 0), where the waveguide arrays
are distributed along the circles, as well as along the radial spikes. Three input probe beam
positions are chosen, shown in Fig. 2(a1), (1, 2, and 3) marked with yellow arrows for the sites
at the first, second, and fourth circle waveguide arrays, respectively. All 3 positions belong to
the same radial spike, while positions 4 and 5 (the green arrows) belong to the most intense
first circular waveguide. We compare the numerical and experimental results of the probe beam
intensity distributions at the crystal back face after 2 cm propagation. For the first input probe
beam position on the lattice edge (marked as position 1 in Fig. 2(a1)), we observe behavior
similar to the 2D discrete diffraction. We will refer to it as the radial 2D discrete diffraction in
the truncated elliptical-radial lattice (Fig. 2(b1),(b2)). On the same circular waveguide array,
but on the opposite side of the input probe beam position, we notice out-of-order appearance of
intensive spots collecting evanescent leakage of the waveguides from the opposite side.

Following the geometrical distribution of the lattice, we show the projection of the probe beam
intensity distributions on the circle and spike waveguide arrays (the corresponding circles and
spikes are marked in Fig. 3(a)) along the propagation distance. In the circular direction, we cut the
first four circles opposite to the excitation position and show flattened probe intensity distributions
in Fig. 3(b), presenting discrete diffraction along circles. On the edges of Fig. 3(b) distribution,
corresponding to the cut point, we can follow the dynamics of the previously mentioned opposite
intensive spot. In the radial direction, we notice discrete edge diffraction along some of the
truncated spike waveguide arrays (Fig. 3(c)). When we shift the probe beam input position away
from the lattice edge (position 2 in Fig. 2(a1)), the two-dimensionality of discrete diffraction is
less pronounced, but at the expense of separate circular and radial 1D discrete diffractions. For
the third probe beam position (position 3 in Fig. 2(a1)), we notice separate circular and radial
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Fig. 2. Influence of various probe beam input positions on the discrete diffraction in Mathieu
lattice. The intensity distribution of the Mathieu lattice at the exit crystal face observed
numerically (a1) and experimentally (a2), with yellow arrows in (a1) indicating various
input probe beam positions. Intensity distributions of the probe beam at the exit crystal face
obtained numerically (the first row) for the input probe beam positions: 1 (b1), 2 (c1), 3 (d1),
4 (e1), and 5 (f1), taken from Visualization 1, Visualization 2, Visualization 3, Visualization
4 and Visualization 5, respectively, representing the numerical intensity distributions of the
probe beam along the propagation direction. Experimentally obtained intensity distributions
at the crystal exit face (the second row) for input probe beam positions: 1 (b2), 2 (c2), 3
(d2), 4 (e2), and 5 (f2). Parameters are: Mathieu lattice order m = 7, ellipticity q = 0, and
characteristic structure size a = 30µm, Ilatt = 1, experimental lattice writing beam power
P = 0.5mW.

discrete diffractions. Hence, we observe the switching from 2D to 1D discrete diffraction in
truncated elliptical-radial lattice, by changing the input probe beam position.

Additionally, we investigate the influence of crystal anisotropy on light diffraction in such a
lattice (Fig. 2). We consider various input probe beam positions, depicted as positions 1, 4, and 5
in Fig. 2(a1): All input beam positions are on the same circular waveguide array and would be
equivalent, apart from the relative orientation to the crystal anisotropy. As one can see, in such
lattices 2D discrete diffraction is possible to observe only for input probe beam positions along
the crystal anisotropy direction (c-axis) (Fig. 2(b)).

With increasing Mathieu lattice order m, the number of spike waveguide arrays is increased,
favoring 2D discrete diffraction (Fig. 4(a-c)). We study the probe beam propagation for three

Fig. 3. Discrete diffraction along the circular and spike waveguide arrays. Projections of
intensity distributions along circles (b), and spikes (c) corresponding to (a). For each circle,
the circumference is measured in the angular coordinate θ starting from the cut point, and
the radial coordinate d from the common center of the circles. The parameters are as in
Fig. 2(b1).

https://doi.org/10.6084/m9.figshare.23497598
https://doi.org/10.6084/m9.figshare.23497601
https://doi.org/10.6084/m9.figshare.23497604
https://doi.org/10.6084/m9.figshare.23497607
https://doi.org/10.6084/m9.figshare.23497607
https://doi.org/10.6084/m9.figshare.23497610
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lattice orders: m = 7, 9, and 12, and obtain more pronounced 2D discrete diffraction for higher
lattice order. Also, we study how the variation of the Mathieu lattice characteristic structure
size a influences the propagation of the probe beam: Increasing the characteristic structure
size a uniformly increases the distance between neighboring sites (Fig. 4(c-e)). We are able to
control optimal conditions for 2D or more 1D discrete diffractions in certain regions, and with the
variation of structure size a, we are able to move those regions. We investigate Mathieu lattices
for three characteristic structure sizes: a = 30, 35, and 40µm. 2D discrete diffraction becomes
less pronounced with the increase of a, which is caused by the increasing order separation in
each concentric elliptical waveguide array.

Fig. 4. Influence of Mathieu lattices order m and structural size a on the discrete diffraction
patterns. (a1-e1) Numerically observed intensity distributions of the probe beam at the
exit crystal face for different parameters m, a, marked in each panel, and q = 5, taken
from Visualization 6, Visualization 7, Visualization 8, Visualization 9, Visualization 10,
respectively. The second row presents the corresponding experimental exit face intensity
distributions (a2-e2). Other parameters are as in Fig. 2.

At the end, we study how the variation of Mathieu lattice ellipticity q influences the discrete
diffraction of light (Fig. 5). We perform our investigation by probing Mathieu lattices with
various ellipticities: q = 0, 10, 125, and 625. Probe beam input positions are marked with the
yellow arrows depicted in Fig. 5 (the first row). For ellipticity q = 0, we notice 2D radial discrete
diffraction, in contrast to the ellipticity of q = 10, where one notices the splitting to 1D radial
discrete diffractions along the inner ellipse and the left spike waveguide array. With further
increasing q, due to modulation depth distributions - i.e., nonuniform distributions, favorable
conditions for discrete diffraction appear for high q, where we have hyperbolic lattices. For
ellipticity q = 125, we obtain 2D discrete diffraction across hyperbolas, while for q = 625, we
observe more 1D discrete diffraction along the edge hyperbola, mostly due to the sharp decrease
of array intensity distribution away from the edge hyperbola. As stated, the distribution is rapidly
decaying away from the edge row, which in the absence of anisotropy would result in dominantly
1D discrete diffraction (not shown).

https://doi.org/10.6084/m9.figshare.23497613
https://doi.org/10.6084/m9.figshare.23497616
https://doi.org/10.6084/m9.figshare.23497619
https://doi.org/10.6084/m9.figshare.23497622
https://doi.org/10.6084/m9.figshare.23497625
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Fig. 5. Lattice ellipticity q influence on the discrete diffraction of light. First row: Intensity
distributions of Mathieu lattice. Second row: probe beam intensity distributions at the exit
face of the crystal, obtained numerically (a2- d2), taken from the corresponding numerical
intensity distributions of the probe beam along the propagation direction: Visualization
1, Visualization 11, Visualization 12, Visualization 13, respectively. The third row:
Experimental intensity distributions of the probe beam at the crystal exit face (a3-d3). Other
parameters are as in Fig. 2.

4. Conclusion

In summary, we have presented a method for radial and angular discrete diffraction generation in
various Mathieu lattices, experimentally and numerically. Such photonic lattices are optically
induced in a photorefractive crystal, using one-pass creation in the experiment. They are also a
kind of truncated lattices that could support surface states. Mathieu photonic structures offer
an extensive variation of shapes as well as ellipticity, as the additional degree of freedom, with
the waveguides deployed along circles, ellipses, and hyperbolas, as well as radial spikes. We
have controlled radial discrete diffraction by changing the order, characteristic structure size, and
ellipticity of Mathieu beams used for the optical induction of photonic lattices. Shifting the input
probe beam position, we have observed a transition from 1D to 2D discrete diffraction. We have
found the most pronounced 2D discrete diffraction along the crystal anisotropy direction. Note
that the discrete diffraction created by our approach exhibits branching 1D discrete diffraction
along circle/ellipse and spike waveguide arrays, while predominantly 1D discrete diffraction
occurs in hyperbolic lattices. Our results pave the way for exploiting light propagation in a novel
class of optical lattices, but they are not limited to these particular lattices: They can readily be
generalized in other kinds of optically induced lattices. Adaptivity and reconfigurability of the
light-guiding structures play an important role in enabling functionality, displaying a significant
advance in modern photonics and providing an important step towards novel innovative wave-
guiding applications and light routing approaches. They will hopefully find useful applications
in the capacity-enhanced optical information processing.
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