

7th International Conference on Silicon in Agriculture

24-28 October 2017, UAS, Bengaluru, India

PROCEEDINGS OF A B S T R A C T S

University of Agricultural Sciences, Bengaluru

Indian Society of Soil Science, Bangalore Chapter
The International Society for Silicon in Agriculture & Related Disciplines (ISSAG)

Published by

7th International Conference on Silicon in Agriculture

24 - 28, October 2017 - University of Agricultural Sciences, Bengaluru, India

Editors

N.B. Prakash

T.S. Sandhya

K. Sandhya

Sabyasachi Majumdar

N. Hamsa

T. Pallavi

Copyright

University of Agricultural Sciences, GKVK, Bengaluru

October 2017

Design & Print

Resolution Print Media Bengaluru - 560079, India Cell 9886895736 resolutionpm@gmail.com

ON OF STREET

PROCEEDINGS OF A B S T R A C T S

Foreword

The essentiality of silicon on growth of higher plants remains debatable till now even though research has demonstrated many beneficial and functional roles of Si, especially under stressful conditions, in agriculture and horticulture crops. To unravel the secrecies of silicon, the first International Conference on Silicon in Agriculture was held at Florida, the United States of America during 1999, followed by meetings at Tsuruoka, Japan (2002), Uberlandia, Brazil (2005), KwaZulu-Natal, South Africa (2008), Beijing, China (2011) and Stockholm, Sweden (2014). Since the first conference, the silicon family has grown substantially, leading to the knowledge and understanding of silicon in agriculture.

India holds the second largest agricultural land in the world and 50% of India's geographical area used for agricultural activity. Therefore, in this endeavour, the 7th International Conference on silicon in Agriculture to be held at Bengaluru, the silicon valley of India will provide a platform for scientists, policy makers, industries and students to exchange scientific knowledge, share practical experiences, motivate youngsters and prepare road map for furthering the knowledge of silicon for the benefit of mankind.

The proceedings of abstracts brought out on the occasion of the 7th International Conference on Silicon in Agriculture reflect knowledge, information and ideas of researchers studying all aspects of silicon research in the world. The major theme of the Conference is "Silicon Solution to Sustainable Agriculture". The proceedings includes seven sections: 1) Biogeochemistry of Silicon cycle in agriculture; 2) Chemistry and analysis of Silicon in soils, plants and fertilizers; 3) Mechanism of Silicon uptake and accumulation in plants; 4) Role of Silicon in abiotic stress management; 5) Role of Silicon in biotic stress management; 6) Silicon fertilizers on performance of plants; and 7) Influence of Silicon on plant growth and development.

We thank Dr. Jean Dominique Meunier and Dr. Ravin Jugdaohsingh for their plenary lectures. We also convey our wholehearted thanks to Dr. Brenda Servez Tubana, Dr. Kazuyuki Inubushi, Dr. Miroslav Nikolic, Dr. Naoki Yamaji, Dr. Richard Bélanger, Dr. Rivka Elbaum and Dr. Yongchao Liang for their keynote lectures. Special thanks to Dr. Lawrence E. Datnoff for chairing the panel discussion on "Future Scenario of Silicon in Agriculture" and his constant support and encouragement for the silicon community is highly acknowledged.

We thank the University of Agricultural Sciences, Bengaluru, and all individuals who made this conference and publication of the proceedings of abstracts possible.

We highly acknowledge all the sponsors for their financial support. We are also grateful to the members of the International and National Steering Committee for their valuable support, suggestions and guidance. We thank the delegates for their outstanding contributions to this great scientific event.

We thank all the office bearers and board members of The International Society for Silicon in Agriculture and Related Disciplines (ISSAG), Bangalore Chapter of Indian Society of Soil Science for their support and suggestion for publication of proceedings of the abstracts.

We would like to appreciate all the hard work and diligent effort that has given us fruitful result eventually provided by Meetings and More, Gurugram, Haryana, India. The efficient and hard work of Mr. Ravikumar B. A., Resolution Print Media, is gratefully acknowledged.

-The Editors

BOARD OFFICERS

Prakash Nagabovanalli B. (President)	nagabovanalliprakash@rediffmail.com
Brenda Tubana (Vice President)	btubana@agcenter.lsu.edu
Scott M. Leisner (Treasurer)	SCOTT.LEISNER@utoledo.edu
Mary Provance Bowley (Secretary)	mprovbowley@gmail.com

BOARD MEMBERS

DUAND IVICIVIDENS	
Lawrence Datnoff (Organizer, 1999)	ldatnoff@agcenter.lsu.edu
Jian Feng Ma (Organizer, 2002)	maj@rib.okayama-u.ac.jp
Gaspar H. Korndorfer (Organizer, 2005)	ghk@uber.com.br
Mark Laing (Organizer, 2008)	laing@ukzn.ac.za
Yongchao Liang (Organizer, 2011)	ycliang@zju.edu.cn
Maria Greger (Organizer, 2014)	maria.greger@su.se
Alexander Lux (Organizer, 2014)	lux@nic.fns.uniba.sk
Henk Marten Laane (Industry Representative)	hm.laane@rexil-agro.com
Iqbal Hussain (Representative)	iqbalbotanist1@yahoo.com
Sabyasachi Majumdar (Student Representative)	sabyasachiuasd@gmail.com

INDIAN ORGANIZING COMMITTEE

Dr. Trilochan Mohapatra	Director General, ICAR, New Delhi	Chief Patron
Dr. H. Shivanna	Vice-Chancellor, UAS, GKVK, Bengaluru	Patron
Dr. Y.G. Shadakshari	Director of Research, UAS, GKVK, Bengaluru	Chairman
Dr. Chaudhary S.K.	ADG (NRM),ICAR & President, ISSS, New Delhi	Member
Dr. Ashok K. Patra	Director, IISS, Bhopal, Madhya Pradesh	Member
Dr. Narendra Pratap Singh	NIASM, Pune, Maharashtra	Member
Dr. Sharma P.C.	Director, CSSRI, Karnal, Haryana	Member
Dr. D.P. Kumar	Director of Education, UAS, GKVK, Bengaluru	Member
Dr. A.B. Patil	Registrar, UAS, GKVK, Bengaluru	Member
Dr. M.S. Nataraju	Director of Extension, UAS, GKVK, Bengaluru	Member
Dr. M. Byregowda	Dean of Student Welfare, UAS, GKVK, Bengaluru	Member
Dr. S. Rajendra Prasad	Dean (Agri.)UAS, GKVK, Bengaluru	Member
Dr. Shailaja Hittalmani	Dean (PGS),UAS, GKVK, Bengaluru	Member
Dr. Devaraju	Librarian, UAS, GKVK, Bengaluru	Member
Sri. M.N. Devaraja	Estate Officer, UAS, Bengaluru	Member
Dr. R.N. Bhaskar	Administrative Officer, UAS, GKVK, Bengaluru	Member
Mr. D. Vijaykumar	Comptroller, UAS, GKVK, Bengaluru	Member
Dr. Badrinath M.S.	President, ISSS (BC)	Member
Dr. Ganeshamurthy A.N.	Vice President, ISSS (BC)	Member
Dr. Rajendra Hegde	Vice President, ISSS (BC)	Member

Dr. Ramakrishna Parama V.R.	Secretary, ISSS (BC)	- Member
Dr. Gowda R.C.	Joint Secretary, ISSS (BC)	Member
Dr. Chamegowda T.C.	Professor and Head, Dept. SS&AC, GKVK	Member
Dr. Basavaraja P.K.	Executive Committee Member, ISSS (BC)	Member
Dr. Prakasha H.C.	Executive Committee Member, ISSS (BC)	Member
Dr. Chikkaramappa T.	Executive Committee Member, ISSS (BC)	Member
Dr. Subbarayappa C.T.	Executive Committee Member, ISSS (BC)	Member
Dr. Sathisha A.	Executive Committee Member, ISSS (BC)	Member
Dr. Anil Kumar K.S.	Executive Committee Member, ISSS (BC)	Member
Dr. Dharumarajan	Executive Committee Member, ISSS (BC)	Member
Dr. Raghupathi H.B.	Executive Committee Member, ISSS (BC)	Member
Dr. Varalakshmi L.R.	Executive Committee Member, ISSS (BC)	Member
Ms. Hamsa N.	Student Representative, ISSS (BC)	Member
Mr. Shivaprasad P.N.	Student Representative, ISSS (BC)	Member
Dr. N.B. Prakash	Professor, SS&AC, UAS, GKVK, Bengaluru	Org. Secretary

PROGRAMME AND TECHNICAL COMMITTEE

Dr. V.R. Ramakrishna Parama	Professor, Dept. of SS&AC, UAS, Bengaluru	Chairman
Dr. R.C. Gowda	Professor & University Head AICRPon LTFE, UAS, GKVK, Bengaluru	Member
Dr. Ganeshmurthy A.N.	Principal Scientist and Head Division of Soil Science ICAR- IIHR, HessaraghattaBengaluru	Member
Dr. Rajendra Hegde	Principal Scientist and Head ICAR- NBSS&LUP, Hebbal, Bengaluru	Member
Dr. H.B. Raghupathi	Principal Scientist, Division of Soil Science ICAR-IIHR, Hessaraghatta, Bengaluru	Member
Dr. N.B. Prakash	Professor, Dept. of SS&AC, UAS, Bengaluru	Member

REGISTRATION AND RECEPTION COMMITTEE

Dr. P.K. Basavaraja	Professor& Soil Chemist, AICRP on STCR Dept. of SS&AC, UAS, GKVK, Bengaluru	Chairman
Mr. Yogesh G.S.	SMS, Soil Science, KVK Haradanahalli, Chamarajanagara Dist.	Member
Dr. Vasanthi B.G.	SMS, Soil Science, KVK, Hadonahalli Doddaballapura Tq	Member
Mrs. Jayanthi T.	Assistant Professor, College of Sericulture Chinthamani	Member
Dr. Varalakshmi L.R.	Principal Scientist, Division of SS&AC ICAR-IIHR, Hessaraghatta, Bengaluru	Member
Dr. Niranjana K.V.	Chief Technical Officer, ICAR-NBSS & LUP Hebbal, Bengaluru	Member

A CCORARAODATIONI	AND TO AND		AITTEE
ACCOMMODATION	ANIJ IKAN	SPURT CUIVII	VIIIIFF

Dr. R.C. Gowda	Professor& University Head, AICRPon LTFE UAS, Bengaluru	Chairman
Dr. S.S. Prakash	Professor& Head, Dept. of SS&AC V.C.Farm, Mandya	Member
Dr. C.T. Subbarayappa	Professor, Dept. of SS&AC, UAS, Bengaluru	Member
Dr. Channakeshava S.	SMS, Soil Science, KVK, Kandali, Hassan Dist.	Member
Dr. D.V. Naveen	Assistant Professor, College of Sericulture Chinthamani	Member
Dr. Anantha Kumar M.A.	Assistant Professor, College of Agriculture Karekere, Hassan	Member

FOOD COMMITTEE

Dr. T.C. Chamegowda	Professor& Head, Dept. of SS&A UAS, Bengaluru	Chairman
Dr. G.G. Kadalli	Assistant Professor, College of Agriculture Karekere, Hassan	Member
Dr. T.N. Shivananda	Principal Scientist, Division of SS&AC ICAR-IIHR, Hessaraghatta, Bengaluru	Member
Dr. Dhanorkar B.A.	Chief Technical Officer, NBSS&LUP, ICAR Hebbal, Bengaluru	Member
Dr. Srinivas S.	Principal Scientist, ICAR-NBSS & LUP Hebbal, Bengaluru	Member

CULTURAL PROGRAMME COMMITTEE

Dr. Prakasha H.C.	Professor, Dept. of SS&AC, UAS, Bengaluru	Chairman
Dr. Saralakumari J.	Associate Professor, Dept. of SS&AC UAS, Bengaluru	Member
Dr. T.R. Roopa	Principal Scientist, Division of SS&AC ICAR-IIHR, Hessaraghatta, Bengaluru	Member
Mrs. Vasundhara R.	Scientist, NBSS&LUP, ICAR, Hebbal, Bengaluru	- Member
Dr. Lalitha M.	Scientist, NBSS&LUP,ICAR, Hebbal, Bengaluru	- Member
Dr. Chandrakala M.	Scientist, NBSS&LUP, ICAR, Hebbal, Bengaluru	- Member

TOUR COMMITTEE

Dr. C.T. Subbarayappa	Professor, Dept. of SS&AC, UAS, Bengaluru	Chairman
Dr. N. Srinivasa	Professor, Dept. of SS&AC, V.C.Farm, Mandya	Member
Dr. Krishnamurthy R.	Assoc. Professor, AICRP on Dryland UAS, Bengaluru	Member
Dr. G.G. Kadalli	Assistant Professor, College of Agriculture Karekere, Hassan	Member
Dr. Bhagyalakshmi T.	SMS, Soil Science, KVK, Mandya Dist.	Member
Mr. H.R.Umesh	Assistant Professor, ZARS, V. C. Farm Mandya	Member

POSTER SESSION COMMITTEE

Dr. T. Ckikkaramappa	Professor, Dept. of SS&AC, UAS, Bengaluru	Chairman
Dr. Ashoka K.R.	SMS, Soil Science, KVK Chintamani, Chikkaballapura Dist.	Member
Dr. Dharumarajan S.	Scientist, ICAR-NBSS & LUP, Hebbal, Bengaluru	Member
Dr. Kalaiselvi B.	Scientist, ICAR-NBSS & LUP, Hebbal, Bengaluru	Member
Dr. D. Kalaivanan	Scientist, Division of Soil Science ICAR -IIHR ,Hessaraghatta, Bengaluru	Member

FUND RAISING COMMITTEE

Principal Scientist, ICAR-NBSS & LUP Hebbal, Bengaluru	Chairman
Professor, Dept. of SS&AC, UAS, Bengaluru	Member
Principal Scientist, Division of Soil Science ICAR -IIHR, Hessaraghatta, Bengaluru	Member
Professor, Dept. of SS&AC, UAS, Bengaluru	Member
SMS, Soil Science, KVK, Konehally Tiptur Taluk, Tumkur Dist.	Member
Professor, Dept. of SS&AC, UAS, Bengaluru	Member
	Hebbal, Bengaluru Professor, Dept. of SS&AC, UAS, Bengaluru Principal Scientist, Division of Soil Science ICAR -IIHR, Hessaraghatta, Bengaluru Professor, Dept. of SS&AC, UAS, Bengaluru SMS, Soil Science, KVK, Konehally Tiptur Taluk, Tumkur Dist.

PROGRAMME SCHEDULE

TUESDAY 24th OCTOBER 2017

14.00 - 16.00	6.00 Departure from Radisson Blu Atria to University of Agricultural Sciences, GKVK Visit to Dry Land Agriculture Farm, Visit to Pedonarium Visit to Field Demonstration Plots	
17.00 - 18.00	Registration at Radisson Blu Atria	
18.00 - 18.30	WELCOME RECEPTION	

WEDNESDAY 25th OCTOBER 2017

09.00 - 09.45	REGISTRATION
09.45 - 11.00	INAUGURAL FUNCTION
11.00 - 11.30	INAUGURAL TEA
11.30 - 12.00	Plenary Speaker I: Jean Dominique MeunierBiogeochemistry of silicon in agriculture: a review
12.00 - 12.30	Plenary Speaker II: Ravin Jugdaohsingh Establishing the biological role of dietary silicon
12.30 - 13.30	LUNCH BREAK

SESSION I

Sub Theme I: Biogeochemistry of silicon cycle in agriculture &

Sub Theme II: Chemistry and analysis of silicon in soils, plants and fertilizers

Chair: Jean Dominique N	leunier , Co-Chair :	Brenda S. Tubana
-------------------------	-----------------------------	------------------

13.30 - 14.00	Key Note : Tubana S. Brenda	Understanding the dynamics of silicon in plant and soil are essential for establishing silicon fertilization guidelines.
14.00 - 14.15	Jean Riotte	Origin of silica in rice plants and contribution of diatomaceous earth fertilization: insights from isotopic Si mass balance in a paddy field.
14.15 -14.30	Sreenivasan T. Sandhya	Alkalinity ratio and the release of extractable silicon from silicate slags in rice soil.
14.30 -14.45	Latha P. C.	Silicate solubilization and plant growth promoting potential of <i>Rhizobium sp.</i> isolated from rice rhizosphere
14.45 - 15.00	Regan Crooks	Effect of silica fertiliser on dissolved silicon in soil solution based on the chemical properties of various soils.
15.00 - 15.15	Vladimir Matichenkov	New approaches in testing active forms of silicon in soil, plants and silicon-rich materials.
15.15 - 15.30	Zancajo Victor M. R.	Multimodal structural and functional analysis of sorghum tissues and sorghum biosilica.
15.30 - 15.45	AryaLekshmi V.	Silicon adsorption isotherm characteristics in tropical rice soils of Kerala.
15.45 - 16.00	Patil A. A.	Suitability of extractant for soil available silicon and silicon response toupland paddy grown on inceptisols and vertisols.
16.00 - 16.30	TEA BREAK AND POSTER PRES	ENTATION

SESSION II

Sub Theme III:	Mechanism of silicon uptake ar	nd accumulation in plants	
Chair : Naoki Yamaji, Co-Chair : Maria Greger			
16.30 - 17.00	Key Note : Yamaji Naoki	A cooperative transport system for silicon in plants.	
17.00 - 17.15	Sakurai Gen	Analysis of the expression dynamics of silicon transporter gene using mathematical model in rice.	
17.15 - 17.30	Rupesh Deshmukh	Genomics intervention to understand silicon transport in plants.	
17.30 - 17.45	Coskun Devrim	What makes a silicon transporter? The search for key residues that confer plant silicon permeability, accumulation, and benefits.	
17.45 - 18.00	Kumar Santosh	Correlative fluorescence and electron microscopies showing programmed cell death in sorghum silica cells.	
18.00 - 18.15	Greger Maria	Plant uptake of silicon nanoparticles.	
18.15 - 18.30	Haijun Gong	Isolation and characterization of silicon transporter gene Lsi 1 in Solanum lycopersicum L.	
19.00 - 20.00	CULTURAL PROGRAMME		
20.00	DINNER		

THURSDAY 26th OCTOBER 2017

SESSION III

Sub Theme IV :	Role of silicon in abiotic stress ma	anagement
Chair : Yongcha	o Liang, Co-Chair : Nikolic Mirosla	v
09.00 - 09.30	Key Note 1 : Yongchao Liang	Silicon and abiotic stress in higher plants progress and perspectives.
09.30 - 10.00	Key Note 2 : Nikolic Miroslav	Silicon influence on plant ionom and mineral element transporters.
10.00 - 10.15	Camargo M. S.	Silicon fertilization alleviates the deleterious effects of water deficit in sugarcane cultivars.
10.15 - 10.30	Garg Neera	Emerging recognition of silicon as ameliorator of abiotic stresses in legumes.
10.30 - 10.45	Biju Sajitha	Silicon potentiates photosynthetic efficiency and biochemical defenceresponses of lentil against drought stress.
10.45 - 11.00	Bosnic Predrag	Silicon mediates sodium transport and homeostasis in maize under mild NaCl stress.
11.00 - 11.15	GROUP PHOTOGRAPHY	Their
11.30 - 11.45	TEA BREAK	
11.45 - 12.00	Vaculík Marek	Silicon-induced alleviation of antimonate (SbV) toxicity in maize.
12.00 - 12.15	Zexer Nerya	Insights to silicon-dependent drought tolerance by testing a sorghum mutant defective in silicon uptake.
12.15 - 12.30	Bhandari Purnima	Silicon nutrition augments plant vigour, ionic homeostasis and defense mechanisms in mycorrhizal <i>Cicer arietinum</i> L. genotypes under salt stress.
12.30 - 13.30	LUNCH BREAK	

SESSION IV

Sub Theme V : R	ole of silicon in biotic stress m	nanagement
Chair : Bélanger	R. R., Co-Chair : Padmakumar	i A. P.
13.30 - 14.00	Key Note : Bélanger R.R.	Recent progress in defining the protective role of silicor against plant diseases.
14.00 - 14.15	Cai Kunzheng	Deciphering the role of silicon in enhancing tomator resistance to bacterial wilt <i>via</i> proteomics and transcriptome approaches.
14.15 - 14.30	Padmakumari A. P.	Silicon in rice stem borer management - an overview.
14.30 - 14.45	Rupesh Deshmukh	Silicon increases tolerance against powdery mildew and drought stress in transgenic tomato expressing the <i>Lsi1</i> gene from wheat.
14.45 - 15.00	Abbai Ragavendran	Silica nanoparticles enhances the tolerance of <i>Panax ginseng</i> meyer against the root rot causing fungus <i>ilyonectriamors-panacis</i> by regulating sugar efflux into apoplast.
15.00 - 15.15	Hou Maolin	Improved resistance to the brown planthopper in rice plants amended with silicon and the underlying mechanisms.
15.15 - 15.30	Basdew I. H.	The enzymatic effect of preharvest silicon applications and postharvest hot water treatments in an attempt to minimize disease development in citrus fruit.
15.30 - 16.30	TEA BREAK AND POSTER PRE	SENTATION
SESSION V		
Sub Theme VI:	<mark>Silicon fertilize</mark> rs on performan	nce of plants
Chair : Prakash	N. B., Co-Chair : Fabricio Rodrig	gues
16.30 - 16.45	Peter Prentice	Efficacy of silica in increasing yields in morocco.
16.45 - 17.00	Krzysztof Ambroziak	Foliar application of pH neutral silicon product and its effect on abiotic stress mitigation in field crops.
17.00 - 17.15	Elena Bocharnikova	New generation silicon fertilizers – greenhouse and field tests.
17.15 - 17.30	Tubana Brenda	Potential of Armurox®, a soluble silicon and peptides biostimulant, as a foliar source of silicon in wheat.
17.30 - 17.45	Michel Preti	MOSA: stabilized monosilicic acid, a new window of opportunities for efficient and effective supplementation of Silicon by root or leaf.
17.45 - 18.00	Arkadiusz Artyszak	Effect of foliar fertilization with silicon on selected physiological parameters, yield and technological quality of sugar beet.
18.00 - 18.30	INTERNATIONAL STEERING CO	MMITTEE MEETING

CONFERENCE DINNER

19.00

FRIDAY 27th OCTOBER 2017

MID CONFERENCE TOUR

07.00	Departure from Bengaluru
09.30 - 11.00	Visit to Experimental Plots and Jaggery Park at ZARS, VC Farm, Mandya
12.30 - 13.30	LUNCH AT MYSORE
14.00 - 16.30	Visit to Mysore Palace
17.00	Departure from Mysore

SATURDAY 28th OCTOBER 2017

SESSION VI

Sub Theme VII :	Influence of silicon on plant grov	vth and development
Chair: Kazuyuk	i Inubushi, Co-Chair : Elbaum Rivka	
09.00 - 09.30	KEY NOTE 1 : Elbaum Rivka	Silicic acid and silica biology studied in a low-silicon sorghum mutant.
09.30 - 10.00	KEY NOTE 2 : Inubushi K.	Effect of silicate amendment on environment and yield in Southeast Asia.
10.00 - 10.15	Mayanglambam Homeshwari De	evi The critical silicon dose in seedling root-dip method in acid soils dependent on rice cultivar and soil type.
10.15 - 10.30	More R. R.	Bioavailability of silicon by silicate solubilizing micro- organisms for increasing yield and quality of sugarcane.
10.30 - 10.45	Lux Alexander	Silicification of Cocos nucifera and Phoenix dactylifera.
10.45 - 11.00	Valentin Kindomihou	The tropical fodder silicification as influenced by burning: Cases of Andropogon schirensis, Brachiaria falcifera and Hyparrhenia subplumosa from Guinean Benin.
10.00 - 11.15	Siti Nordahliawate M. Sidique	Beneficial effects of silicon on the growth and biotic stress of Melon (<i>Cucumismelo</i> L.) var. Glamour Sakata.
11.15 - 11.45	TEA BREAK AND POSTER PRESEN	ITATIONS
11.45 - 12.00	Phonde D. B.	Studies on soil silicon status in vertisols and silicon nutrient management in sugarcane.
12.00 - 12.15	Sriramachandrasekharan M.V.	Response of Banana to Silicon Nutrition in <i>Typic Ustifluvent</i> Soil.
12.15 - 12.30	Pengbo Zhang	Silicon fertilizers impact on greenhouse gas emission.
12.30 - 13.30	LUNCH BREAK	
	JSSION : FUTURE SCENARIO	O OF SILICON IN AGRICULTURE

PANEL DISCUSSION: FUTURE SCENARIO OF SILICON IN AGRICULTURE				
Chair : Datnoff E. Lawrence, Co-Chair : Lux Alexander				
13.30 - 14.00	Datnoff E. Lawrence	Why is silicon still not used routinely for managing plant health and enhancing plant growth under greenhouse and field conditions?		
14.00 - 14.08	Bruce Cairns	Future scenarios of silicon in agriculture: An Australian perspective		
14.08 - 14.16	Henk Marten Laane	Silicon in agriculture: The future		
14.16 - 14.24	Nagabovanalli B. Prakash	Status and prospects of utilization of different silicon sources: An overview of the results from seven international conferences on silicon in agriculture and future thrust		
14.24 - 14.32	Tania Raugewitz	Proven performance, economic incentive, and consistent terminology required for long-term grower adoption		
14.32 - 14.40	Tewatia R. K.	Silicon in Indian agriculture: Policy and promotional issues		
14.40 - 15.30	GENERAL GROUP DISCUSSION			
15.30 - 16.00	TEA BREAK			
16.30 - 17.30	VALEDICTORY FUNCTION			

CONTENTS

	Page #s
PLENARY LECTURES	
Biogeochemistry of silicon in agriculture: a review Jean Dominique Meunier	03
Establishing the biological role of dietary silicon Jugdaohsingh Ravin	04
SESSIONI	
Sub Theme: I Biogeochemistry of silicon cycle in agriculture & Sub Theme: II Chemistry and analysis of silicon in soil, plants and fertilizers	
KEY NOTE	
Understanding the dynamics of silicon in plant and soil are essential for establishing silicon fertilization guidelines. <u>Tubana Brenda</u> , Babu Tapasya, White Brandon, Agostinho Flavia, Paye Wooiklee and Datnoff Lawrence	10
SHORT ORAL	
Silicon adsorption isotherm characteristics in tropical rice soils of Kerala. Arya Lekshmi V. and Jayasree Sankar S.	12
Origin of silica in rice plants and contribution of diatomaceous earth fertilization: insights from isotopic Si mass balance in a paddy field. Jean Riotte, Kollalu Sandhya, Nagabovanalli B. Prakash, Stéphane Audry and Jean-Dominique Meunier	13
Silicate solubilization and plant growth promoting potential of Phizobium sp. isolated from rice rhizosphere <u>Latha P.C.</u> , Chandrakala C., Voleti S.R., Rao P.R. and Bandeppa	14
Suitability of extractant for soil available silicon and silicon response to upland paddy grown on inceptisols and vertisols. Patil A.A., Durgude A.G., Pharande A.L. and Kadlag A.D.	15
Effect of silica fertiliser on dissolved silicon in soil solution based on the chemical properties of various soils. Regan Crooks	16
Alkalinity ratio and the release of extractable silicon from silicate slags in rice so Sreenivasan T. Sandhya and Nagabovanalli B. Prakash	il. 17
New approaches in testing active forms of silicon in soil, plants and silicon-rich materials. Vladimir Matichenkov, Zhang Pengbo, Wei Xiao, Liu Yuqiao, Zhan Qiang and Elena Bocharnikova	18
Multimodal structural and functional analysis of sorghum tissues and sorghum biosilica. Zancajo Victor M.R., AdiramNurit, Soukup Milan, Goobes Gil Emmerling Franziska, Kneipp Janina and Elbaum Rivka	19

POSTER PRESENTATION

Do termites influence silicon dynamic in tropical soils? A case study in Bandipur National Park (Karnataka, South India). Jamoteau Floriane, Majumdar Sabyasachi, Jean-Dominique Meunier, Jouquet Pascal and Nagabovanalli B. Prakash	22
First results of trace metals associated with silicon contents in two phenological stages of wheat (Triticum aestivum) in the southeast of the Pampean plains, Argentina. Frayssinet Celia, Marcovecchio E. Jorge, Osterrieth L. Margarita, Villagran Diana, La CollaNoelia, Fernandez Severini Melisa, Benvenuto M. Laura, Fernandez Honaine Mariana, Borrelli L. Natalia and Heil and Patricio	23
Silicon fertilization and its role in physical and chemical soil properties in Southeastern Buenos Aires. Frayssinet Celia, Osterrieth L. Margarita, Borrelli L. Natalia, Ciarlo Esteban, Heil and Patricio	24
Distribution of available silicon under different land use system in tropical soils. Lalitha M., Anil Kumar K.S., Parvathy S., Shivanand K., Arti Koyal, Rajendra Hegde and Singh S.K.	25
Silica production and phenological stages in soybean, wheat and maize crops developed in soils from Pampean region, Argentina. Laura Benvenuto M, Osterrieth L Margarita and Mariana Fernández Honaine,	26
Estimation of amorphous silica content in tropical rice and sugarcane soils of Karnataka, India. Majumdar Sabyasachi, Nagabovanalli B. Prakash and Jean Dominique Meunier	27
Silicophytoliths: their role in the degradation and silicon biogeochemical cycle of Molisolls in the southeast of the pampean plains, Argentina. Osterrieth L. Margarita, Benvenuto M. Laura, Borrelli L. Natalia, Donna Roberto, Paolicchi Micaela, Altamitano Stella, Frayssinet Celia, Fernandez Honaine Mariana and Alvarez Fernanda	28
Pools of Silicon in soils of Karnataka and their contribution to Rice. Thimmappa Pallavi and Nagabovanalli B. Prakash	29

SESSION II

Sub Theme III : Mechanism of silicon uptake and accumulation in plants

KEY NOTE

A cooperative transport system for silicon in plants.	30
Yamaji Naoki, Mitani-Ueno Namiki, Sakurai Gen and Ma Jian Feng	
HORT ORAL	
HORT ORAL	
What makes a silicon transporter? The search for key residues that confer plant	38
silicon permeability, accumulation, and benefits.	
Coskun Devrim, Deshmukh Rupesh, Isenring Paul and Bélanger Richard R.	
Analysis of the expression dynamics of silicon transporter gene using	39
mathematical model in rice.	
<u>Sakurai Gen</u> , Yamaji Naoki, Mitani-Ueno Namiki, Yokozawa Masayuki,	

Ono Keisuke and Ma Jian Feng,

	Plant uptake of silicon nanoparticles.	40
	Greger Maria, Landberg Tommy and Nazaralian Sanam Isolation and characterization of silicon transporter gene Lsi 1 in	41
	Solanum lycopersicum L.	41
	Hao Sun, Yaoke Duan, JiaGuo and <u>Haijun Gong</u>	
	Correlative fluorescence and electron microscopies showing programmed cell death in sorghum silica cells. Kumar Santosh and Elbaum Rivka	42
	Genomics intervention to understand silicon transport in plants. Rupesh Deshmukh, JulienVivancos, HumiraSonah, Joan Laur, Caroline Labbe, Paul Isenring, Francois J.Belzile and Richard R. Bélanger	43
P	OSTER PRESENTATION	
	Identification of natural variation of silicon transport in rice Partha Talukdar, Adam H. Price and Gareth J. Norton	46
S	ESSION III	
	Sub Theme IV:Role of silicon in abiotic stress management	
K	EY NOTE	
	Silicon and abiotic stress in higher plants progress and perspectives. Yongchao Liang, Song Alin, Ping Li, Guochao Yan and Zhuoxi Xiao	52
	Silicon influence on plant ionom and mineral element transporters. Nikolic Miroslav, Kostic Ljiljana, Pavlovic Jelena and Bosnic Predrag	53
S	HORT ORAL	
	Silicon nutrition augments plant vigour, ionic homeostasis and defense mechanisms in mycorrhizal Oœr arietinum L. genotypes under salt stress. Bhandari Purnima and Garg Neera	56
	Silicon potentiates photosynthetic efficiency and biochemical defence responses of lentil against drought stress. Biju Sajitha, Fuentes Sigfredo and Gupta Dorin	57
	Silicon mediates sodium transport and homeostasis in maize under mild NaCl stress. Bosnic Predrag, Bosnic Dragana and Nikolic Miroslav	58
	Silicon fertilization alleviates the deleterious effects of water deficit in sugarcane cultivars.	59
	Camargo M.S., Oliveira A.L., Bezerra B.K.L. and Silva M.A.	
	Emerging recognition of silicon as ameliorator of abiotic stresses in legumes. Garg Neera	60
	Silicon-induced alleviation of antimonate (SbV) toxicity in maize. Vaculík Marek, Vaculíková Miroslava, Tandy Susan, Luxová Miroslava and Schulin Rainer	61
	Insights to silicon-dependent drought tolerance by testing a sorghum mutant defective in silicon uptake.	62
	Zexer Nerya, Markovich Oshry, Seligmann Ron, Moshelion Menachem and Elbaum Rivka	

POSTER PRESENTATION

Silicon improves the quality of fruits of Solanum lycopersicum Mill. subjected to saline stress. Carballo-Méndez F.J., Olivares-Saenz E, Vázquez-Alvarado R.E., Zavala-García F, Bolivar-Duarte M. and Benavides-Mendoza A.	64
Effect of silicon on tolerance of wheat (Triticum aestivum L.) at different growth stages to salt stress: Case study for management of irrigation water. Daoud A.M., Hemada M.M., Saber N, El-Araby A.A.M. and Moussa L.	65
Effect of silicon in the initial stages of Zn-deficiency in rice plants. <u>Juan José Lucena</u> , Alexandra Martín-Esquinas, Sandra Carrasco-Gil and Lourdes Hernández-Apaolaza	66
Role of silicon in modulating growth, mycorrhizal and rhizobial symbiosis as well as yield in Cajanus cajan genotypes under arsenate and arsenite stress. Kashyap Lakita and Garg Neera	67
Silicon nanoparticle effects on arsenic and cadmium plant uptake. <u>Landberg Tommy</u> and Greger Maria	68
Silicon effect on micronutrients localization in rice roots grown in Fe deficient and control conditions at two different pH values. Lourdes Hernández-Apaolaza, Sandra Carrasco-Gil, Sara Rodríguez-Menéndez, Rosario Pereiro and Beatriz Fernández	69
Effect of silicon on drought tolerance of wheat (Triticum aestivum L., cv. Venturero). Lux Alexander, Kohanová Jana and Švec Miroslav	70
Effect of Silicon and Potassium on performance of Sesamia inferens (Walker) in wheat under field conditions. Mallikarjuna Jeer K.C., Sharma YogeshYele and Nagabovanalli B. Prakash	71
Fighting Arsenic Toxicity in Rice Grains using Ortho Silicic acid: A Case Study. Sanjay Dwivedi, Seema Mishra, Amit Kumar, Amit Pal Singh, VinodGoyal, Neeru Jain and Tripathi R.D.	72
Silicon nutrition alleviates cadmium and zinc induced toxic responses by modulating proline biosynthesis in mycorrhizal Cajanus cajan (L.) Millsp. Genotypes. Singh Sandeep and Garg Neera	73
Effect of Si fertilizers on productivity and quality of rice grown on polluted areas, field tests in the Xiangjiang River Basin. Xiao Wei, Pengbo Zhang , Yuqiao Liu , Qiang Zhan, Elena Bocharnikova, and Vladimir Matichenkov	74

SESSION IV

Sub Theme V: Role of silicon in biotic stress management

KEY NOTE

Recent progress in defining the p	protective role of silicon against plant diseases.	80
Bélanger R.R., Deshmukh Rupesh	n, Razoolizadeh A., Belzile F. and Menzies J.G.	

SHORT ORAL

Silica nanoparticles enhances the tolerance of Panax ginseng meyer against the root rot causing fungus, ilyoned riamors-panadis by regulating sugar efflux into apoplast.

Abbai Ragavendran, Kim Yeon-Ju, Kim Yu-Jin, Mohanan Padmanaban, Mathiyalagan Ramya, Farh El-Agamy Mohamed, Sukweenadhi Johan, Rangaraj Suriyaprabha, Venkatachalam Rajendran and Yang Deok Chun

	The enzymatic effect of preharvest silicon applications and postharvest hot water treatments in an attempt to minimize disease development in citrus fruit. Basdew I.H. and Laing M.D.	83
	Deciphering the role of silicon in enhancing tomato resistance to bacterial wilt via proteomics and transcriptome approaches. Cai Kunzheng, Lin Weipeng, Chen Yuting and Jiang Nihao	84
	Improved resistance to the brown planthopper in rice plants amended with silicon and the underlying mechanisms. Hou Maolin, Yang Lang, Han Yong Qiang and Li Pei	85
	Silicon in rice stem borer management - an overview. Padmakumari A.P. and Voleti S.R.	86
	Silicon increases tolerance against powdery mildew and drought stress in transgenic tomato expressing the Lsi1 gene from wheat. Rupesh Deshmukh, Julien Vivancos, Humira Sonah, Caroline Labbe, Steeve Pepin, James G. Menzies and Richard R. Bélanger	87
•	OSTER PRESENTATION	
	Foliar spray of a source of soluble silicon to control asian soybean rust on soybean.	90
	Caroline <mark>Hawerroth, João Augu</mark> sto C. M <mark>arques, Carla</mark> S. Dias, Leandro C. Silva, Jonas A. Rios, Rubens K. Nagata, <u>Fabrício A. Rodrigues</u>	
	Foliar spray of soluble silicon to control blast on rice. Isaias Severino Cacique, Áysla Tereza Horta Oliveira, Luiz Felipe Castro Carmo Pinto Cristiano Veloso, Rodrigo Estevam O. Mac Leod and Fabrício Ávila Rodrigues	91
	Efficacy of foliar application of silicon (OSAB) on powdery mildew (Oidium neolycopersici) disease reduction in tomato Kedarnath, Rangaswamy K.T., Nagabovanalli B. Prakash and Raghavendra Achari	92
	Abrasion of midgut epithelial tissues of yellow stem borer larvae upon feeding on Silicon treated rice plants. Mallikarjuna Jeer, Padmakumari A.P., Umamaheswari T and Voleti S.R.	93
	Influence of silicon on purple blotch disease (Alternaria porri (Ellis) Cif.) in onion (Allium œpaL.). Mohammad Haroon, Amruta S. Bhat, Nagabovanalli B. Prakash, Rangaswamy K.T. and Lingaiah H.B.	94
	Efficacy of foliar application of silicic acid on yellow mite Oligonychus sacchari McGregor (Acari: Tetranychidae) on two sugarcane commercial varieties. Nikpay Amin and Laane Henk-Maarten	95
	Effectiveness of silicon application on mycotoxins reduction in maize. Wieslaw Ciecierski, Marek Korbas and Joanna Horoszkiewicz-Janka	96
	ESSION V	
	Sub Theme VI : Silicon fertilizers on performance of plants	
ŀ	HORT ORAL	
	Effect of foliar fertilization with silicon on selected physiological parameters, yield and technological quality of sugar beet. Arkadiusz Artyszak, Dariusz Gozdowski and Katarzyna Kuciñska	102
	AIRAGIUSZ AILYSZAK, DAITUSZ GUZUUWSKI AITU KALAIZYIIA KULIIISKA	

Potential of Armurox®, a soluble silicon and peptides biostimulant,	as a foliar 103	
source of silicon in wheat. Botta Anna, <u>Tubana Brenda</u> , Sierras Núria, MarínCándido, Price Pau		
Datnoff Lawrence	. unu	
New generation silicon fertilizers – greenhouse and field tests. Elena Bocharnikova and Tor S. Hansen	104	
Foliar application of pH neutral silicon product and its effect on abic stress mitigation in field crops. Krzysztof Ambroziak	otic 105	
MOSA: stabilized monosilicic acid, a new window of opportunities for efficient and effective supplementation of Silicon by root or leaf. Michel Preti	or 106	
Efficacy of silica in increasing yields in morocco. Peter Prentice	107	
SESSION VI		
Sub Theme VII: Influence of silicon on plant growth and developme	ent	
EY NOTE		
Silicic acid and silica biology studied in a low-silicon sorghum mutant Elbaum Rivka	:. 114	
Effect of silicate amendment on environment and yield in Southeas Inubushi K., Siratori Y., Ito K, Arai H., Yoshioka N., Iswandi A., Citrare Niguyen H.T., Tran T.L.H. and Pham Q.H.		
HORT ORAL		
Silicification of Cocosnucifera and Phoenix dactylifera. Lux Alexander, Bokor Boris, Nagabovanalli B. Prakash, Hamsa Nagar Vaculík Marek, Kohanová Jana, Weidinger Marieluise, Lichtscheidl Maheswarappa H.P.		
The critical silicon dose in seedling root-dip method in acid soils dep on rice cultivar and soil type. Mayanglambam Homeshwari Devi and Thakuria Dwipendra	pendent 119	
Bioavailability of silicon by silicate solubilizing micro-organisms for increasing yield and quality of sugarcane. More R.R. and Phonde D.B.	120	
Silicon fertilizers impact on greenhouse gas emission. Pengbo Zhang, Wei Xiao, Yuqiao Liu, QiangZhan, and Vladimir Mati	121 chenkov	
Studies on soil silicon status in vertisols and silicon nutrient manage in sugarcane.	ement 122	
Phonde D.B., Deshmukh P.S., More R.R. and Banerjee Kaushik		
Response of Banana to Silicon Nutrition in Typic Ustifluvent Soil. Sriramachandrasekharan M.V., Arthi V. and Manivannan R.	123	
Beneficial effects of silicon on the growth and biotic stress of Melon	124	
(Qucumismelo L.) var. Glamour Sakata. <u>Siti Nordahliawate M. Sidique</u> , Nur AAzhari, Andrew A. Ngadin, Nuru Suhaizan Lob and Xiaolei Jin	ul F. Ibrahim,	

The tropical fodder silicification as influenced by burning: Cases of Andropogon schirensis, Brachiaria falcifera and Hyparrhenia subplumosa from Guinean Benin.

Valentin Kindomihou, Brice Sinsin, Roland Holou and Pierre Meerts

POSTER PRESENTATION

Diatomaceous earth as source of silicon in tomato crop. <u>Ashok L.B.</u> , Swamy G.S.K. and Nagabovanalli B. Prakash	128
Applying silicate fertilizer increases both yield and quality of table grape (Vitis vinifera L.) grown on calcareous grey desert soil. Chu Guixin, Zhang Mei and Liang Yongchao	129
Silicon and phosphorus fertilization in aerobic rice-wheat system. <u>Dinesh Jinger</u> , Shiva Dhar, Anchal Dass and Sharma V.K.	130
Diatomaceous earth as silicon nutrition to onion. Durgude A.G., Kadlag A.D. and Pharande A.L.	131
Effect of orthosilicic acid formulations on growth and yield of maize in different soils. Jawahar S., Kalaiyarasan C., Sriramachandrasekharan M.V., Neeru Jain and Naveenkumar M.	132
Impact of silicates on the growth of coconut seedlings grown in a tropical Entisol Jeena Mathew, Krishnakumar V., Abdul Haris A. and Narayanan Nampoothiri C.K.	133
Research progress in the positive influence of silicon fertilizer on the quality of crops. Jianxin Jia, Zhaojun Li, Delong Cai, Xiujie Hu, GuangnianGu, Zhifeng Bu and Guoqing Liu	134
Bio-active silicon for improving phosphorus uptake and reduction in fixation in soils by mineralization. Joshi Milind D., Syed Shakir Ali, Mahamuni S.V., Nayar Vasudev, Indurkar Udayan and Lature Prakash	135
Effect of diatomite as a silicon source on growth, yield and quality of potato. Kadalli Gundappa G., Rudresha B. Asha and Nagabovanalli B. Prakash	136
Impact of ortho silicic acid formulation on yield and disease incidence of potatoes. Khan M.A., Goyal Vinod and Jain Neeru	137
Bioavailability and budgeting of different sources of silicon and their effect on growth and yield of rice in acidic, neutral and alkaline soils of Karnataka, South India.	138
Kollalu Sandhya, Nagabovanalli B. Prakash and Jean Dominique Meunier Silica content, anatomical traits and herbivory damage in leaves with different age and solar radiation exposition of invasive tree, Ligustrum lucidum. Mariana Fernández Honaine, Lía F Montti,, Weilong Qi and Osterrieth L. Margarita	139
Comparison of different sources of silica on the yield and quality of "Alphonso" mango in Kokan Region of Maharashtra. More S.S., Gokhale N.B., Kasture M.C., Shinde S.E. and Jain Neeru	140
Effect of sources and levels of silicon on soil properties, uptake, yield and quality of kharif onion. Nazirkar R.B., NaraleBalaji and Durgude A.G.	141

	Effect of varied levels of diatomite on growth and yield of sugarcane in Karnataka.	142	
	Nagabovanalli B. Prakash, Chandravamshi P., <u>Mallikarjuna L.</u> ,Yogesh T.C., Srinivasa I Vijayamahantesh, Suchitra C.K. and Saravanakumar	D.K.,	
	Agronomic performances and chemical responses of rice to silicon nutrition through diatomaceous earth in two different soils. Ravichandran M. and Sriramachandrasekharan M.V.	143	
	Effect of silicon and micronutrients on plant growth, yield and disease incidence in chilli (Capsicum annuum L). Satisha G.C., Saxena A.K. and Ganeshamurthy A.N.	144	
	Influence of diatomaceous earth (as a source of silicon) on flowering, yield and quality of pomegranate cv. Kesar. Swamy G.S.K., Nagabovanalli B. Prakash and Anand Kalatippi	145	
	Effect of foliar application of silicic acid on growth, yield and quality of soybean [Glycine max. (L)]. Uppalige Shwethakumari, Nagabovanalli B. Prakash, JayarameGowda and	146	
	Effect of foliar spray of stabilized ortho silicic acid (OSA) on the fruit quality and quantity of Kinnow mandarin. Vikram Verma, Vinod Goyal, Prem Bubber and Neeru Jain	147	
	Rate and application time of plant available silicon on winter wheat yield and quality Walsh Olga, Mc Clintick-Chess Jordan and Blanscet Steven	148	
P	PANEL DISCUSSION: FUTURE SCENARIO OF SILICON IN AGRICUTLURE		
	Why is silicon still not used routinely for managing plant health and enhancing plant growth under greenhouse and field conditions? Datnoff E. Lawrence and Tubana S. Brenda	150	
	Future scenarios of silicon in agriculture: An australian perspective Bruce Cairns, Peter Prentice and Regan Crooks	151	
	Silicon in agriculture: The future Henk-Maarten Laane	152	
	Status and prospects of utilization of different silicon sources: An overview of the results from seven international conferences on silicon in agriculture and future thrust Nagabovanalli B. Prakash, Sandhya Kollalu, Majumdar Sabyasachi and Thoppil S. Sandhya	153	
	Proven performance, economic incentive, and consistent terminology required for long-term grower adoption Tania Raugewitz	154	
	Silicon in Indian agriculture: Policy and promotional issues Tewatia R.K.	155	
N	IDEX	156	

PROCEEDINGS OF A B S T R A C T S

Silicon influence on plant ionom and mineral element transporters

Nikolic Miroslav, Kostic Ljiljana, Pavlovic Jelena, Bosnic Predrag

Plant Nutrition Research Group, Institute for Multidisciplinary Research, University of Belgrade, PO Box 33, Belgrade, 11030, Serbia. (mnikolic@imsi.bg.ac.rs)

ABSTRACT

The plant ionomics is the study of essential and nonessential mineral element composition of plants (the ionom) at cellular, tissue or organismal level. The plant ionomic profile is affected by various factors, including plant (e.g. species, genotypes, organ, developmental change) and environment (e.g. soil, fertilizers, stress conditions). Over the past decade rapid progress has been made in understanding the mechanisms through which silicon (Si) mediates mineral excess and/or toxicity stress. However, the effect of Si on the mineral element uptake and consequently the plant ionome is still unclear, in particular under conditions of limited nutrient availability.

Firstly, I will present recent results of my research group demonstrating that Si application modulates the ionomic profile of various plant species (e.g. rice, barley, wheat, maize, cucumber, sunflower, soybean, grapevine and tomato) grown under both normal and stress conditions. In the second part of my talk I will review the current knowledge of Si influence on the expression of (a) root and shoot metal transporter genes under excess of cadmium (Cd), manganese (Mn) and copper (Cu) (Li et al., 2018; Kim et al. 2014; Che et al., 2016; Farooq et al., 2016); (b) transporter genes involved in the uptake, long-distance transport and homeostasis of iron (Fe) under low Fe conditions (Pavlovic et al., 2013, 2016); (c) transporter genes for inorganic phosphorus (Pi) root uptake under low P conditions (Kostic et al., manuscript submitted); and (d) transporter genes involved in shoot homeostasis of sodium (Na⁺) (see Bosnic et al., this proceedings) and B (Akcay & Erkan, 2016) under saline stress.

In conclusion, the role of Si in modulation of plant ionome, including also nutrient and other mineral element uptake and utilization, appears to be more indirect by transcriptional regulation of genes responsible for both root acquisition and tissue homeostasis. Further understanding of how exactly Si regulates the expression of mineral element transporter genes will help to improve crop productivity, yield quality and food safety in stress conditions.

Keywords: Environmental stress, Ionomics; Mineral element transporters; Silicon

References:

- 1. Kim Y. H., Khan A. L., Kim D. H., Lee S.Y., Kim K. M., Waqas M., Jung H. Y., Shin J. H., Kim J. G., Lee I. J. (2014) BMC Pant Biol. 14:13
- 2. Che J., Yamaji N., Shao J. F., Ma J. F., Shen R. F. (2016) J. Exp. Bot. 675: 1535-1544.
- 3. Li J., Lesiner S. M., Frantz J. (2008) J. Am. Soc. Hortic. Sci. 133: 670-677.
- 4. Farooq M. A., Detterbeck A., Clemens S., Dietz K. J. (2016) J. Exp. Bot. 67: 3573-3585.
- 5. Pavlovic J., Samardzic J., Maksimovic V., Timotijevic G., Stevic N., Laursen K. H., Hansen T. H., Husted S., Schjoerring J. K., Liang Y., Nikolic M. (2013) *New Phytol.* 198: 1096-1107.
- 6. Pavlovic J., Samardzic J., Kostic L., Laursen K. H., Natic M., Timotijevic G., Schjoerring J. K., Nikolic M. (2016) *Ann. Bot.* 118: 271-280.
- 7. Akcay U .C., Erkan I .E. (2016) Plant. Mol. Biol. Rep. 34: 318-326.