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ABSTRACT: It had been long recognized that the tensile strength of brittle materials increases with 

increase of the loading rate. In the present paper, a statistical approach to rupture of a disordered two-

dimensional (2D) triangular truss lattice consisting of fragile nonlinear springs is attempted in hope to 

elucidate some generic effects of structural and geometrical disorder on the tensile strength and the (stress-

peak and post-peak) damage energy rates. The simulation results reveal increase of the mean and decrease 

of the standard deviation of the macroscopic tensile strength with increase of the structural and geometrical 

order till the “theoretical strength” saturation. At the same time, the increase in lattice disorder results in 

increase of the mean and standard deviation of the stress-peak damage energy rate, followed by the 

decrease of the same in the softening regime.     
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INTRODUCTION 

The study of fracture process in heterogeneous or multi-phase materials remains an active research 

topic in more than two decades. However, due to subtle interplay of the structural disorder, the dynamically 

induced nonlinear stress field, and the inherent limitations of the perpetually advancing experimental 

techniques (Field et al., 2004), the stochastic nature of brittle dynamic response remains difficult to capture 

theoretically. The significant advances in visualization, characterization, and modeling that are made 

recently in experimental and computational mechanics (e.g., Zavattieri et al., 2001; Espinosa and Zavattieri, 

2003; Zhou and Molinari, 2004; Kraft et al., 2008) outline a promising synergy that appears to be limited 

only by available computational power. Nonetheless, the use of lattices, as reasonable simplifications of 

more realistic systems, still has its merits to the extent they can capture “essential properties of fracture” 
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(Hansen et al., 1989) that are only weakly dependent on the complexities of realistic systems. These virtual 

2D microstructures offer an efficient approach to stochasticity of micro-fracture physics of brittle materials 

and may shed some light on its connection with macroscopic response. As a consequence, the disordered 

lattices are used extensively for the last three decades to study various aspects of damage evolution and 

failure of inhomogeneous or multi-phase systems (e.g., Hansen et al., 1989; Curtin et al., 1997; Mastilovic 

et al., 2008). The recent advances in statistical damage mechanics rely crucially on the lattice simulations 

(e.g., Rinaldi et al., 2007, and references therein). A thorough review of lattice models in micromechanics 

is presented by Ostoja-Starzewski (2002).  

The present investigation is a sequel of the analysis of the ordering effect of kinetic energy on dynamic 

behavior of low-fracture-energy materials (Mastilovic et al., 2008) with emphasis shifted on the influence 

of structural and geometrical disorder. Those highly brittle materials are characterized with the inferior 

tensile strength and negligible effects of dislocation activity on dynamic behavior. The lattice simulations 

are used to investigate stochasticity of high rate response and dynamic failure of these materials. This is 

achieved by performing repeatedly dynamic tensile test simulations at four strain rates (& = 10, 1×103, 

1×105, 1×107 s-1) spanning the medium-to-high strain rate range with focus on the tensile strength and 

damage energy rate (i.e., strain energy release rate).     

It is inherently difficult to approach objectively the data scatter of the actual dynamic tests since it may 

be hard to discern between the actual physics and the artifacts of the experimental technique (e.g., 

dissimilar sample materials, alignments of load platens and sample, etc). The primary advantage of the 

“virtual experiments” is the ability to exert almost unlimited control over the “test” conditions coupled with 

the natural introduction of the various types of disorder.  

LATTICE SIMULATIONS  

The 2D triangular lattice model considered herein is formed by “continuum particles” located at lattice 

nodes (192 × 227), which interact by nonlinear links characterized by a small tensional rupture threshold 

(for details refer to Mastilovic et al., 2008, and references therein). The links are very brittle; their critical 

extension at rupture is εcr = 0.1%. 

The disordered is initially introduced by the normal distribution of equilibrium interparticular distances  

(λ0) and the uniform distribution of link stiffness (k). The ranges of these distributions,    20
 

and   kkk   2 , are defined by order parameters  and , which vary between 0 and 1 and 

represent measures of divergence from the ideal lattice (α = 1, β = 1). It is often professed that, depending 

on the observation scale, the geometrical disorder can take into account, for instance, the distribution of 

grain sizes, while the structural (chemical) disorder encompasses the inherent or induced flaw structure 

defining the grain boundary cohesive interface of the brittle solid (e.g., Kraft et al., 2008). The reduced-

units mean link length ( 1 ) and the mean link stiffness ( 50k ) are arbitrarily selected model 

parameters. 
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In general, damage is related to irreversible changes in material and corresponding energy dissipation. 

Since the micro-fracture is the only dissipative process included in the present model, the link parameters 

define the damage energy 

  22

0
2

1
crD k   (1) 

tracked throughout simulations, as the cohesive energy released in the course of link ruptures. Since the 

link stiffness and initial length are stochastic parameters, the damage is “a probabilistic nucleated event” 

(Curtin et al., 1997) driven by the local stress. The damage energy is reported in this paper normalized, 

0DDD  , with the strain energy released upon the rupture of one single bond with average properties, 

222

00 crD k  .  

The full set of 30 simulations per each loading rate are performed on two lattices characterized by 

substantially different disorder levels labeled tentatively as:  

 Large disorder (LD): (α, β) = (0.02, 0.5), and  

 Small disorder (SD): (α, β) = (0.2, 0.9).1 

The numerical simulation of the displacement-controlled uniaxial tension test (Figure 1) is designed to 

ensure uniform distribution of load within a sample and to cancel adverse effects of the lateral inertia 

(Mastilovic et al, 2008; Mastilovic, 2008) by imposing an initial velocity field (t=0) to all lattice nodes: 

 

   111 0 xtx &&   (2a) 

    
2102 0 xtx  

&&   (2b) 

 

The initial “velocity kick” is defined by Equations (2) in terms of the prescribed strain rate, 

LL&&&  1 , and the Poisson’s ratio,   310  , that is characteristic of the ideal 2D triangular lattice, and 

corresponds to the Poisson’s ratio υ0 = 1/4 of a pristine material. Following the application of the initial 

velocity field, only velocity of the particles located at the specimen’s longitudinal boundaries (x1 = ±L/2) is 

controlled 

  0,211  tLx &&  (3) 

 

                                                
1 The selection of order parameters for the two model sets warrants a disclaimer. The LD lattice order 

parameters were chosen originally (Mastilovic et al., 2008, and references therein) to capture, as close as 

possible within the limits of the model, the micrographs of alumina. Consequently, the geometrical disorder 

was maximized while the structural disorder was, in absence of appropriate data, selected arbitrarily to 

account reasonably for a variety of grain boundary interfacial strengths. The choice of the SD lattice order 

parameters in the present investigation was, to a certain extent, driven by the preceding LD selection. The 

well-documented shortcomings of the strongly disordered lattice (e.g., Jagota and Bennison, 1994; Van 

Mier and Man, 2009) are important to recognize although they do not affect significantly the qualitative 

observations of this investigation. 
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while the motion of all other particles is governed by the Newton’s equation of motion. 

 

 
 
Figure 1. The uniaxial test simulation set-up; (a) application of the initial strain rate field, (b) 

displacement-controlled longitudinal tension.   

 

As a consequence of the initial velocity field applied perpendicular to the loading direction, the stress 

in the lateral direction is approximately zero regardless of the strain rate of the external load applied in the 

longitudinal direction (i.e.,  & ,02
), and all the test—regardless of the loading rate—are performed 

under identical in-plane conditions (Mastilovic et al., 2008). 

The convergence and mesh objectivity aspects of the model were addressed in literature (as reported by 

Mastilovic et al., 2008). 

SIMULATION RESULTS 

The simulations are performed at four different loading rates (&  = 10, 1×103, 1×105, and 1×107 s-1) by 

using 30 different statistical realizations of the geometrical and structural disorder (reflected by the 

selection of the pseudorandom-number-generator seed). The basic tensile strength statistics that is 

presented in Table 1 summarizes the two sets of simulations performed on the models characterized by two 

different disorder levels (LD and SD) defined previously. These results are consistent with the experimental 

observations that suggest that the dynamic tensile strength of brittle materials at high strain rates introduced 

by shock waves can exceed the quasi-static tensile strength by an order of magnitude (e.g., Grady and 

Hollenbach, 1979). The simulation results also re-affirm the modest strain-rate sensitivity of brittle 

materials at lower loading rates for which the tensile strength is dominated by the subcritical crack growth. 

A single dominant macrocrack evolves from the most “favorably” positioned among weak links, which 

eventually results in a catastrophic failure at a small macro damage density level. The steep ascent of 

tensile strength with the loading rate increase (schematically depicted in Figure 3 at two disorder levels) 

coincides with the transition of fracture pattern from a couple of dominant macrocracks to the web of 

uniformly distributed microcrack clusters (Mastilovic et al., 2008). It is noteworthy that while stress and 
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damage energy time histories for low and high loading rates generally reveal the brittle properties of the 

failure process2, those in Figure 2, corresponding to this transition, reveal a number of quasi-ductile 

characteristics; most notably, the relatively significant damage accumulation in the hardening regime and 

the pronounced softening regime, resulting from the collective behavior of the microcracks comprising the 

microcrack clouds (Mastilovic et al., 2008). The reduction of tensile strength stochasticity in this strain rate 

range is attributed to the averaging effect within these clusters (Zhou et al., 2004). 

 

 

Figure 2. Typical time histories of stress and damage energy for one realization at &  = 1×105 s-1. 

 

The high-strength plateau (i.e., the upper strength asymptote), labeled provisionally as “theoretical 

strength” in the forthcoming discussion, corresponds to a completely uniform distribution of microcracks 

(see the detail in Figure 3) and almost a complete absence of stochasticity. This increasingly deterministic 

response associated with the extremely high loading rates is attributed to the fact that the propagation of 

activated and nucleated microcracks, the load redistribution within the brittle system, and the corresponding 

cooperative phenomena are practically inhibited by inertial effect (Wang and Ramesh, 2004).  

The basic statistics of tensile strength data (specifically: the mean, the standard deviation, and the ratio 

of non-outlier maximum and minimum values) obtained from numerical simulations is presented in Table 1 

as the LD–SD (large disorder – small disorder) pairs.   The results illustrate the effect of geometrical and 

structural disorder and the loading rate on the tensile strength statistics for the idealized brittle solid. 

Namely, since the weak links are relatively more abundant in the presence of large disorder, they promote 

early ruptures and initiation of microcrack clusters. Furthermore, the increased concentration of weak links 

increases stochasticity of the failure process as reflected by the tensile strength data scatter in Table 1. As a 

consequence, the strain rate sensitivity for the brittle materials is more pronounced for the large-disorder 

brittle systems. Specifically, it can be observed from Table 1 that the mean value of tensile strength 

increases approximately 12 and 4 times from &  = 10 s-1 to 1×107 s-1 for LD and SD, respectively.  

                                                
2 The stress increases linearly with time and drops suddenly upon failure with negligible damage 

accumulation prior to failure. 
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Thus, in the notation used by Mastilovic et al. (2008) 

  &m
 (4) 

and the scaling parameter ς is disorder-dependent.  

 

Table 1.  Statistics of the dynamic tensile strength data for the two models characterized by large disorder 

and small disorder (LD – SD) 

 

&   [1/s] 1×10
1 1×10

3 1×10
5 1×10

7 

 

 

0Em  

[×10-3] 

 

 

MEAN .0887 – .264 .235 – .343 .482 – .659 1.07 – 1.07 

STANDARD 

DEVIATION 
.0155 – .0148 .0115 – .0152 .00209 – .00183 .00185 – .000780 

MAX.–MIN. 

VALUE RATIO 
1.94 – 1.25 1.32 – 1.17 1.08 – 1.01 1.07 – 1.00 

 

Similarly, the increase of tensile strength with the strain rate can be represented by the following 

expression 

  

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


&log
exp10

 (5a) 

where  

   0, m

th

mmm SS    (5b) 

is the measure of hardening, and A, B, and C are fitting parameters, identifiable from the rate-affected 

strength change. Specifically, Equation (5a) is a mathematical description of the mean tensile strength 

change with the strain rate, schematically outlined in Figure 3, with the lower and upper strength 

asymptotes being the quasi-static tensile strength (
0m ) and the theoretical tensile strength ( th

m ), 

respectively. The discussion of Equations (5) is beyond the scope of the present paper, but it is important to 

emphasize that Equation (5b) expresses dependence of the rate-driven increase of the tensile strength on the 

microstructural disorder (e.g., SD

m

LD

m SS  ). The detailed analysis of the functional dependence 

 ,mm SS  , based on the lattice simulation results, would be straightforward but of seemingly dubious 

use, keeping in mind the highly idealized and simplified character of the virtual 2D microstructure 

presented herein. 

The scatter of strength data for the four loading rates and two material disorder levels, presented in 

Table 1, is depicted schematically by the shaded areas in Figure 3. The large scatter corresponding to 

&  = 10 s-1 is reduced to a single line at &  = 1×107 s-1, which is indicative of the substantial reduction of the 
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tensile-strength scatter close to the “upper-plateau” loading rate range. This suggests that the theoretical 

strength, defining the upper limit strength, is a deterministic property defined primarily by the chemical 

bonding and relatively insensitive to the subtle features of the material texture (Mastilovic et al., 2008). The 

evident transition from the stochastic to the deterministic behavior—reflected by the reduction of the 

strength dispersion and change of damage evolution patterns discussed by Mastilovic et al. (2008)—is more 

pronounced in the case of the large microstructural disorder. In other words, the uncertainty of the brittle 

material strength increases with the increase in randomness of microstructure (either geometrical or 

structural). This behavior can be explained by the increase of importance of complex interplay of 

microstructural features in the case of relatively narrow range of microstructural disorder (Rinaldi and Lai, 

2007). 

 

 
 

Figure 3. Schematic representation of the tensile strength dependence on the strain rate indicating the 

ordering effect of kinetic energy and the effect of geometrical and structural disorder. (Note that the three 

tensile strengths depicted at the ordinate represent the mean values at the corresponding locations.) 

 

The importance of the microstructural events that take place at the stress peak that marks onset of 

localization is worth to emphasize (Van Mier and Man, 2009). The present focus is on the stress-peak and 

post-peak damage energy rates (Tables 2 and 3, respectively), although the similar observations were made 

for the scalar damage parameter (damage density). The stress-peak damage energy rate is defined 

unambiguously, while the post-peak damage energy rate reported herein refers to the maximum damage 

energy rate in the softening regime (which corresponds to the final deformation phase for the avalanche-

type failures, but not necessarily in general). 
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First, it is interesting to note, from the simulation results presented in Table 2, that for the 

displacement-controlled tension the mean value of the stress-peak damage energy rate scales reasonably 

well with the strain rate  

 && Dm
  (6) 

Second, the increase of geometrical and structural disorder results in increase of both the mean value 

and the standard deviation of the 
Dm&  data.     

 

Table 2.  Statistics of the damage energy rate at the stress peak at two different levels of model disorder 

 

&   [1/s] 1×10
1 1×10

3 1×10
5 1×10

7  

 

 310 mD

&  

 
MEAN / 

STAND. DEVIATION

 

0.0034 / 
0.0030 

0.27 /  
0.25 

22. / 
1.1 

6400. / 
800. 

LARGE 

DISORDER 

0.0027 / 
0.0028 

0.22 / 
0.10 

25. / 
1.3 

3600. / 
680. 

SMALL 

DISORDER 

 

Table 3.  Statistics of the damage energy rate in the softening region at two different levels of model 

disorder 

 

&   [1/s] 1×101 1×103 1×105 1×107  

 

 3
10 fD

&  

 
MEAN / 

STAND. DEVIATION  

1.2 
/ 0.36 

2.1 
/ 0.84 

37. 
/ 1.0 

11000. 
/ 4200. 

LARGE 

DISORDER 

1.5 
/ 0.56 

2.6 
/ 1.7 

55. 
/ 2.1 

7600. 
/ 4000. 

SMALL 

DISORDER 

 

The basic statistics of the post-peak damage energy rate, presented in Table 3, reveals the opposite 

disorder effect. Namely, it appears that the higher stress-peak damage energy rates—characteristic of the 

more disordered model—are followed by the lower post-peak (softening) damage energy rates, both in 

terms of the mean value and the data scatter.   

Strength Limit Case – Small Perturbations of the Ideal Lattice 

With the further disorder reduction, the ratio between the upper and lower dynamic strength 

asymptotes continues to drop. Thus, the low-rate tail of the σm vs. )(log &  curve continues to rise, as 

schematically depicted in Figure 3. For example, for (α, β) = (0.4, 0.95), 5.1
0


m

th

m
 . 
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As a demonstration case of a slightly perturbed ideal lattice, the models corresponding to 

(α, β) = (0.99, 0.99) are investigated on a smaller sample of 10 statistical realizations. Interestingly, the 

ratio between the upper and lower tensile strength asymptotes is reduced to 1.4. On the other hand, the 

strength scatter practically disappears across the whole investigated strain rate range implying that the 

failure becomes deterministic with the disappearance of disorder.       

SUMMARY 

The focus of the present inquiry is on the influence of disorder of brittle systems on the stochasticity of 

their dynamic response.  

It is observed that the reduction of microstructural disorder results in reduction of the difference 

between the upper and lower strength asymptotes, that is, the level of rate-driven material hardening 

depends on the geometrical and structural uniformity of the material on the spatial scale that dominates the 

macroscopic response. A strong dependency with grain shape is observed for different microstructures 

(Zavattieri et al., 2001). Assuming that the larger grain size implies the larger geometrical and structural 

disorder (e.g., smaller α and β in the present model), one physical explanation of the Hall-Petch relation, in 

the form expressing the brittle-fracture strength dependence on grain size (Dieter, 1986), may be due to the 

influence of microstructural disorder on failure process. 

The simulation results also suggest that increase in lattice disorder results in increase of both the mean 

value and the standard deviation of the stress-peak damage energy rate. It appears that the average rate of 

energy dissipation at the onset of localization scales reasonably well with the strain rate, but additional 

work seems necessary to confirm this proposition. It is demonstrated that data scatter of the tensile strength 

and the corresponding damage energy rate are reduced with reduction of geometrical and structural 

disorder, which implies that the stochasticity of material (e.g., the grain shape and size) advances the 

stochasticity of its dynamic response at the threshold of softening. On the other hand, the softening phase is 

characterized by the decrease of the average damage energy rate (
fD& ) and the data scatter with increase 

of geometrical and structural disorder. 
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