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ABSTRACT: The focus of the present article is on the size effect of a transition region from the damaged to 

the fragmented phase in impact-induced breakup of a slender projectile. Molecular dynamics simulations of 

the classic ballistic Taylor test are performed with a simple generic model to explore an extended low-energy 

range. In the simulation setup, flat-ended, monocrystalline, nanoscale projectiles, with a fixed aspect ratio but 

ten different diameters, collide perpendicularly with a rough rigid wall. With gradually increasing impact 

energy, a non-negligible projectile disintegration eventually takes place and is identified with the damage-

fragmentation phase transition. These atomistic simulations offer an indispensable tool to gain an insight into 

damage evolution in the neighborhood of the damage-fragmentation transition resulting in the occurrence of 

fragmentation at the critical point. A finite size scaling analysis of the average fragment mass is carried out to 

determine critical exponents and dependence of the critical striking velocity upon the slender projectile’s 

diameter. 

 

KEY WORDS: impact fragmentation, slender projectiles, size effect, scaling laws, phase transition, atomistic 

simulations 

 

INTRODUCTION 

 

A sudden mechanical disintegration of solids is a widespread process inherent to many natural 

phenomena and industrial technologies. It is an irreversible, nonlinear, and far-from-equilibrium phenomenon 

difficult to investigate with the traditional methods of continuum mechanics (e.g., Krajcinovic, 1996; Wu et 

al., 2014). An example is the rigid-anvil collision, addressed in this study, that triggers a sequence of 
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operating deformation and damage mechanisms with different characteristic thresholds and time scales. The 

integration of these mechanisms results in dynamic response of a material typically characterized by steep 

deformation and thermal gradients (e.g., Mastilovic, 2016), which may—given sufficient impact energy—

eventually lead to a sequential fracture and culminate in energetic ejection of fragment debris. The more-or-

less abrupt transition from damage accumulation to fragmentation in low-energy collisions is a complex and 

fascinating phenomenon explored in a number of articles over the last 15 years (Kun and Herrmann, 1999; 

Åström et al., 2000; Herrman et al., 2006; Carmona et al., 2008; Sator and Hietala. 2010; Timár et al., 2012). 

Phase transition is, in condensed matter physics, defined as the transition between two phases of matter 

whose signature is “a singularity or discontinuity in some observable quantity” (Chaikin and Lubensky, 

1995). The mean-field modeling of the phase transition is based on concepts of the correlation length and the 

order parameter (Krajcinovic, 1996). The former is, in damage mechanics, identified with the length (or mass) 

of correlated microcrack forming a shear band, while the later, separating an ordered phase from disordered 

phase, is commonly identified with the effective stiffness. The concept of fragmentation phase transition 

originated in nuclear physics (e.g., Campi 1988; Sá Martins de Oliveira, 1998). Kun and Herrmann in their 

pioneering investigation (1999) applied the same conceptual approach on two-dimensional (2D) mechanical 

particle collisions, studied the possible mechanism of the damage-fragmentation (D-F) transition and offered 

numerical evidence of the existence of criticality in low-energy fragmentation at a single value of impact 

energy clearly distinguishing the damaged and fragmented states. The damaged state is statistically 

homogeneous (or translation invariant) while the fragmented state is, by definition, heterogeneous on 

macroscopic scale due to the presence of the system-spanning faults that yield fragments. Thus, similarly to 

the percolation based ideas developed originally in nuclear physics, Kun and Herrmann (1999) suggested 

existence of the continuous phase transition with the imparted energy as the natural control parameter and the 

size of the largest fragment as the order parameter. Interestingly, they also clearly identified the critical point 

with the position of the maximum value of the ratio of the damage energy and the impact energy. (The same 

authors and their collaborators (Carmona et al., 2008; Timár et al., 2012) extended this approach to collisions 

of spheres and investigated in detail the damage and fracture mechanisms unique to three-dimensional (3D) 

fragmentation.) Åström et al. (2000) also used a 2D model of computational mechanics of discontinua and 

statistical arguments to investigate the threshold of instantaneous fragmentation and explore the nature of the 

suggested fragmentation criticality. They confirmed that impact fragmentation indeed becomes critical at a 
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well-defined impact energy preceded by relatively modest damage accumulation prior to that critical point. 

The critical point of the D-F phase transition was identified with the striking velocity corresponding to the 

maximum value of the average fragment mass (Timár et al, 2012). Substantial literature exists in which the 

scaling behavior in dynamic fragmentation was investigated both experimentally and theoretically. Diehl et al. 

(2000) studied scaling behavior in explosive fragmentation of generic LJ (Lennard-Jones) systems with 

emphasis on the initial temperature. Damage in impact fragmentation was investigated by Sator and 

coworkers (2008, 2010) by using a simple MD (molecular dynamics) model of a point impact. A discrete 

element model was used by Timár et al (2012) to study the scaling laws for impact fragmentation of spherical 

solids upon a hard wall collision. The D-F transition was also investigated experimentally; for example, by 

Andrews and Kim (1998), Katsuragi et al. (2003, 2004) and Moukarzel et al. (2007). 

The objective of the present study is to apply the above mentioned concepts to the impact 

fragmentation of slender projectiles with emphasis on the size effect of the D-F phase transition. The MD 

simulation results are used to explore the dependence of selected fragment statistics upon the striking velocity 

and to search for the typical critical-behavior features and the transition order paramater(s). The D-F 

transition is investigated using the time-honored mathematical tools of percolation theory to capture the size 

effect and determine the exponents and the limits of applicability of the ubiquitous power-law scaling 

expressions. 

   

 

SIMULATION METHOD 

 

MD is used extensively to investigate the fragmentation under various types of extreme loading 

conditions by the high-resolution virtual (computational) testing (Holian and Grady, 1988; Diehl et al., 2000; 

Sator and Hietala, 2010; Mastilovic, 2015). The present study is limited to the traditional MD simulation 

technique in 2D in which the dynamic state of the atomic system is defined by laws of classical mechanics 

with atomic motions being uniquely determined by an empirical potential. The fragmentation model proposed 

is, therefore, general since it aims to capture the underlying features of the investigated phenomenon. The 

model is described in detail in a preceding study (Mastilovic, 2016), thus, a succinct summary is deemed 

sufficient herein.  
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A monatomic system, mimicking a monocrystalline flat-nosed (rectangular) projectile, is comprised of 

N atoms of equal masses m0 that form an ideal triangular lattice and interact with their nearest neighbors 

according to the LJ potential. MD simulations are carried out with three LJ model parameters set in the 

preceding studies (Mastilovic, 2015, 2016) to match, as close as possible, physical properties of tungsten 

(74W): the atomic mass m0 = 3.1×10-25 kg (183.85 u), the atomic radius 1.4 Å (≡ r0/2 where r0 is the 

equilibrium interatomic distance), and the depth of the potential well ε = 7.5×10-20 J. The simulations are 

performed for 10 different projectile sizes that share the common aspect ratio, 7.5. (The projectile 

diameters, d, are defined in units of the equilibrium atomic distance, r0, throughout the present article, 

0rdd  .) The coordination number of bulk atoms in the reference configuration is six and the potential 

energy per atom is, depending of the model size, somewhat in excess of the bulk value (–3ε) due to the 

surface effects. The Cauchy problem is solved numerically by using the neighbor-list method and the Verlet 

algorithm (Verlet, 1967; Allen and Tildesley, 1996) with the time step of the order of femtoseconds 

(Mastilovic, 2016). The extremely small time step, necessitated by the high power of the simulated events, 

makes the simulations painstakingly time-consuming even for the relatively small model size utilized herein 

due to the recognized difficulty to reach an equilibrium state (Holian and Grady, 1988; Åström et al., 2000; 

Mastilovic, 2015). The present MD simulations are interrupted when the steady-state fragment mass 

distribution is asymptotically reached, which also coincides with thermal equilibrium.1 The small scale 

examination of the high-velocity short-duration events of violent nature, such as impact fragmentation, is 

perfectly suited to the virtual experiments by methods of the computational mechanics of discontinua 

(Mastilovic and Rinaldi, 2014). The conversion of simulation data generated at the nanoscale level (atomic 

positions and velocities, and interatomic forces) to macroscopic observables (temperature, stress and strain) is 

firmly established nowadays (e.g., Hoover, 1985; Holian et al., 1995; Zhou, 2003; Buehler, 2008;  Mastilovic 

and Rinaldi, 2014; Mastilovic, 2016).  

The distribution of fragment masses is identified in the final state following the normal impact of a 

slender deformable LJ projectile with a rigid target. The projectile is in its initial condition a perfect crystal 

                                                
1 The largest simulations took three months of CPU time of PC with Intel® i5-4440 3.10 GHz processor. Since 
the computational cost for MD simulations scales typically with the square of the total number of atoms 
(Dongarra et al., 2008), the extension of the present investigation to 3D geometry would require an increase 

of execution time of the order of 2/2d . Obviously, such computational effort would necessitate both the more 
powerful hardware than the one used in the present study and the parallel computing. 
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prepared at zero temperature (free of any quenched disorder and thermal vibratory oscillations). For the 

continuum-scale ballistic Taylor tests at moderate striking velocities, the anvil surface preparation and 

appropriate lubrication are very important for the experiment outcome. In the current MD model, a set of 

immovable atoms, which exerts a compressive dynamic load on the impacting projectile without any 

numerical artifices mimicking lubrication, represents a rough rigid-target contact surface. In a hindsight, it 

may be preferable to use the frictionless target (e.g., Behera et al., 2005) for the study of the D-F transition 

(by definition a critical phenomenon associated with the low-energy impacts) to promote the fragmentation in 

the neighborhood of the critical point by preventing that the target “wetting” (the thin elongated fragments, 

distinctly visible in Figure 1, which combine relatively small momentum with comparably large rough-wall 

adhesion) hinders the lateral mass transfer. Furthermore, the initial thermal equilibration at any given 

temperature would offer an opportunity to perform repeated statistical realizations of the Taylor test at any 

given striking velocity.  

The link between two atoms ruptures when their interatomic distance exceeds the predetermined 

critical value R ≈ 1.7 r0. This cut-off interatomic distance is selected to be between the first and second 

nearest neighbors in the reference configuration. A fragment is defined as a self-bound cluster of atoms with 

interatomic distance less than the cut-off distance (rij ≤ R) in a sequential atom-by-atom search for the nearest 

neighbors (Mastilovic, 2015, 2016). 

 

OBSERVATIONS AND DISCUSSION 

 

The present investigation of the normal impact fragmentation of slender projectiles is focused on the size 

effect of the transition from damaged to the fragmented deformation phase. According to the MD simulation 

results, at striking velocities corresponding to an extended transonic range below (what is to be identified as) 

the critical point, fragmentation is limited to a relatively small number of miniscule fragments (largely 

monatomic and biatomic; Tables 1-3). Thus, the damage is relatively small and diffused, the extent of 

fragmentation is rather symbolic and the projectile is arrested (at a time designated tA) distorted—to the 

various degree depending of the impact energy—but with retained integrity (Figure 1a). This (subcritical) 

velocity regime is the damage phase of the system, where the mass of the projectile stump is practically equal 

to the initial mass of the projectile (mst  m).     
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Figure 1. Snapshot of two severely deformed configurations of a projectile 57d  (m = 26047; the total 
mass given in number of atoms) following an impact at (a) vi = 0.465 km/s and (b) vi = 0.475 km/s. (a) The 
arrested projectile with no large fragments; the corresponding snapshot time exceeds the effective arrest time 
approximately three times (≈ 3∙tA). Note the nucleation of diffuse voids and initiation of nanoscale cracks by 
their coalescence. (b) The separation of the two largest fragment (followed by the projectile arrest shortly 
after) with notable growth of a blunted vertical crack whose propagation is stopped eventually. (The 
projectile stumps are cut to emphasize the proximal-end details. The stump disappears with the complete 
projectile fragmentation which is, within the present simulation framework, roughly identified with the 
striking velocity range of 2-3 km/s (Mastilovic, 2015). Furthermore, to get a feeling for the striking velocities 
used in the present investigation, the velocity of longitudinal elastic wave propagation of the LJ solid used 
herein is approximately 4.3-4.4 km/s which is within 5-10% of the reported values for tungsten (Mastilovic, 
2016).) 

 

At very low striking velocities the plastic distortion at the proximal end of the projectile is accommodated 

by dislocation glide along favorably oriented planes (±30° with respect to the impact direction; Mastilovic and 

Krajcinovic, 1999). With increase of striking velocities, extensive atomic rearrangements occur with 

dominant damage mechanisms being void nucleation, growth and coalescence typical of ductile fracture (e.g., 

Besson, 2010). It is interesting to note that the relative shortening of the projectile obtained in MD simulations 

is in excellent agreement with the Taylor’s classic analytical result (1948) as demonstrated already by 

Mastilovic and Krajcinovic (1999). 

The simulation data suggest that the onset of non-negligible fragmentation is—depending on the 

projectile diameter—in the broad interval of (0.47–0.56) km/s, which can be, consequently, identified with the 

incipient fragmentation velocity interval (that is, the critical velocity range). At this finite-size-dependent 

critical striking velocity, vc(d), the fragment distribution is still rather limited to miniscule fragments: the 

overwhelming majority is monatomic up to four-atom clusters (Table 1). The most notable difference 

compared to the subcritical response is an ejection of a pair of large fragments (corresponding roughly to the 

0.1∙m for the aspect ratio,  ≈ 7.5, used herein) illustrated in Figure 1b and Table 1. The break-up of these two 

large fragments is an outcome of an extensive lateral mass transfer by massive atomic rearrangements 
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resulting in void nucleation/coalescence and slipping along the favorably oriented planes, which are operable 

on (sub)nanosecond timescale under the nanoscale size constraints.  

This subjective, qualitative, and, therefore, rather arbitrary initial estimate of the incipient 

fragmentation velocity based on the mass of the largest fragment is quantitatively characterized by a 

transparent investigation approach based on the average fragment mass, which is used extensively in the 

recent computational fragmentation studies (Behara et al., 2005; Carmona et al., 2008; Sator et al., 2008; 

Timár et al., 2012). 

 

Table 1.  Frequency distribution of fragment size n (in number of atoms constituting a fragment) for three 

striking velocities for �̅ = 53 (m = 22523) in the immediate D-F transition neighborhood with the range of data 
divided into the class intervals of equal width in the logarithmic space. Note that the largest cluster 
corresponding to the arrested projectile (the stump) is not included. 

 

  vi [km/s] 

  0.465 0.470 0.475 

0ln n  1n  344 618 603 

1ln0  n  2n  16 38 22 

5.1ln1  n  42  n  8 8 9 

2ln5.1  n  74  n  0 0 0 

5.2ln2  n  127  n  0 0 0 

3ln5.2  n  2012  n  0 0 0 

5.3ln3  n  3320  n  0 0 0 

4ln5.3  n  5433  n  0 1 0 

5.4ln4  n  9054  n  0 0 0 

5ln5.4  n  14890  n  0 0 0 

5.5ln5  n  244148  n  0 0 0 

6ln5.5  n  403244  n  0 0 0 

5.6ln6  n  665403  n  0 0 0 

7ln5.6  n  1096665  n  0 0 0 

5.7ln7  n  18081096  n  0 2 2 

8ln5.7  n  29811808  n  0 0 0 
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Damage-Fragmentation Transition 

The sharp transition from damage to fragmentation in collision of solids is a fascinating phenomenon 

attracting a notable attention lately in physics literature (e.g., Kun and Herrmann, 1999; Åström et al., 2000; 

Carmona et al., 2008; Sator and Hietala. 2010; Timár et al., 2012). Kun and Herman (1999) demonstrated that 

the transition point between damaged and fragmented states behaved as a critical point and discussed the 

possible mechanisms of that continuous phase transition. They gave evidence that the strength of the largest 

fragment mmmax
 can be considered to be the order parameter of the D-F transition. (Hereinafter, the angle 

brackets   designate the sample average and m = N ∙ m0  the total projectile mass.) They also demonstrated 

that the transition point between the damaged and the fragmented phases can be identified with the maximum 

of the energy released normalized with the impact energy.  Behara et al. in their computational study (2005) 

also associated the critical point with the impact velocity corresponding to the maximum value of the second 

largest fragment )( 2
max

ndm  obtained from the impact fragmentation of a circular disc upon collision with a 

frictionless plate. Fortuitously or not, the critical point, vc = 0.47 km/s, obtained in the present study for 

53d  corresponds to the maximum value of ndm2
max  as indicated in Table 2.  

Finally, Timár et al. (2010) argued that the threshold of the D-F transition can be identified not only 

with the curvature change of  ivmm maxmax
ˆ  (Kun and Herrmann, 1999) but also with the striking velocity 

resulting in approximately comparable sizes of the largest (mmax) and the second largest fragment )( 2
max

ndm . 

For their simulation model of the impact fragmentation of 3D plastic particles this implies that one dominant 

crack propagates from the contact zone in the direction collinear with the striking velocity and splits the 

spherical impactor. It is interesting to note that—although the slender projectile used in the present impact 

fragmentation study has substantially different deformation, damage and failure patterns—the D-F phase 

transition can still be identified with surprising certainty with the first occurrence of two large fragments of 

similar size (Table 2).  
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Table 2.  Selected fragment statistics for seven striking velocities for �̅ = 53 with m = 22523. The largest 
cluster, corresponding to the arrested projectile (stump), is designated by mst and the total number of 
fragments by nF. Note that all mass values are given in number of atoms (of mass m0) and the maximum 
temperatures (evaluated at two locations) in kelvin.  
 

vi [km/s] 

 0.425 0.465 0.470 0.475 0.495 0.578 1.00 

stm  22217 22122 18194 18622 18238 16016 8567 

maxm  3 4 1798 1715 1687 2016 1043 

ndm 2
max  2 3 1773 1507 1654 1152 814 

avem  1.04 1.09 5.97 5.70 4.97 4.13 2.88 

maxT  2000/1100 2100/1200 2350/1100 2400/1100 2450/1250 2800/1500 5200/4000 

nF 295 368 667 636 847 1477 4376 

 

 

Table 3.  Selected fragment statistics for seven striking velocities for �̅ = 19 with m = 2813. 
 

vi [km/s] 

 0.510 0.555 0.560 0.565 0.646 0.800 1.00 

stm  2736 2282 2173 2243 1883 1449 1159 

maxm  3 194 189 198 208 139 123 

ndm 2
max  3 147 138 187 143 93 62 

avem  1.12 2.85 2.97 2.90 2.83 2.51 2.17 

maxT  2000/1300 2200/1300 2200/1400 2200/1400 2600/1400 3400/2500 4700/2900 

nF 86 185 213 213 320 536 758 
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Actually, out of ten projectile diameters used in the present computational study, the D-F threshold 

determined based on this qualitative criterion )( max
2
max mm nd   agreed with the one determined based on the 

statistics of the average fragment mass (mave),  in all cases but one. Nonetheless, even in the case of that 

exception (which was �̅ = 19, presented in Table 3) the critical striking velocities of the two citeria are within 

5 m/s, which amounts to roughly 1% difference. 

Finally, the average fragment mass was used most recently by Timár et al. (2012) for more 

transparent identification of the transition velocity in their 3D investigation of the impact fragmentation of 

spherical projectiles made of heterogeneous brittle materials by means of a discrete element model. This 

approach, which identifies the average fragment mass as the order parameter of the D-F phase transition, is 

adopted for this study as well. To put it succinctly, this method identifies the threshold value vc as the striking 

velocity that coincides with the maximum of  iaveave vmm ˆ . The average fragment mass is defined as the 

sample average of the ratio of the second and first moments of fragment masses  

 
1

2

M

M
mave 

 (1) 

where the kth moment of the fragment distribution is defined in a single fragmentation event as  

  2,1,max  kmmM
i

kk
ik

 (2) 

(Note that the summation is performed over all fragments mi and the contribution of the maximum fragment 

mass is subtracted from Mk  (Timár et al., 2012).) It cannot be overemphasized that, strictly speaking, the 

average mass (1) is defined as the sample average of the ratio of the first and the second moments of fragment 

masses over large number of realizations while—for the sake of computational tractability (in conjunction 

with the system sizes used in this study)—only a single realization is used throughout this analysis. This 

explains somewhat kinky, even serrated, character of the curves presented in Figure 2. 
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Figure 2. Average fragment mass as a function of the striking velocity for five different projectile diameters of 
the same aspect ratio ( ≈ 7.5). (Note that with increasing system size the peak of the curves gets sharper and 
shifts to the lower vi values as typically observed for continuous phase transition (Kun and Herrmann, 1999; 
Åström et al., 2000; Timár et al., 2012). 
 

The processed simulation results presented in Figure 2 reveal dependence of the average fragment 

mass (obtained in the abovementioned manner) upon the striking velocity for five different projectile 

diameters. The critical behavior for the largest projectile can be clearly observed due to the precipitous surge 

of the average fragment mass. The gradual smoothing of the  iaveave vmm ˆ  curves following the projectile 

diameter decrease is clearly visible as well. The similar increase of sharpness of conditional moments with 

increase of the model size was observed by Campi (1988) in connection with the phase transition in nuclear 

multifragmentation. As for the impact fragmentation, Kun and Herrmann (1999) observed this critical-point 

signature behavior for the average fragment mass, Åström et al. (2000) for the total fragment mass, while 

Timar et al. (2012) for both the average fragment mass and the evolution rate of the scalar damage parameter.  
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The simulation data presented in Tables 2 and 3 also include the maximum values of the instantaneous 

kinetic temperature (Hoover, 1985; Holian, 1995) evaluated locally at two circular averaging areas (of equal 

radii 9∙r0) positioned along the projectile centerline (refer to (Mastilovic, 2015, 2016) for details). 

Specifically, the first averaging area is centered in the proximal end while the second is in the mid-section, 

approximately at 0.2∙l and 0.45∙l from the projectile’s impacting flat top, respectively (l being the projectile 

length defining the aspect ratio as =l/d). (The second Tmax value is also—in the pre-fragmentation phase—a 

reasonably close estimate of the steady-state temperature established in the projectile stump after the thermal 

equilibration.) The maximum temperature data pairs indicate that the D-F transition is not accompanied by a 

significant increase in the atomic vibratory motion defining the instantaneous kinetic temperature. Actually, in 

the D-F transition region, the maximum temperature increases approximately 10% which is relatively modest 

change for the calculation accuracy of ±50K.) The substantial temperature rise occurs with the increase in the 

level of fragmentation well above the critical point.2      

Finally, the total number of fragments, nF, presented in Tables 2 and 3 is an important measure of the 

degree of break-up of the fragmenting impactor  (Behara et al., 2005; Sator and Hietala, 2010). It is observed 

in the present study that the maximum average mass (identified in the following analysis with the critical 

state) results from simultaneous occurrence of a pair of large fragments of comparable size accompanied by 

as small as possible “dust cloud” of monatomic fragments. It is important to note that it is difficult to reach 

the steady state nF in MD simulations since the shock induced heating yields extreme temperatures that can 

dissipate only through heat transfer to the projectile stump. This process of thermal equilibration of the 

arrested projectile takes a long time and even after the uniform temperature is reached—depending on the 

impact energy—its steady-state value can be sufficiently large to cause occasional atom escape. 

Consequently, the emission of monatomic fragments due to the thermal vibratory motion remains for some 

time after the projectile arrest. 

Furthermore, the present simulation results (Figure 3) support the conclusion by Behara et al. (2005) 

that the number of fragments scales linearly with the natural logarithm of the striking velocity normalized by 

the critical striking velocity 

                                                
2 It has been recently demonstrated that, within the present MD simulation framework, the maximum 
fragment size is inversely proportional to the maximum value of the instantaneous kinetic temperature within 
a large part of the hypervelocity impact range (3 km/s ≤ vi ≤ 30 km/s) (Mastilovic, 2015). 
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 �	  ∝  ln ���
��

� ,       �� <  �� < vL (3) 

It is interesting to note that, based on the large-projectile data presented in Table 2, the total number of 

fragments raises notably in the D-F phase transition range, which is not surprising since the emission of a 

large number of miniscule fragments (overwhelmingly monatomic; Mastilovic (2015)) always accompanies 

the large fragment brake-off due to the shock induced thermal excitation. Consequently, it appears that the 

total number of fragments, nF, could also be considered a candidate for the D-F transition order parameter.    

It should also be emphasized that nF necessarily diverges from the elucidated linearity of the scaling 

relation (3) for ultra-high striking velocities approaching the terminal (shattering) fragmentation 

 lim��→����	� =  �   (4) 

where N = m / m0  is the total number of atoms constituting the nanoprojectile and v1, the elusive shattering 

transition velocity (Mastilovic, 2015). Thus, the fragmentation process asymptotically approaches the 

terminal fragmentation defined by a deterministic fragment distribution following from the monatomic 

sample of fragments (mmax ≡ 1). According to Figure 3, the striking velocity vL, corresponding to this 

divergence from linearity of the scaling expression (3), is size sensitive with values 10 km/s and 30 km/s 

corresponding approximately to the normalized projectile diameters 19 and 53, respectively. The later limit 

value agrees rather well with the earlier observations suggesting linear scaling of the maximum fragment 

mass with a set of state variables in the lower and intermediate part of the hypervelocity impact range 

(Mastilovic, 2015). 

Interestingly, Sator and Hietala (2010), in their investigation of damage in the impact fragmentation of 

2D circular discs, proposed a linear relation 

 �  ∝  �	  (5) 

between the final damage and the total number of fragments, with an obvious consequence that the process 

defined by Eq. (4) corresponds to the approach to the limit damage state, Df = 1. The importance of this 

proposition stems from the fact that, unlike the evaluation of the total number of fragments, the experimental 

measurement of damage evolution remains a challenging problem (Tasan et al., 2012; Saijun et al., 2014; 

Iturrioz et al., 2014), especially the dynamic ductile damage quantification. 
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Figure 3. The total number of fragments normalized by the number of atoms vs. natural logarithm of the 
striking velocity normalized by the critical velocity at two projectile diameters presented in Tables 2 and 3. 
 

Size Effect of the Damage-Fragmentation Transition Threshold 

The dependence of the critical striking velocity on the slender projectile’s diameter is illustrated in 

Figure 4. It can be noticed that the central part of this plot corresponds to the power-law decrease.  

Assuming the well-known scaling form (Stauffer and Aharoni, 1992; Nishimori and Ortiz, 2011; 

Timar et al., 2012) for the critical striking velocity  

     dddAvdv lcc   ,1  (6) 

in terms of the system size, the critical striking velocity of the infinite system and the correlation length 

exponent of the transition can be identified to be vc(∞) = 0.40 km/s and  = 0.77  0.01,3 respectively. Eq. (6) 

                                                
3 Timar et al. (2012) also observed this type of size effect for their spherical particle impacts with the 
exponent  = 1.00  0.05. 
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implies that in the limit of the very large projectiles the critical striking velocity of the D-F phase transition 

converges to vc(∞). The present MD simulation results, on the other hand, suggest limits of applicability of 

the power law (6). Specifically, the entirely new feature of the functional dependence vc = f(d) is the existence 

of two horizontal plateaus corresponding to the small (�̅  !  �̅" = 23) and, parhaps also, the large projectile 

diameters (�̅  $ �̅% = 57).  

 

 

Figure 4. Main panel: The critical value of the striking velocity as a function of the projectile diameter. Inset: 
The critical value of the striking velocity as a function of the projectile diameter raised to the degree 
1/ = 1.30 extracted in Eq. (6); the five indicated power-law data points outline the critical value of the 
impact velocity of infinite systems, vc(∞) = 0.40 km/s. 

 

The small-size saturation is actually suggested by the two smallest disc-radii data presented by Kun and 

Herrmann in their groundbreaking article ((1999); Figure 9) but the issue was not pursued. This saturation 

plateau is similar to the well-known size effects noticed in the plasticity of confined dimensions. The physical 

explanation of this marked sample-size dependent inelastic response is commonly attached to change in 
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deformation mechanisms when the system volume approaches the nanoscale. For example, Kraft et al. (2010) 

demonstrated the size dependency of the mechanical strength of different monocrystalline thin metal films 

and proposed that it may be separated into three regimes: the small-size regime, an intermediate regime 

governed by the power law, and a bulk-like regime. They argued that “there is no scaling law with one 

universal power-law exponent encompassing the entire range” since different physical mechanisms give rise 

to different inelastic responses for different size ranges (and boundary conditions). They supported this claim 

with observations of decreasing dislocation density and activity with decreasing film thickness resulting 

eventually in the dislocation starvation for the nanoscale samples.  Similarly, Rinaldi et al. (2012) 

demonstrated effects of dislocation density and sample-size on the yield stress at the nanoscale in any plastic 

regime; Rinaldi (2011) casted the dependence mathematically into a first-order Weibull theory. Jennings et al. 

(2011) noticed the same trend that the size dependence of the compressive strength in monocrystalline Cu 

nanopillars deviates from “the ubiquitously observed power law” to a relatively size-independent upper 

plateau at the small-size end. They associated this change with the change in nanoplasticity mechanisms from 

the surface dislocation nucleation at the small diameters to the collective dislocation dynamics at the larger 

diameters in accordance with the theoretical predictions by Zhu et al. (2008). A similar trend of the strength 

increase due to the transition from cooperative to microcrack nucleation phenomena were discussed for quasi-

brittle solids by Mastilovic (2011a, 2011b, 2013).  While the small-size plateau analogs are well known and 

extensively discussed in the nanoscale plasticity in the last decade, the occurrence of the large-size saturation, 

observed in the present investigation, is unexpected at such, relatively small, (pre-bulk) sample volumes. This 

apparent large-tail saturation limit exceeds by 10-15% the critical velocity of the unbounded media (extracted 

from the inset of Figure 4). As an illustration, Eq. (6) suggests that the D-F phase transition for �̅ = 57 

(m = 26047) should take place at vi = 0.465 km/s. Nonetheless, Figure 1a shows that at the time corresponding 

to 3∙tA the arrested projectile retained completely its integrity for that striking velocity with a solid margin 

while at vi = 0.470 km/s only one large fragment is ejected. The two large fragments occur for the first time at 

vi = 0.475 km/s (Figure 1b), which is identified as the critical velocity based on the observation that the 

average fragment mass exceeds those obtained for vi = 0.485, 0.510, 0.612 km/s. It can be argued that the 

difference between these two critical velocity values (suggested by Eq. (6), vc = 0.465 km/s, and the 

maximum of  iaveave vmm ˆ  method, vc = 0.475 km/s) is reasonably small, but, the similar trend is also 

observed for the largest projectile used in this study (�̅ = 65, m = 33836) with a similar critical velocity 
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(Figure 4). Due to the scarcity of the large system size data and the lack of the clear physical explanation at 

present (other than, seemingly premature, identification of the large-size limit with the bulk behavior), the 

existence of the apparent large-size saturation limit at such, relatively small, size is an iffy proposition and the 

discussion must be relinquished to future studies.  

 
Scaling of the Average Mass with the Projectile Diameter 

 
The average fragment mass, Eq. (1), characterizes the fragment mass fluctuations (Stauffer and 

Aharoni, 1992; Kun and Herrmann, 1999; Timar et al, 2012). Consequently, assuming that the system 

exhibits a continuous phase transition, the finite size scaling of the average fragment mass in the form 

     1
0 dvvFdm iave   (7) 

(where F denotes the scaling function) reveals the exponent of the D-F phase transition. Figures 5 and 6, 

illustrate the data collapse of the  iaveave vmm ˆ  curves for two values of the critical velocity of the 

unbounded media vc(∞) = 0.40 km/s and vc(∞) = 0.43 km/s, respectively. For both cases, the best collapse is 

achieved with the scaling exponent  = 1.04  0.02. This exponent value significantly exceeds the one 

obtained by Timar et al. (2012) in their recent study of scaling laws for impact fragmentation of spherical 

solids based on 3D discrete element model. 

Inset in Figure 5 reveals both the good quality data collapse of  iaveave vmm ˆ  curves in the 

neighborhood of the critical point for the three selected projectile diameters d  ≥ dl as well as the horizontal 

peak shift of the curves belonging to the small size plateau d < dl. A detail in the inset of Figure 5, with 

emphasized  23,19d  curve peaks illustrate the horizontal peak shift of the curves belonging to the small 

size plateau in resemblance to the claim by Kraft et al. (2010) that there is no scaling law with one universal 

power-law exponent encompassing the entire size-dependent range (of the mechanical strength). Nonetheless, 

prompted by the unexpectedly early large-size vc = f (d) saturation illustrated in Figure 4, an attempt is made 

to scale the simulation data with somewhat larger critical velocity of unbounded media, vc(∞) = 0.43 km/s. 
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Figure 5. Main panel: Collapse of the  iaveave vmm ˆ   curves presented in Figure 2 corresponding to three 

different projectile diameters (  53,33,29d  belonging to the power-law part of Figure 4)  obtained by 

rescaling the average fragment mass, mave, and the striking velocity, vi, by an appropriate power of the 
projectile diameter. Inset: A detail of the main panel plot corresponding to the peak of the curves with the 
data points  23,19d  added for illustration of the horizontal peak shift of the curves belonging to the small 

size plateau. 

 
Regardless of reasonably good data collapse presented in Figure 6, a closer examination reveals a 

small—albeit, an indicative—scatter in the neighborhood of the critical point. This expected scatter is an 

unavoidable reflection of the earlier observation that data points for  23,19d  do not follow the power-law 

scaling of the critical striking velocity (6). 
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Figure 6. Collapse of the  iaveave vmm ˆ   curves presented in Figure 2 corresponding to five different 

projectile diameters obtained by rescaling the average fragment mass, mave, and the striking velocity, vi, by 
the same scaling exponents of the projectile diameter and the increased impact velocity of infinite systems, 
vc(∞) = 0.43 km/s modified to take into account all simulation data points.  

 

SUMMARY 

 
The current article presents a general model for 2D impact fragmentation of slender projectiles using 

the traditional MD. The principal advantage of this computational method is the ability to study rapid non-

equilibrium processes with small-scale spatial and temporal resolutions with no assumptions made about the 

processes and mechanism investigated. Simulations are performed with slender rectangular projectiles of a 

fixed aspect ratio and 10 different diameters by varying the striking velocity within a relatively wide range of 

interest. It is well established nowadays that the impact fragmentation becomes critical at certain striking 

velocity, vc (i.e., the impact energy). Thus, MD simulations are performed with a relatively moderate-energy 

loading of a slender monocrystalline nanoprojectile onto a rough rigid surface to explore D-F phase transition 

with emphasis on the size effects and scaling behavior. At first, the simulation results are used to explore the 
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dependence of selected fragment statistics upon the striking velocity. The rigid-anvil impacts for all striking 

velocities below the D-F transition (vi < vc) lead to more or less severe plastic distortion accompanied by a 

relatively small and diffuse nanoprojectile damage in the process zone but with notable absence of substantial 

fragmentation. At striking velocities exceeding this fragmentation threshold, the projectile is no longer 

capable of retaining its integrity by completely absorbing its kinetic energy by plastic distortion and, 

consequently, fragmentation takes place as a result of shear-dominating cracking typical of ductile solids.  

The identification of the critical velocity is performed by the method based on the maximum average 

fragment size, commonly used in recent studies. This analysis suggests that the critical velocity varies in the 

interval of (0.47–0.56) km/s for the set of projectile sizes used herein. The occurrence of the maximum 

average fragment is a result of an interplay between large fragments and accompanying “dust cloud” of 

miniscule fragments, overwhelmingly monatomic. It is observed that, within the present simulation 

framework, the critical velocity coincides with the smallest striking velocity with sufficient impact energy to 

brake-off two “non-negligible” fragments of comparable size )( max
2
max mm nd   with as small as possible size 

of accompanying “dust cloud”. It is also reported that this D-F transition is accompanied with only a modest 

increase of the maximum temperature in the process zone and somewhat more pronounced increase or the 

total number of fragments which may suggest the later for an order-parameter candidate.  

Thus, assuming the scaling forms (6, 7), well-known from percolation theory and previous impact-

fragmentation studies, the power-law scaling exponents are identified ( = 0.77  0.01 and  = 1.04  0.02) as 

well as the critical striking velocity of the unbounded media (vc(∞) = 0.40 km/s), which define the 

dependence of the critical striking velocity and the average fragment mass upon the projectile diameter under 

the fixed aspect ratio constraint. Interestingly enough, the MD simulation results suggest existence of the 

lower limit of applicability (dl = 23·r0 ≈ 6.5 nm) of the critical striking velocity power law (6) and, perhaps, 

the upper one as well. It cannot be overemphasized, though, that the existence of these limits is not 

established herein with the same degree of confidence due to the fact that the MD simulations of the impact 

fragmentation of the larger systems are prohibitively time consuming, which results in the scarcity of data on 

that end of the size spectrum. Consequently, the existence of the small size plateau (perhaps a horizontal 

asymptote – it cannot be stipulated based on the data available) is well confirmed by the simulation results 

and well founded in the recent experimental and theoretical nanoplasticity studies. Namely, there is a plethora 

of experimental data on mechanical strength on the nanoscales published recently that support this general 
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trend. On the other hand, the large-size horizontal plateau is suggested by a less comprehensive set of 

simulation results, which highlights a shortcoming of the present, and an incentive for the future, work. 

The use of the scaling form characteristic of continuous phase transition resulted in high-quality data 

collapse in a broad critical point neighborhood. The simulation results and  the scaling analysis presented in 

this study extend the validity of the phase transition picture on the slender impactors and yield the D-F 

transition exponents with a reasonable accuracy. 

Furthermore, the present simulation results demonstrate that the number of fragments scales linearly 

with the natural logarithm of the striking velocity normalized by the critical striking velocity until the upper 

linearity threshold is reached for ultra-high striking velocities approaching the terminal (shattering) 

fragmentation. This size-dependent limit velocity is roughly estimated to be vL ≈ 30 km/s for 53d . 

Finally, the main limitations of the present MD model can be attributed to the modest size (up to 34000 

atoms), the 2D geometry, and the rudimentary pairwise interatomic interactions. They are used to benefit 

from their simplicity and the consequent computational efficiency. Thus, the exponents in the scaling 

expressions, as well as their applicability limits, could change for 3D geometry. Unfortunately, due to the 

prohibitively costly increase of the simulation run time, the extension of the present modeling framework in 

that direction would require a substantially more sophisticated computing technology (in terms of both 

software and hardware) than the one used in the present study. (As an additional benefit, the 3D geometry 

would enable a realistic modeling of polycrystalline projectiles.) Furthermore, recommendations for future 

work include the use of interatomic potential more physically justified for the modeling of complex systems; 

needless to emphasize, at the cost of further increase of the computational intensity. Nonetheless, the use of 

more realistic many-body potentials (as an example, the embedded atom model) would improve the 

fragmentation model and refine the simulation results especially in the range of low and moderate striking 

velocities inherent to the D-F transition. Additionally, it seems opportune to mention possibility of exploring 

presumably higher-order effects such as the initial temperature of the solid projectile and the pre-existing 

structural imperfections at various spatial scales (e.g., point defects, voids, inclusions) that would be 

associated with a relatively-insignificant additional computational cost. In the end, it would be interesting to 

make an assessment of the influence of the frictionless target on the results presented in this study, which 

would require only a simple source code modification without a consequent simulation run time increase. 
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