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ABSTRACT   

Ever since the 1980s there is a sustained interest in the size effect, as one of the most pronounced consequences of fracture mechanics. In the present 

study, the investigation of the size effect is focused on estimation of the Weibull cumulative distribution function (CDF) of the critical value of the J-integral 

(Jc) in the transition temperature region under constraint of a small statistical sample size. Specifically, the Jc experimental data correspond to the C(T) 

specimen testing of the reactor pressure-vessel steel 20MnMoNi55 at only two geometrically-similar sizes. Thus, a simple approximate scaling algorithm has 

been developed to tackle the effect of the C(T) specimen size on the Jc CDF under these circumstances. Due to the specific form of the two-parameter Weibull 

CDF, F(Jc | β, η), the scaling procedure is applied according to a two-step scheme. First, the Jc-scaling is performed to ensure the approximate overlap of the 

points that correspond to the CDF value F(Jc = η) = 1 – 1/e ≈ 0.632 for different C(T) specimen widths (W), which assumes η·Wκ = const. Second, the F-scaling 

is performed to ensure the equality of the slopes of the CDF in the scaled (F·Wξ vs. Jc·W
κ) space. The objective of the sketched approach is to obtain a size-

dependent Jc CDF that encapsulates a reasonably conservative data extrapolation.      
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1. Introduction 

In the traditional plasticity theory, the strength of geometrically-similar structures does not exhibit the size effect. Nonetheless, the size 

effect emerges from comparison of different sizes of geometrically-similar structures made of brittle materials, especially at extremely low 

temperatures when the plasticity mechanisms are largely suppressed. This applies especially to metals embrittled by fatigue or—more 

importantly in the present case—for the reactor (pressure-vessel) steel embrittled by radiation. Historically, the glaring necessity that the 

structural analysis ought to capture the size effect has been among few most compelling reasons prompting design engineers to integrate 

fracture mechanics theory into the engineering standards and codes [1].     

Metallic structures exposed to environmental embrittlement and temperatures in the brittle-to-ductile transition region or lower, fail 

typically due to propagation of a macroscopic crack (the plastic collapse being unlikely under those circumstances). The cleavage failure 

occurs as soon as the dominant microcrack (or microflaw) reaches macroscopic dimensions and “percolates” through the structure. The 

mechanics of low-temperature metallic failures favors, so called, statistical size effect
1
 described traditionally by the weakest link Weibull 

statistics. Therefore, the Weibull distribution, in two- and three-parameter forms, has been widely utilized for empirical and statistical 

characterization of cleavage fracture toughness of reactor steels.  

During the last four decades the size effect has been studied intensively and, accordingly, an extensive theoretical, experimental and 

computational literature is available. While admitting an unintentional bias of authors from their personal interests and research 

backgrounds, the best known models likely include Size Effect Law [1, 2] and Multifractal Scaling Law [3] focused on the size-effect 

modeling of strength fitted to experimental data sets. The lattice models are early recognized as computational tools well suited for the size 

effect investigation (e.g., [4-8]). More resent references are, not surprisingly, focused on quasibrittle solids; frequently concrete [8-11]. As 

pointed out by Bažant and coauthors [11], “for perfectly ductile and perfectly brittle structures, the empirical approach is sufficient because 

the cumulative distribution function (CDF) of random material strength is known and fixed.” The size effects of quasibrittle fracture stem 

from the statistical expectation that increase of material volume results in increase of the number of “weak links and hot spots” [8]. Most 

notable, in this regard, are inhomogeneities of the size not negligible compared with the structural dimensions [11]. Consequently, the 

increase of the size-effect sensitivity is typically accompanied with the increase of the representative volume element (whose size is, for 

the plastic materials, negligible in comparison with the structural dimensions). 

The brittle fracture, especially at cryogenic temperatures, is characterized by a pronounced aleatory variability. Consequently, sample-

to-sample variations are very strong (especially for small specimen) and a statistical approach is useful. The Weibull theory is one of the 

first size-effect theories of the strength of materials that is purely statistical [12]. The Weibull statistics is based on the weakest-link theory, 

which aptly emphasizes the virtual absence of stress redistribution during failure accompanying the innately brittle behavior. Due to the 

low temperature addressed in the present study (-60 C and -90 C [13]), plasticity mechanisms and stress redistribution are largely 

suppressed and the cleavage fracture that nucleates at the weakest spot propagates mostly unobstructed, which results in catastrophic 

failure of the whole specimen. Consequently, the nature of the size effect appears inherently statistical – that is, of the kind traditionally 

described by the Weibull distribution (e.g., [14-16]). 

Among numerous statistical studies of cleavage fracture toughness of ferritic steels that make use of the Weibull statistics, four 

arguably the most prominent approaches are briefly mentioned hereinafter followed by a sample of recent developments. The empirical 

approach by Landes and coworkers [16] was based on the assumption that the cleavage fracture toughness was controlled by the weakest 

link at the crack front. This approach is extensively used to this day (e.g., [13]). The two-parameter Weibull distribution, they proposed as 

                                                
 Corresponding author.  
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1 Not to be confused with the fracture mechanics size effect due to the release of the accumulated structural energy into the process zone of the decisive 

macrocrack; which is, arguably, the most important manifestation of fracture phenomena from the engineering standpoint [1]. 
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the failure probability, is the corner stone of the present study as well. (Landes and coauthors [17] also advanced a method for determining 

a lower-bound fracture toughness value from the result of a single test in the transition temperature region for ferritic steels.) The Beremin 

local model [18, 19] was developed in attempt to pursue a statistical approach to the inherently stochastic fracture by taking into account  

the salient micromechanical features in the process. Many aspects of this influential model, its shortcomings and necessary corrections, 

were discussed recently by Qian et al. [20]. Wallin [21, 22] performed more detailed analysis which resulted in the two-parameter Weibull 

model known as the Master Curve model. This approach, similarly to the Beremin model, belongs to the local approach category. It was 

based on the weakest-links premise and application of the cleavage micromechanics. The model involved very complex procedures of the 

experimental data treatment. The master curve studies have been incorporated into the ASTM standards and code cases and the IAEA 

guidelines (e.g., [23-25]). The Prometey model [25, 26], in its advanced form, involved very complex statistical treatment of 

micromechanics assuming that both the microcrack nucleation and the microcrack propagation were driven by stochastic parameters. The 

model development involved “intricate series of assumptions and formulations” [20]. Lei [27, 28] offered an influential critical assessment 

of the three above-mentioned local models, with emphasis on physical justification of the widely adopted selection of Weibull model 

parameters. Lei also proposed an original statistical model of the cleavage fracture toughness and compared it with the three above-

mentioned models. Finally, Meshii [29] recently stressed the problems of the ASME E 1921 master  curve [23] with characterization of 

fracture toughness temperature dependence. An alternative master curve model was proposed, which captured the statistical distribution of 

fracture toughness, based on the C(T) (compact tension) experimental data, and included both temperature and size effects. 

The objective of the present investigation is to develop an expression for the Weibull CDF for the critical value of the J-integral (Jc) 

for ferritic steels in the ductile-to-brittle transition temperature region, which takes into account the C(T) specimen size (Fig. 1).
2
  Under 

the constraint of a small statistical sample size, this expression should provide a reasonably conservative extrapolation of the Weibull Jc 

CDF away from the available experimental data.  The experimental data used correspond to the C(T) specimen of two effective widths 

W = {50, 100} [mm] [13]. An original scaling algorithm has been developed and presented in the next section to meet the stated objective. 

Due to the specific form of the two-parameter Weibull CDF F(Jc | β, η), this algorithm is applied according to a two-step scheme outlined 

below. 

 

2.  Scaling procedure 

Historically, scaling theories have been originally developed in attempt to describe critical phenomena and physics of phase 

transitions. The scaling algorithm proposed herein is inspired by Mandelbrot’s idea of “a unifying description of natural phenomena 

which are not uniform but still obey simple power laws” of the form DLM  , where L is a characteristic linear dimension [32]. The 

effective width, W, of the C(T) specimen (Fig. 1) is considered that characteristic dimension throughout this study. Nonetheless, the 

three-dimensional (3-D) geometric similarity of the C(T) specimens, used in the testing program reported by Djordjevic et al. [13, 33], 

implies that W/B = const., where B is the net C(T) specimen thickness. Therefore, the results obtained herein can be straightforwardly 

rewritten with B as the characteristic dimension. Furthermore, the used sequential scaling somewhat resembles the Krajcinovic and 

Rinaldi's two-step application of the Family–Vicsek scaling laws used to model size-dependent fracture in quasibrittle solids [34, 35]. 

The notable difference is that, except for the special case of the size-independent Weibull modulus β, it is impossible to achieve the 

overlap of various Weibull CDF curves. 

 

Fig. 1. Compact tension (CT) specimen with indicted effective width (W) and thickness (B). 

2.1  Some basic relationships of the Weibull CDF  

The starting point in the present analysis is the two-parameter Weibull CDF: 
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where η and β are, respectively, the scale parameter and the Weibull modulus (shape parameter) [36] and the symbol J is used for 
brevity hereinafter instead of Jc. The Weibull parameters η and β are material constants sensitive to the specimen preparation, surface 

condition and temperature [37]. 

                                                
2 The ferritic steel DIN 20MnMoNi55 is frequently used to study cleavage fracture at subzero temperatures due to its usage in demanding industrial 

applications (e.g., [15, 30]). Actually, development of probabilistic fracture mechanics is closely related to, if not driven by, requirements of nuclear 

industry [31]. 
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The proposed scaling procedure involves the derivative of the Weibull CDF (the slope in F-J space): 
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which equals, by definition, the probability density function (PDF), f (J). Furthermore, it is of interest to determine the slope (2) that 

corresponds to the inflection point of the Weibull CDF, defined by: 
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where subscript Π designates the inflection point. (Obviously, the CDF inflection point, defined by Eq. (3), corresponds to the PFD 

maximum value.) The inflection point coordinate 
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follows from Eq. (3) as the only non-trivial solution. After a straightforward derivation, the Weibull CDF slope (2) at the inflection point 

(4) is obtained in the following form: 
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is dubbed herein the shape function and illustrated in Fig. 2. 

Clearly, Eq. (5) reaffirms that the Weibull CDF slope at the inflection point corresponds to the PDF maximum. 

 

Fig. 2. Functional dependence of the shape function Ξ (6) on the Weibull modulus β. Inset: the typical shapes of the CDF for various values of the Weibull 

modulus illustrate that the characteristic sigmoid shape is obtained for β > β× ≈ 1.35. (Note the existence of the minimum Ξmin = 0.73.) 

2.2  Two-step scaling scheme  

The same basic relationships derived in the preceding section are revisited herein in the scaled space (F·Wξ vs. J·Wκ). The motivation 

is that the gist of the present size-effect investigation rests upon the two scaling premises:  
(i) The J-scaling condition  

.constW 
   (7) 

which defines the size-independent Weibull scale parameter  in the scaled space (F·Wξ vs. J·Wκ) (Fig. 3) that feeds directly into the CDF 

(1), and   

(ii) The F-scaling condition  

.constWSS 
  (8)  

which defines the common CDF slope in the scaled space (Fig. 3c), which scales with the PDF maxima.  
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It should be noted that Eq. (7), for positive values of the scaling parameter κ, implies that 
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Needless to emphasize, this is a special case since, in general, the limit value of the Weibull scale parameter corresponding to the infinite 
specimen (η∞ > 0) needs to be established based on the experimental data. The limit value η∞ is a measure of the brittleness of the system. 

This will be discussed later, for time being Eq. (9) holds. 
Thus, the derivation of the CDF slope in the scaled space (F·Wξ vs. J·Wκ) yields 
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In the course of this derivation, it is convenient to use the change of variables y = F·Wξ and x = J·Wκ, which results in the unaltered 

functional dependence of the inflection-point coordinate in the scaled space upon the Weibull modulus  
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A couple of observation could be made based on Eq. (10). First, the Weibull scale parameter in the scaled space is size-independent, 

 = const. (Fig. 3b), by virtue of the J-scaling condition (7). (Recall that the J-scaling along the horizontal axis is performed to ensure the 

overlap of the Ε-points3 for C(T) specimen widths (W), which implies Eq. (7).) Second, the CDF slope in the scaled space F·Wξ vs. J·Wκ is 

also size-independent (Fig. 3c) by virtue of the F-scaling condition, S = const. (8). (Recall that the F-scaling along the vertical axis is 

performed to ensure the overlap of the inflection-point slopes for all W.) Consequently, it follows from Eq. (10) that 

  .constW     (12) 

Also note that the PDF maximum scales with the common CDF slope in the scaled space 


 SWf 

max
  (13) 

The value of shape function Ξ 
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can be calculated for each particular specimen dimension W, once the scaling parameter ξ and the corresponding CDF slope S are 

evaluated from Fig. 3c.  
Finally, the Weibull modulus β(W, ξ) can be determined graphically from Fig. 2 once the value of Ξ (β | W, ξ) is known. 

Eventually, the Weibull CDF can be written in the form 
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that takes into account the effect of the specimen linear dimension (specifically, the effective width). As stressed already, due to the 3-D 
geometrical similarity of the C(T) specimen used, W = 2.5·B [13], it is straightforward to represent the size effect of Eq. (15) in terms of 

the thickness B if preferable.  
Notably, the scaling parameters κ and ξ, resulting from the use of the scaling algorithm outlined above, are the materials parameters in 

the same way as the Weibull CDF parameters β and η. They should also be sensitive to the specimen preparation, surface condition and 

temperature. The constants  and S are model parameters dependent upon κ and ξ. Admittedly, they do not have a physical interpretation 
but are simply outcomes of the experimental data fitting (in the same the manner as β and η).  

Importantly, Eq. (15) is derived assuming that the limit defined by Eq. (9) holds. In general case the Weibull CDF (15) can be re-
written in the form  
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that takes into account η∞ > 0. Determination of η∞ requires at least three C(T) specimen sizes. If only two sizes are available from the C(T) 

testing (like in the numerical example that follows), Eq. (15) provides either a reasonable estimate (in the interpolation region) or a 
conservative lower bound (in the extrapolation regions) for Eq. (16) for almost the entire size range of practical interest as illustrated in 
Fig. 4. This general form of the Jc CDF is equivalent to the size effect modeling of the Weibull scale parameter  

   
  WW  (17) 

The scaling form in terms of the system size (17) is well known from physics of phase transitions and critical phenomena [32, 38]. 
Notably, it can be argued that every test point corresponding to the Jc CDF inherently represents a critical point corresponding to the 
damage-fragmentation phase transition along the lines of argument advanced in [39].  

                                                
3 The Ε-point designation is introduced for clarification of Fig. 3. These points are defined by the cumulative probability F(J = η) = 1 – 1/e ≈ 0.632 for different 

effective widths of the C(T) specimen. 
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Fig. 3. Schematics of the two-step scaling algorithm demonstrated with three different system sizes. 

 

Fig. 4. (a) Dependence of the Weibull scale parameter on the C(T) specimen effective width. The square symbols mark two data points available from 

experiments [13]. The solid red line marks the limit case η∞ = 0 described by Eq. (7). The dashed green line is an example of a more general case, 

η∞ = 50 N/mm, corresponding to Eq. (16). (Note that the difference between two curves is artificially exaggerated in the inset to improve visibility.) (b) The 

solid red line represents the lower bound for the dashed green line which provides a conservative estimate for the Jc CDF for large W; an example for a rather 

large specimen size (B = W/2.5 = 400 mm). 
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A careful examination of Fig. 4, reveals that Eqs. (7) and (15) provide, respectively, lower bounds for more general predictions based 
on Eqs. (17) and (16) in the regions of extrapolation. The detail emphasized in the inset of Fig. 4a reveals that, as expected, Eq. (7) cannot 

represent the lower bound for Eq. (17) between the two test data points (in the interpolation region) as well, but the two curves are barely 
distinguishable in spite of the distance exaggeration applied in the inset to promote visibility. For all practical purposes, the two curves 
virtually overlap in the interpolation region and somewhat beyond. As the specimen size increases, the two curves increasingly diverge as 

expected. Nonetheless, the main panel of Fig. 4a illustrates that, for the range of C(T) specimen sizes commonly used in experiments, the 
difference is hardly noticeable. Finally, in view of the example shown in Fig. 4, it could be argued that, bearing in mind the inherently 
strong data scatter [13, 33], Eqs. (7) and (15) provide very reasonable CFD estimates well over the range of sizes that can be accurately 

tested (up to the thickness B ≈ 300÷400 mm) and useful lower-bounds somewhat beyond. The importance of having the reasonably-
conservative lower bounds in the data extrapolation range cannot be exaggerated bearing in mind that number of valid tests obtained with 
miniature specimens is substantially reduced when compared with similar tests conducted on standard specimens [40]. 

It should be noted that the smaller the size of the statistical sample, the more difficult is to use the above-mentioned approach directly 
since the graphical scaling of “few and far between” experimental data points may not be sufficiently revealing. In that case, it is useful to 
fit first the CDF (1) for available data sets (for all Ws), and to use these curves for the scaling guidance. In that case, Eqs. (7) and (12) 

could be used as a guidance to estimate the scale parameters  
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obtained for (among) the available data-set pair(s). (For the general case of η∞ > 0, the Weibull scale parameter η in Eq. (18)1 should be 
replaced by the difference η - η∞.) 

Notably, Eq. (18)2 reveals that if the Weibull modulus β is size-independent to begin with, the F-scaling is unnecessary (ξ = 0) since 
the Weibull CDFs for various specimen overlap upon the J-scaling. 

3.  Numerical example and discussion of results 

The two-step scaling algorithm outlined above is now used to develop expression (15) for the Weibull Jc CDF for the reactor steel 
20MnMoNi55. The experimental data for the C(T) test at temperature -60 °C, depicted in Fig. 5a, is obtained from [13].  

First, it is opportune to examine visually the experimental data points in Fig. 5a. The statistical sample is notably small: {14, 12} data 

points are available for the C(T) specimen with dimensions W = {50, 100} [mm] and B = W / 2.5 (the later implying the 3-D geometrical 
similarity). The adverse effects of the small size of the statistical sample are especially notable for the larger specimen, W = 100 mm, 
where 12 experimental data points show a strong scatter and barely suggest the characteristic sigmoid approach to the upper horizontal 

asymptote (the inset of Fig. 2 for β > β×); especially for the J values corresponding to the large distribution tail. This is vexing, considering 
that the Weibull distribution is widely applied to random phenomena exactly for its extreme value behavior [7].4 (This pronounced 

sensitivity to the statistical sample size is typical for the cumulative probability plots.) Consequently, as discussed previously, the 
experimental data are first fitted with the CDF (1) to provide guidance and facilitate the scaling procedure. Eqs. (18) are also used for the 
same purpose. 

Since only two experimental data sets, W = {50, 100} [mm], are available, the J-scaling (to be performed) is limited to determination 

of the conservative CDF estimate (15). Thus,  = 1850 Nmmκ-1 is determined by using κ = 0.42 as shown in Fig. 5b.5 Since the inflection-

point slopes in Fig. 5b are obviously different, the corresponding Weibull moduli are different, and the F-scaling is necessary (ξ ≠ 0). The 

parallel CDF slopes in the scaled space (F·Wξ vs. J·Wκ) are obtained for ξ = -0.14 as illustrated in Fig. 5c (S = const.= 0.00024 mm1-κ+ξ/N). 

Thus, the two-step scaling scheme for the given data sets results in  κ = 0.42, ξ = -0.14,  = 1850 Nmm-0.58, and S = 0.00024 mm0.72/N. 

Obviously, the problem involving only two C(T) specimen sizes is deterministic and the optimization of the scaling parameter values (κ 
and ξ) is unnecessary. 

The values of the shape functions for two additional specimen sizes are calculated by using Eq. (14) 

  1404440140 ..., WW     (19) 

and the results are presented in Table 1. Note that W = {200, 1000} [mm] values are the scaling-based predictions. The values of the 
Weibull moduli β, given in the third row of Table 1, are determined from Fig. 5d. In the light of Ξmin = 0.73 (Fig. 2), Eq. (19) implies the 

existence of Wmin = 35 mm, which represents the applicability threshold for the fracture toughness CDF (20) for the data set used in this 
numerical example. It is obvious from Eq. (14) that Wmin is a threshold value characteristic of every experimental data set (since the 

parameters , S, and ξ are data specific). In general, the condition W > Wmin coincides with the characteristic sigmoid shape of the Jc CDF 

(by virtue of β > β× = 1.35 discussed with regards to Fig. 2).  

Table 1.   

Values of the shape function and the corresponding Weibull modulus for four different C(T) widths. The W = {200, 1000) [mm] values are predictions based 

on the parameters determined by the scaling. 

W [mm] 50   100  200 1000 

Ξ [-] 0.77 0.845  0.93 1.17 

β [-] 1.65 1.95  2.25 3.00 

                                                
4 Recall that the strength CDF of quasibrittle materials varies from Weibullian to Gaussian to as the structure size decreases [11]. 
5 Due to the strong experimental data scatter, apparent in Fig. 5a, the values in this numerical example are limited to two significant digits with 0.5 

rounding on the third. 
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Fig. 5. The scaling procedure for the reactor steel 20MnMoNi55 at -60°C experimental data available from [13]. 

The Weibull CDF can now be written in the form 

 
 

mmWWJ
WJ

WJF

W

350
1850

1
420





















 
 min

.

;;exp|


 (20)  

where the size-dependent Weibull modulus β(W) is defined in terms of Fig. 5d and Eq. (19). Note that, with the system-size increase 
Eq. (20) should be seen merely as a lower-bound approximation for C(T) tests on the reactor steel 20MnMoNi55 at temperature -60° C. 

The results are illustrated in Fig. 6. With regards to Fig. 4 and the corresponding discussion, it could be argued that the blue dash-dot 
curve represents a satisfactory estimate of the Jc CDF for W = 200 mm while the purple dash-double dot curve represents a reasonable 
lower bound for W = 1000 mm.  

4.  Conclusions 

A novel scaling algorithm is proposed to obtain an estimate of the Jc CDF for the reactor steel 20MnMoNi55 in the transition 
temperature region that takes into account the C(T) specimen linear dimension. The two-step scaling scheme is custom-developed and 

used on a very small experimental data set corresponding to the geometrically-similar C(T) specimen of only two effective widths 
W = {50, 100} [mm] with {14, 12} data points per width, respectively. Such a small data set effectively limits the predictive capabilities of 
the analyst, especially when it comes to extrapolation of experimental results. The present scaling algorithm has been developed in an 

attempt to circumvent this difficulty in a systematic and transparent way. Due to the specific form of the two-parameter Weibull CDF, 

F(Jc | β, η), this algorithm is applied according to a two-step scheme that defines the scaling parameters κ and ξ such that η·Wκ = const.= η 

and S·Wξ = const.= S. 

The above-mentioned data set, involving only two specimen sizes, is used for nonlinear analysis. The findings demonstrate that:  

 This novel scaling approach provides very good estimates in the intepolation range. 

 The alghoritm ensures that a lower bound of the Jc CDF is obtained in the extrapolation range. The impact on applications is 
accentuated by the inherent reduction of reliability of the C(T) tests (in terms of the known sample-to-sample variability increase) for the 

miniscule and extremely large sample sizes.  
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 Depending on the limit value of the Weibull scale parameter for the unbounded system, η∞ (driven by the system brittleness), 

this lower bound is a more or less conservative estimate of the Jc CDF for the most of the specimen-size range of the practical importance, 
which certainly exceeds the range of sizes that can be accurately tested.  

 The obtained Jc CDF estimate comes with the applicability threshold in terms of the minimum specimen size (Wmin), which is a 

value specific of every experimental data set.  
Certain aspects of the proposed scaling algorithm remain to be explored when more experimental data becomes available. A case in 

point is the optimization procedure for determination of the scaling parameters κ and ξ for data sets with more than two specimen widths. 
The application value of this novel approach—tailored for the experimental data sets of the statistical sizes that leave much to be desired—
rests on the fact that it is not limited to any specific material or temperature range. In the present form it can be used whenever the Weibull 

distribution is applicable. The modification of the same analytical approach to other statistics remains a topic for a future research. 

 

Fig. 6. Illustration of the results of the proposed scaling algorithm on the size effect on the Jc Weibull CDF for the reactor steel 20MnMoNi55, as given by 

Eq. (20) and shown in Table 1.  
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