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Abstract: We introduce numerical modeling of two different methods for the deterministic
randomization of two-dimensional aperiodic photonic lattices based on Mathieu beams, optically
induced in a photorefractive media. For both methods we compare light transport and localization
in such lattices along the propagation, for various disorder strengths. A disorder-enhanced light
transport is observed for all disorder strengths. With increasing disorder strength light transport
becomes diffusive-like and with further increase of disorder strength the Anderson localization is
observed. This trend is more noticeable for longer propagation distances. The influence of input
lattice intensity on the localization effects is studied. The difference in light transport between
two randomization methods is attributed to various levels of input lattice intensity. We observe
more pronounced localization for one of the methods. Localization lengths differ along different
directions, due to the crystal and lattice anisotropy. We analyze localization effects comparing
uniform and on-site probe beam excitation positions and different probe beam widths.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The phenomenon of Anderson localization (AL) originally discovered a few decades ago is
one of the basic prominent phenomena in solid-state physics [1,2]. Originally introduced to
explain the localization of electronic wave functions in disordered crystals, it has found growing
applications in a variety of classical and quantum systems [3-5], including light waves in different
materials [6-8]. AL of light has achieved renewed interest due to the potential for the realization
of localization of optical waves in random media, especially in discrete systems [9], laser-written
waveguide arrays [10—13], and/or optically induced randomized potential [14]. It is in the focus
of investigations, especially in nonlinear optics and photonics, due to the development of new
optical technologies and media, such as disordered photonic crystals and photonic lattices, in
which the presence of AL appreciably changes the propagation of light [15—17]. Owing to the
analogy of paraxial photonic systems to solid-state systems, where the wave function evolution
corresponds to propagation of light and thanks to the fact that longitudinally invariant disorder
can be effectively realized in lattices, experimental activities in AL of light started to attract the
attention of optical community [8].

Up to now, periodic photonic structures have led to light control by photonic band gaps in
space and time, whereas random photonic structures give rise to localization [6,8,18]. Dynamical
control and manipulation of light by deterministic aperiodic or complex photonic structures
[19-21] at the intersection between periodic and random crystal structures, especially the
randomization of aperiodic structures, have not yet been fully understood nor exploited for
applications. Two-dimensional aperiodic photonic lattices were experimentally realized by the
optical induction technique in photorefractive crystal by different combinations of nondiffracting
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Mathieu beams [22], combining them in metastructures by splicing in both transverse dimensions
with different offsets, thus allowing for the tunable optical response. Nondiffracting beams are
convenient for the generation of photonic lattices by optical induction technique since they have
propagation invariant property that is retained under the condition of week nonlinearity [23].
There are four nondiffracting beam families that are exact solutions of the Helmholtz equation
in different coordinate systems [24,25]: plane waves in Cartesian, Bessel beams in circular
cylindrical [26], Mathieu beams in elliptic cylindrical [27], and parabolic beams in parabolic
cylindrical coordinates [28].

Aperiodic lattices in contrast to periodic lattices contain non-uniform distances between the
lattice sites with non-homogeneous intensity depths distributions, therefore light propagation
strongly depends on the probe beam excitation position local environments [29-31]. Such lattices
including quasiperiodic Penrose and Fibonacci, and aperiodic Mathieu lattice, are shown to
hamper diffraction of linear light [30,31] which can be explained by excitation of highly localized
linear modes [32]. Such lattices also support nonlinear light localization [29,31]. Disordering
periodic lattices can lead to AL [7,8] or its suppression [33], referred therein as inverse Anderson
transition. AL is enhanced by self-focusing nonlinearity in disordered periodic lattice [7,8].
Disordered quasiperiodic Penrose lattice can support AL and disorder-enhanced transport (DET)
which is associated with broadening of eigenfunctions with the disorder. Instead of a singular
pattern of quasiperiodic structures such as Penrose or Fibonacci with limited variation in probing
local environments, we are proposing consideration of a whole class of aperiodic structures based
on Mathieu beams [22] with the adjustable spatial and intensity distribution, thus providing
different probing local environments, as well as introducing structure anisotropy variability. A
further step is randomization of such class of aperiodic structures in order to create an appropriate
platform for investigation of light propagation effects and study their possible transition to AL or
DET, which is still an unexplored topic. Exhaustive theoretical or experimental analysis of light
propagation in such a large class of aperiodic structures is difficult to implement, therefore, in
this paper, we focused on one exemplary aperiodic Mathieu structure and numerically model
their possible randomizations and probing of resulting disordered lattices.

In this article, we introduce the modeling of two different methods for the generation of
two-dimensional propagation invariant disordered aperiodic Mathieu lattices, corresponding to
two different experimental realizations using optical induction technique in a photorefractive
crystal. One of the methods corresponds to the already known randomization method [32] with
potentially simpler experimental realization such as we use in our previous studies. But for the
first time, we suggest a substantially different randomization method and compare them with the
previous method, with additional improvement. We present a comprehensive numerical study
of transverse light localization in such waveguides arrays. We aim at elucidating the effect of
disorder on light propagation considering localization effects along propagation. The influence of
lattice intensity on the diffraction rate is also analyzed; specifically differences in the localization
while varying a nominal lattice intensity, as well as investigating the averaged lattice intensity. We
discuss the effect of different choices for input excitation sites on the disorder-induced localization
in such a system. Finally, the effect of the probe beam width on the localization effects is studied.

By gradually adding disorder to the lattice we demonstrate enhanced light transport of the probe
beams for all disorder strengths, as well as show the transition from diffusive-like transport to the
AL for higher disorder levels. More pronounced localization is observed for longer propagation
distances even for lower disorder levels. We attribute effective beam width difference between
two randomization methods to varying levels of lattice intensities. We observe more pronounced
localization for one of the methods; shorter localization length decreases indicating more
pronounced localization. It is shown that localization length differs along different directions,
which we attribute to the lattice and crystal anisotropy. There is no noticeable difference in
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localization effects when probe beam excitation positions are distributed only on-site instead of
uniformly. For broad Gaussian probe beams localization is not observed in such lattices.

2. Numerical modeling of light propagation in disordered lattices

By solving the coupled nonlocal system of two equations: the nonlinear Schrodinger equation, as
propagation equation and a potential equation [34], we numerically simulate the weak nonlinear
propagation of probe beam in the photorefractive cerium-doped strontium barium niobate (SBN)
crystal with disordered aperiodic Mathieu lattices modeled as propagation invariant potential.
Both propagation and potential equations are initial values problems with absorbing boundaries
numerically solved by the symmetrized spectral split-step beam propagation method [35]. The
propagation equation for an initial extraordinary polarized scalar electric field A (probe beam)
with longitudinal wave vector £, is

. 1 kZ 2 2 _
A + AL+ S0 (|A| )A - 0. (1)

0,e

The wave number k = 27/1 = /(k? + k2) is defined by the wavelength 2 = 532nm. The

potential in this equation is given by nonlinear refractive index on> (|A|2) = —nﬁger13,33E, where
ne = 2.325 and n, = 2.358 are the extraordinary and ordinary indices, and ri3 = 47 pm/V,
r33 = 237 pm/V are corresponding electro-optic coefficients of photorefractive birefringent SBN
crystal, respectively. The electric field E = E¢y + E that builds up inside the SBN crystal is a
superposition of an external electric field Eqx = 2000 V/cm and an internal space charge field Eg.
that is determined by the intensity distribution I = |A|? with a potential equation. The external
electric field Ec is aligned with the optical ¢ = x-axis, perpendicular to the z— axis, the direction
of propagation, that is parallel to the long axis of the crystal.

In order to take photorefractive material response as well as the electric bias of the SBN crystal
into account, we deploy the anisotropic, diffusive potential equation for the spatial evolution of
the electrostatic potential ¢, of the optically induced space-charge field Ej,

AJ_‘psc +V. ln(l +1+ [DL) . VJ_¢SC = EexOx 11’1(1 +1+ IDL) s (2)

where [ is obtained from Eq. (1) and subsequently Eq. (1) is updated with Es. = 0, ¢y, iteratively.
Disordered lattice intensity distribution Ip; = |ADL|2, with input lattice intensity /;,, modeling
transverse intensity distribution of nondiffracting pattern homogeneous in the propagation
direction, is persistent through iterations. Experimental laser power P is connected with Ip; via

Iin. Intensity and spatial distribution of Ip; determine on? (|A|2) in Eq. (1) through iterations.

In this way, instead of modeling refractive index modulation 6> (|A|2) directly, we model its

underlying cause. Potential Ip; = |Apr|? of disordered lattices DL is formed by coherently
adding the two-dimensional original structure L and disorder pattern D with same maximum
structure intensity according to the relation

ApL=(1-p)* AL +p=* Ap, 3)

where A stands for field amplitude. Parameter p is the relative contribution of the original
structure and disorder pattern, which we identify as disorder strength (disorder level). By varying
p (0 < p < 1), considering it a uniform measure of disorder strength, we gradually adjust the
level of lattice disorder relative to the original, undisturbed structure.

The whole process of writing propagation invariant disordered lattice is here abstracted and
modeled through potential Ipy, in Eq. (2), which we will further refer as a writing lattice pattern.
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Justification of substitution of the writing process with model potential /p; is based on numerically
simulation of writing process and the experimental realization of propagation invariant photonic
lattices in SBN crystal as in our previous publication [22]. The same writing simulation is carried
out as part of our preparation procedure to find a range of input lattice intensities /i, for which
aperiodic Mathieu lattice stays stable and propagation invariant through the SBN crystal.

3. Two methods for the generation of disordered lattices

Here, we present two methods for the realization of two-dimensional propagation invariant
disordered photonic lattices with adjustable disorder strength. We calculated the complex light
field of disordered lattice for any disorder strength according to Eq. (3). Such calculated complex
light fields of disordered lattices can be used as the writing light patterns for the generation
of waveguide lattice by optical induction in the SBN crystal. Previous studies that applied
the optical induction technique for realization of photonic lattices in birefringent SBN crystal,
externally biased with an electric field aligned along the optical ¢ = x-axis, and perpendicular to
the propagation direction (z-axis), used the ordinary polarized writing beam with a laser power
P, considered to be fairly linear in SBN crystal.

For each disorder strength, when the maximum lattice intensity of the resulting disordered
lattice is left unscaled, we will refer to that case as the first method (M), and laser power for
experimental realization will vary with change disorder strength. The second method (M2) is
characterized with scaling Ip; with I;, for each disorder strength, which effectively keeps the
experimental lesser power constant. This distinction in methods results is the result of differences
in potential experimental realizations.

For the proposed fabrication of the disordered lattices by the optical induction technique, which
corresponds to M1 and M2 we can use our experimental setup from our previous study [22]
using one spatial light modulator (SLM) which modulated writing beam, producing computer
generating hologram. Another way for experimental realization of M1 based on experimental
setup presented in Ref. [32] is to split the structure beam into two parts with controllable powers.
The complex light field of the original structure would modify one part of the structure beam
by the first SLM, while the complex light field of the disorder pattern addressed on the second
SLM would modify the other part of the structure beam. Afterward, those two structure beams,
which spectra in the transverse Fourier space are set to be located on the same circle with radius
k to ensure the same propagation constant, coherently interfere to create propagation invariant
disordered aperiodic lattice. In this way, a relative disorder strength would be indirectly deduced
from structure beam powers.

In this paper, as the original undisturbed structure L, we use aperiodic Mathieu structure
designed by Mathieu Gauss beams, introduced in our previously paper [22]. Disorder pattern D
is numerically calculated by interfering plane waves with constant amplitude and random phases,
to generate the propagation invariant structure with random pattern in transverse dimension. We
generate the disorder pattern whose spectrum in the transverse Fourier space is located on the
same circle with radius k as the original undisturbed structure [36], to crate propagation invariant
structures with the same propagation constant. The disorder pattern’s mean grain size 27 /k
is equal to the characteristic structure size a = 25um of Mathieu Gauss beams, used for the
realization of the aperiodic structure. Transverse intensity distributions of the original aperiodic
Mathieu structure and disorder pattern, that constitute disordered lattice DL created according to
Eq. (3), are shown in Figs. 1 (A1) and (B1), respectively. By increasing disorder strength we
change the geometry of the original structure until we completely substitute the original structure
with a disorder pattern. As the difference in methods causes two choices of intensity scaling,
we will investigate and compare the consequences of such scaling options. For both methods,
variation of disorder strength p leads to the variation of writing lattice intensity, effectively
correlating disorder strength with writing lattice intensity and indirectly with optically induced
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refractive index modulation inside the crystal. For the same disorder levels averaged lattice
intensities differ for M1 and M2, causing differentiation in propagation characteristics under
these method’s conditions. Transverse intensity distributions of disordered aperiodic lattices
with 40% disorder for these two methods are presented in Fig. 1 (C1) and Fig. 1 (D1). Their
displayed area is less than 3% of the whole transversal computational space.

method 1
- —— method 2

20 40 60 80 100
disorder strength p [%]

method 1
——— method 2

20 40 60 80 100
disorder strength p [%]

~100-50 050 100 <100 50 050 100 10050 050 100 ~100-50 050 100 0
x [um] X [um] x [jm] X [pm]

Fig. 1. Two methods of modeling disordered lattices. The transverse intensity distribution
of: (Al) aperiodic lattice, with white box indicating typical pattern; (B1) disorder pattern;
(C1) and (D1) disordered aperiodic lattices with 40% disorder for M1 and M2, respectively.
(A2) - (D2) Corresponding representative lattice intensity cross-section taken along the
x-axis marked with a white dashed line in (A1); dashed lines indicate maximum intensities
of original lattice and disorder pattern. The maximum lattice intensity (E1) and the averaged
lattice intensities (E2) versus disorder strength for different methods.

As an illustration of Eq. (3) in Figs. 1 (A2) - (D2) we present a single typical intensity
cross-section along the x-axis (y-position indicated with a dashed line in Fig. 1 (A1)) for aperiodic
lattice, disorder pattern, and resulting disordered aperiodic lattices with 40% disorder for two
different methods. Levels for p = 0.4 and 1 - p = 0.6 are dashed and coincide with maximum
intensities of disorder and aperiodic structure, respectively. Unlike the periodic lattice, our
aperiodic lattice is not uniform in the waveguide’s distances and their depths vary. For M1
and M2 spatial distribution of the disordered aperiodic lattices are the same, but they differ in
waveguides depths as M2 intensity values are greater than M1 intensity values (red and blue plots
in Figs. 1 (C2) and (D2)).

We noted that the disorder strength p changes the lattice intensity, hence in addition to maximum
lattice intensity Imax, we calculate averaged lattice intensity loye = 2., IpL(r) = 2, IADL(r)Iz,
representing the level of influence of potential term in Eq. (2). The resulting differentiation of
our methods in Iy« and I,y dependence on disorder strength is shown in Figs. 1 (E1) and (E2),
respectively. In the first method disordered aperiodic maximum lattice intensity and the averaged
lattice intensity decrease from 0% to 70% disorder, afterward increase. For 100% disorder, only
maximum lattice intensity returns to an input value. In the second method, the maximum lattice
intensity of disordered aperiodic lattice is equal to [;, for all disorder strengths, but averaged
lattice intensity always decreases with increasing disorder strength. Both the maximum lattice
intensity and the averaged lattice intensity for M1 are lower than for M2, except for 0% and
100% disorder. Assuming the same disorder pattern, both methods produce the same lattices for
0% and 100% disorder strengths we will exclude these two endpoints when we discuss method
differences.
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4. AQuantitative description of localization phenomenon

To investigate the transverse light localization in disordered lattices, we statistically analyzed probe
beam propagation for different excitation positions selected to involve various local environments.
For probe beam excitation positions we use an equidistant 8 X 8 grid covering one complete
typical pattern depicted in Fig. 1 (A1l). We performed such analysis, averaging 64 various probe
beam intensity distributions at the different propagation distances, for several disorder levels.
For each disorder level, we have different realizations of the disordered lattice that are spatially
similar due to fixed deterministic disorder pattern with statistical sampling spanning excitation
probe positions only (N=64). In the preliminary investigations, we perform statistics with several
different fixed disorder patterns and concluded that the statistical quantities and their dependence
of disorder we want to report are not significantly influenced by the choice of disorder pattern.
Due to the aperiodicity of our lattice, not each typical pattern is the same so we perform N=64
statistics on several of them, again finding no significant variation in statistical quantities of
interest. Based on this preliminary analysis we did not vary the disorder pattern between different
realizations of disordered lattices.

For comparison, in addition to sampling equidistant excitation positions (uniform), we
also perform the statistical analysis sampling on-site positions, exciting only positions of
waveguides. On-site excitation positions are chosen according to the positions of aperiodic lattice
waveguides, which implies that for higher disorder strengths these positions become less accurate
as waveguide’s positions and depths are modified by randomization. The process of defining
and numerically detecting waveguides positions modified by disorder is time-consuming and
we did not pursue it, therefore we abstained from giving strong conclusions regarding on-site
positioning at higher disorder levels.

In order to characterize light propagation and localization, we calculate the effective beam
width along the propagation distance z according to the relation

Wep(z) = P(z)7'72, )

where P(z) = ([ |A(x,,2)|*dxdy)/([ |A(x,y,2)|*dxdy)* is the inverse participation ratio [8].
We present scaled averaged effective beam width (we) = Weg(2)/(Wer(0)/ FWHM) where
FWHM is probe beam full width at half maximum. In addition to averaged transverse output
intensity distribution, we consider the log-plot profiles of such output intensity distributions to
further describe light propagation. Parabolic log-plot fit indicates diffusive-like transport. The
exponential decay of the transverse intensity distribution profile determines light localization,
hence the linear fit of log-plots of such intensity profiles around the center demonstrates AL. In
the region of disorder strength where AL occurs, we obtain localization length &, along the x-axis
by fitting intensity profiles I(x, yp) with the exponential function

I(x,y0) = exp (—2M), )
&x

where xg, yp denote the position of the beam center. The analogous procedure is applied along
the y-direction. In some intermediate cases, when the linear fit is not obvious we compare the
goodness of fit of parabolic and linear fits, where higher goodness of fit (closer to 1) indicates
preferable fitting of the log plots. Hence, we use the goodness of fit to confirm a suitable fit,
linear, or parabolic i.e. to discern the diffusive-like transport or AL. By shrinking the domain
where we fit log-plots we notice an increase of the goodness of fit, indicating that localization
occurs in a finite central domain, not in whole computation space.

5. Light transport and localization in disordered aperiodic lattices

We compare effects along light propagation in disordered aperiodic lattices generated with two
different randomization methods. Figure 2 summarizes the difference between the two methods
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Fig. 2. Comparison of diffraction dependence on disorder strength and propagation distance
for two methods. (we) for various disorder strengths along the propagation distance for:
(A1) M1, and (B1) M2; the colormaps display (weg) [um]. {weg) along the propagation
distance for 0%, 30%, 70%, 100% disorder strengths on a double logarithmic scale for: (A2)
M1, and (B2) M2. Parameters: input Gaussian probe beam FWHM is 8 ym and /;, = 0.7.

considering scaled averaged effective beam width (weg). Figures 2 (Al), (B1) display the
difference between the two methods presenting (weg) along the propagation distance for various
disorder strengths. {(weg) during the propagation increases for all disorder strengths. Beam
expansion is maximal in the region of 60% to 80% disorder strength for M1 (Fig. 2 (A1)), and in
the region of 80% to 90% disorder strength for M2 (Fig. 2 (B1)) indicated with a distribution
of points where black isolines cross vertical sections. Examining the horizontal cross-sections
from Figs. 2 (A1) and (B1) for each propagation length we confirm DET occurrence. For both
methods during the propagation when disorder strengths deviate from that region, we observe
the deceleration of (weg) increase. For deviation from disorder strength with maximal beam
expansion toward lower disorder strengths, we observe a reduction of DET while for deviation
toward higher disorder strengths reduction of DET could be attributed to AL. But, in the case of
our lattice, this process is strongly mediated with variation in aggregate lattice intensity, so that
we could not identify AL as the sole cause. To confirm that AL of light occurs, and for which
disorder levels, we will investigate where the log-plots of the averaged intensity distributions are
linearly fitted near the center.

For both methods, in Figs. 2 (A2), (B2) we present {wes) as a function of propagation distance
z (on a double logarithmic scale), for four disorder strengths. A purple dashed lines define fits
of {wesr) by power-law {weg)(z) « 27, for M1 and M2, respectively. v corresponds to beam
expansion rate: v = 1 signifying ballistic transport and v = 0.5 characterize diffusive-like
transport. For a short propagation distance (z<1 cm), beam expansion is almost linear (v = 1 i.e.
ballistic transport). For a longer propagation distance (from 1 cm to 10 cm), the beam expansion
rate is closest to v = 0.5 i.e. diffusive-like transport. For M1 is maximal for 70% v = 0.52 and
lower v = 0.48 for both 30% and 100%. For M2 the beam expansion rate is maximal for 100%
v = 0.48 and lower for 70% and 30%, v = 0.47 and v = 0.45, respectively.

For both methods in the disordered aperiodic lattice with any percent of disorder (weg) is
greater than in the lattice without disorder indicating DET, which could be explained that disorder
spreads linear modes [32] (Fig. 3 (A)). At the shorter propagation distance (z = 2 cm), {Wef)s
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are increasing with increasing disorder strength. A broadening of the beam is more pronounced
for longer propagation distances (z = 6 cm and 10 cm). There we notice that (weg)s at the fixed
propagation distances are increasing up to the maximum values which occur at disorder strength
80% for M1 and 90% for M2, indicating maximum of DET. With the further increase of disorder
strength, (weg)s are decreasing indicating the possibility of AL occurrence. Corresponding
{wesr)s have greater values for M1 than for M2, which is easily discerned from Fig. 3 (A).

A method 1 method 2 [ method 1 | [ method 2 |

—— -~ 10em | [— z- 10em B =l — —
400 / — 07 4001\/\ — 07

———z-6em
eusenes 2= 2em

D> (]

0
[ \2
X7 0 8 cm!
640/0 z ¢

o/

20, 40 60 80
disorder strength p [%]

Fig. 3. Influence of disorder strength p and input lattice intensity /i, on the light diffraction.
(A) {wef) versus disorder strength after 2 cm, 6 cm, and 10 cm of propagation for Ij, = 0.7
for both methods. The error bars are the statistical standard deviations of (weg). (B) M1
and (C) M2: interpolated surfaces of (weg) along the propagation distance for 0%, 30%,
70%, 100% disorder strengths and for various /. Other parameters are as in Fig. 2.

The following study is the independent verification of the influence of input lattice intensity [,
on diffraction. We compare {weg)s in dependence of disorder strength along propagation distance
for 3 different values of the input lattice intensity [;,. Figures 3 (B), (C) summarize {weg) for two
methods where we highlight lines of constant disorder strength along the propagation distance.
By observing slopes of highlighted lines for each I;,, we illustrate the beam expansion explained
in the description of Fig. 2. For all disorder strengths and propagation distances, we observe the
direct influence of lattice intensity on diffraction, for both methods, where lowering I;, causes an
increase in (weg). Since the explicit independent increase in lattice intensity leads to a similar
effect as the inclusion of weak nonlinearity in disordered lattices, indirect change in intensity due
to correlation with variation of disorder strength can also influence AL [7,8]. This effect will
especially be visible in Figs. 6 and 7, where comparing log-plots of average intensity distributions
for two methods for the same higher disorder strengths, observing that M1 which has lower lattice
intensity than M2, produces lover central picks and higher tails, similar to Refs. [7,8].

The main difference in our methods is caused by the difference in the maximum lattice intensity
I'max, Which is varying with change of disorder strength for the first method, while it is constant for
the second method, as well as different variations of the averaged lattice intensities I,y with the
change of disorder strength for different methods (Figs. 1 (E1), (E2)). For both methods, {we)
variation versus disorder strength is different for different propagation distances (Fig. 3 (A)). We
notice that (weg)s after a longer propagation distance (10 cm), have a dependence on disorder
strength similar to I, (Fig. 1 (E2)). Hence, to investigate this connection, we normalize (wes)
and reciprocal averaged lattice intensity (Ia\,g)‘1 according to relation F(p)/(F(1) — F(0)) — F(0),
where F is (weg) or (Iavg)_l, and p is disorder strength. We present them, as well as their
differences in Fig. 4 for both methods. For both methods, variations of normalized (weg) closely
follow (Iavg)‘l. Therefore, we conclude that (weg) is strongly influenced with the variation in
(Iawg)’1 versus disorder strength for longer propagation distances, for narrow probe beam width.

Deviation of {weg) and (Iavg)‘l graphs is quantified with their difference, quantity that contains
the influence of parameters not directly connected to the lattice intensity, such as lattice and beam
shapes. For M2 where the dependence of (Iavg)‘1 on p is monotonous, distributions of {we) and
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Fig. 4. Comparison of methods via (weg) and (Iavg)_l. Normalized (wef), (Iavg)_1 and
their differences for both methods as a function of disorder strength. Other parameters are as
in Fig. 2.

(Iavg)_1 and (Iavg)‘1 vs. p closely overlap. We associate a dip of deviation for M1 in Fig. 4 with a
sharp minimum in dependence of the maximum lattice intensity /yx versus p (Fig. 1 (E1)) and
also with a minimum in /s versus p (Fig. 1 (E2)), occurring at the same disorder level. As we
demonstrate in Fig. 3, light diffraction is reverse proportional to input lattice intensity. Hence, for
the minimum of the maximum lattice intensity in M1, we have the highest (weg) (maximal DET).
The narrow probe beam for low lattice intensity diffracts the most, but at longer propagation
distances {(weq) does not reach the variation of I,y as at minimal lattice intensities beam already
rapidly expanded early in propagation. Further in this section, we will independently study probe
beam width influence on diffraction in our lattice.

We analyze the averaged transverse intensity distributions of probe beam along the propagation
distance by using the log-plot cross sections of averaged intensity distributions and localization
lengths. Figures 5 (A) - (D) summarize the averaged transverse intensity distributions of probe
beam for some disorder strengths and some propagation distances. Parallelly, we investigate
a suitable log-plot cross section along the x-axis (gray/red/cyan plots) and y-axis (black/dark
red/dark cyan plots) in Fig. 6.

method 1 method 2 method 1 method 2
30%disorder 30%disorder 70%disorder

0%disorder

100%disorder

Bl  H B
SEC

Fig. 5. Disorder-induced light transport and localization in aperiodic Mathieu lattice.
Numerically averaged intensity distributions at the lattice output for different disorder
strengths at different propagation distances. Other parameters are as in Fig. 2.
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Figure 5 (A) depicts averaged intensity distribution in aperiodic lattice without the disorder,
for 3 different propagation distances (2 cm, 6 cm, and 10 cm), demonstrating discrete diffraction
of light, also visible in Fig. 6 (A). Figures 5 (B), (C) present averaged intensity distributions for
two values of disorder strength (30% and 70%) after 3 propagation distances for both methods;
suitable log-plot cross section along the x-axis (red and cyan plots) and y-axis (dark red and dark
cyan plots) are presented in Figs. 6 (B), (C). For 30% disorder averaged intensity distributions
and the log-plot cross sections near the center are broader for M1 than for M2. More pronounced
diffraction, i.e. DET for M1 is evident (Figs. 5 (B), Fig. 6 (B)). Also, the less pronounced
diffraction of light along the y-direction, for both methods, is noticeable due to the crystal
(r33>>ry3) and lattice anisotropy (Fig. 1 (A1)).

With further increasing disorder strength (>30%), averaged intensity distributions and the
log-plot cross sections near the center are broadened, indicating DET. Additionally, the diffraction
and localization effects are more noticeable along the y-transverse direction, for both methods,
due to the crystal and lattice anisotropy: as visible for 70% disorder strength at z = 2 cm (Figs. 6
(C11), and (C21)). The interplay of lattice and crystal anisotropy influence is evident for shorter
propagation distances in the log-plot cross sections near the center for M1 (Figs. 6 (C11)), where
the log-plot along the x-axis is fitted with parabola, indicating diffusive-like transport, while
the log-plot along the y-axis is linearly fitted indicating light localization. At the same time, as
the influence of lattice anisotropy is mediated with lattice intensity, for M2 the log-plots cross
sections near the center along the x- and y-axis are linearly fitted (Fig. 6 (C21)). The localization
length is shorter along the y-axis, indicating that localization is still stronger in this direction. The
influence of the lattice and crystal anisotropy persists for longer propagation distances (Figs. 6
(C12), (C22), (C13), (C23)), which will be illustrated with different localization lengths along
the x- and y-direction in Fig. 8. Also, localization lengths in both directions for M2 are shorter
than for M1, which shows that stronger localization occurs for M2.
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Fig. 6. Comparison of light localization along different directions. Log-plot cross sections of
averaged intensity distributions along the x-axis (gray/red/cyan plots) and y-axis (black/dark
red/ dark cyan plots), for different disorder strengths: (A) 0% , (B1), (B2) 30%, (C1), (C2)
70% and (D) 100%; blue dashed lines are corresponding linear fits. The horizontal axes
span 400 um in the x- and the y-direction. For each plot, there are two stacked vertical axes,
where short horizontal bars are set on 1’s. Other parameters are as in Fig. 2.

For 100% disorder, we notice even more pronounced localization with a longer propagation
distance (Fig. 5 (D), and Fig. 6 (D)). Also, more pronounced localization is along the y-axis than
the x-axis. Since, for 100% disorder, the original lattice does not contribute to anisotropy and the
disorder pattern, we use in our study, does not have clear x-y anisotropy preference, we conclude
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that the direction of crystal anisotropy is primarily cause of more pronounced localization in the
y-direction. On the other hand, the asymmetry of log plots (along any axis and arbitrary disorder
level) is due to the specific occurrence of the used disorder pattern. The influence of the disorder
pattern anisotropy (not along x-y-direction) is noticeable at some probe beam transverse intensity
distributions, as can be discerned comparing Figs. 5 (D2) - (D3) with Fig. 1 (B1).

To mitigate asymmetry of the log-plot cross-sections of averaged intensity distributions we
use the average of the left and right sides of such profiles along the x-axis from the center.
We fit such averaged log-plots cross sections and calculate the localization length according
to Eq. (5) for disorder levels where the log-plot cross sections are linearly fitted. Figure 7
depicts a comparison of localization along the x-axis in our two methods for various disorder
strengths and two propagation distances (4 cm and 8 cm). For lower disorder strengths we do
not fit the log-plots (Figs. 7 (A1) and (B1)), where significant features of aperiodic lattices are
remaining. However, we notice the spreading of the log-plots simultaneous with increased {wef),
indicating that DET occurs. For both methods, at disorder strength between 50-60% at the
shorter propagation distance (4 cm) light diffraction is closest to diffusive-like transport where the
parabolic fits of the log-plots near the center could be attempted with low confidence (goodness
of fit lower than 0.85). But, this tendency is further weakened at a longer propagation distance, so
after 8 cm of propagation for 60% disorder log-plots are linearly fitted near the center indicating
light localization (Fig. 7 (B2)). For higher disorder strength (80% and 100%) light localization is
visible for the shorter propagation distance (4 cm, Fig. 7 (A2)), but more pronounced localization
is evident for longer propagation distances also proved by linear fits of log-plots. One can see
more pronounced localization for M2 than M1: log-plot fits for the same disorder level are steeper
for M2, the slopes of the fits determine localization lengths.
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Fig. 7. Comparison of light localization in two methods for various disorder strengths and
two propagation distances. Log-plot cross sections of intensity distributions symmetrized
over left and right side of the x-direction, for M1 (left), M2 (right), and different disorder
strengths after (A1)-(A2) 4cm, and (B1)-(B2) 8 cm of propagation. The y-axes stacked
similarly as in Fig. 6 and the other parameters are as in Fig. 2.

We characterize light localization by comparing the localization length (Eq. (5)) of linearly
fitted log-plots along the x- and y-direction (Fig. 8) after 10 cm of propagation. The localization
lengths in either direction are greater for M1 than for M2 indicating more pronounced localization
for M2, qualitatively connecting lattice intensity with AL strength. For both methods, more
pronounced localization is visible along the y-axis where the localization lengths have lower
values comparing to the x-axis, due to the crystal and lattice anisotropy. One can see that
differences between localization lengths are larger for lower disorder strengths, while their values
converge to each other as disorder strength increases, meeting at 100% disorder strength; a similar
conclusion stands for {weg)s (Fig. 2 (A)). We notice that AL occurs at different disorder levels
along different directions. Along the y-axis, localization appears for lower disorder strengths than
along the x-axis. Figure § illustrates diffusive-like transport along the x-axis and light localization
along the y-axis for the same 50%-60% disorder region.
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Fig. 8. Comparison of localization lengths after 10 cm of propagation distances for various
disorder strengths for both methods and both the x- and y-directions. Other parameters are
as in Fig. 2.
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Fig. 9. Influence of probe beam excitation positions on the diffraction and localization
(for M1). (A) (wegr) versus propagation distances for uniform excitation positions and
only on-site positions for different disorder strengths. (B) and (C) Appropriate averaged
intensity distributions at the lattice output. (D) Log-plot cross sections of averaged intensity
distributions along the x-axis (red/gray plots) and y-axis (dark red/black plots) for uniform
and on-site positions for different disorder strengths. Other parameters are as in Fig. 2.
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Moreover, we study the consequences of the choice of excitation probe beam positions
distribution on the beam propagation. Statistics presented up to this point was based on the
uniform distribution of probe beam excitations regardless of waveguide positions. Further, we
investigate if the choice of only on-site excitation positions significantly changes the diffraction
and localization characteristics. Figure 9 summarizes such results for M1. We compare {weg)s
for three disorder levels (Fig. 9 (A)) and observe slight differences between uniform and on-site
excitation. Appropriate averaged intensity distributions are presented in Figs. 9 (B), (C) as well as
their log-plots along the x- and y-axis (Fig. 9 (D)). We notice dissimilarity in {we)s for uniform
one and on-site cases, at the different propagation distances for 0% and 30% disorder than for
60% disorder. (weg) has higher values for on-site excitation cases than for uniform, especially
for lower disorder strengths (0% and 30%) after 6 cm propagation distance. However, for higher
disorder strength (60%) (weg) is greater for uniform excitation case after 10 cm propagation
distance. Such difference is caused by different computational spaces: the effective beam
width is calculated for the whole computation space, with the significant contribution of tails
in calculations, while the transverse intensity distributions and the log-plots are shown for the
shorter (central domain), where tails contributions are discounted. Also, discrete diffraction is
more pronounced for lower disorder strength for on-site excitation cases than for uniform cases,
as is visible from intensity distributions and log-plots (Figs. 9 (B2) - (D2), and (B3) - (D3)).
For 60% disorder, discrete diffraction is not observed for the on-site case, due to the diminished
accuracy of on-site positions for higher disorder strengths. For all disorder strengths, the weaker
difference is in log-plots along the y-direction. Asymmetry of log-plots is due to the specific
occurrence of the used disorder pattern. However, the consequence of this choice is unsubstantial
on statistical quantities.

In this research, we observe that dependence of light diffraction on various parameters is more
noticeable for longer propagation. However, the question remains if the wider beams that are
consequences of longer propagation distance lose their sensitivity to the local environment and
thus hinder the accuracy of diffraction properties investigation. We observed different rates of
increase of averaged effective beam width during propagation in our disordered lattices and
consequently a variety of beam widths and shapes. Hence, we investigate the independent
influence of probe beam width on light transport and localization in our disordered lattices in
comparison to the free space propagation of the Gaussian beam. Figure 10 summarizes such
results.

We choose three various input probe beam widths (8um, 20pum, and 50um). Averaged effective
beam widths are considered along the propagation distance for different disorder strengths: 0%,
70%, and 100% (Fig. 10 (A)). More pronounced light transport is observed for narrower probe
beam widths. Strong correlation of (weg) with Ia_vfg for input probe beam of 8um presenting
in Fig. 4, gradually diminish for wider probe beams. Also, wider probe beam reduces their
sensitivity on disorder strength p and propagation distance, making wider beams less suitable
for our investigation. Appropriate averaged intensity distributions after 4 cm propagation are
presented in Figs. 10 (B), (C), (F). For 70% disorder, the log-plots along the different domains of
the x-axis are shown in Fig. 10 (D) for different input probe beam widths, while Fig. 10 (E) present
only their central domain along the x-axis of 400um. We show that for all probe beam widths,
along the x-axis in our disorder lattices light is spreading to the same degree as the Gaussian in
free space propagation. Different domains along the x-axis represent the degree of diffraction for
different probe beam widths (Fig. 10 (D)). However, a significant difference between the log-plots
in our disordered lattice and the log-plots of Gaussian free space propagation is noticeable only
in a limited central domain after the same propagation distance (Fig. 10 (E)). For narrow probe
beam widths (8um and 20um), Figs. 10 (E1) (E2), localization occurs in the central domain with
a size comparable to the size of the typical lattice pattern. In contrast, a wide probe beam (50um)
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Fig. 10. Influence of probe beam width on the localization effects for M1. (A) Normalized
{wefr)s versus propagation distances for three probe beam widths and different disorder
strengths. Appropriate averaged intensity distributions after 4 cm (the dashed line in (A))
propagation distance for various disorder strengths: (B) 0%, (C) 70%, (F) 100%. (D)
Log-plots of averaged intensity distributions along the x-axis in disordered lattice with 70%
disorder strength compared with corresponding log-plots of Gaussian free space propagation.
(E) The same log-plots along the x-axis as in (D) for narrow central domain from -200 to
200 pm. Other parameters are as in Fig. 2.

50pum

barely diffracts, i.e. propagates almost the same as a wide Gaussian beam in free space, limiting
suitable widths of the probe beam for lattice excitation.

6. Conclusion

In this article, we presented two different theoretical methods for the realization of disordered
two-dimensional photonic lattices optically induced in a photorefractive media. We numerically
model light propagation in disordered aperiodic Mathieu lattices. We observed enhanced light
transport for all disorder strengths but AL of light for higher disorder strengths in both methods.
Localization effects are more pronounced for longer propagation distances. More pronounced
localization is observed for M2 than M1: we attributed the difference between the two methods
to various levels of lattice intensity. When studying the dependence of AL and DET on disorder
level, to mitigate the influence of lattice intensity, we suggest further modification of our M2 in
which averaged intensity levels are equalized for every disorder strength used. Localization length
differs along different directions, due to the crystal and lattice anisotropy. There is no noticeable
difference in localization effects if we choose only on-site probe beam excitation positions, as
compared to uniform position distribution. For broad probe Gaussian beams localization is not
observed in such lattices.
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