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Abstract

Oxidative status of maternal blood represents an important parameter of pregnancy that is

involved in both, regulation of physiological processes and (if significantly altered) develop-

ment of different pregnancy complications. Inherited thrombophilias represent genetic disor-

ders that increase the risk of thromboembolism in pregnancy. Little is known about the

impact of thrombophilia on the oxidative status of maternal blood. In this study, we analyzed

oxidative status of blood of 56 women with pregnancies burdened by inherited thrombophi-

lias. The status was established at three different trimesters using biochemical assays and

electrochemical measurements, and it was compared to 10 age- and trimester-matching

controls. Activities of superoxide dismutase, catalase, and glutathione reductase in the 1st

and the 2nd trimester of thrombophilic pregnancy were lower than controls. Also, there was

less oxidation in the plasma, according to higher concentration of reduced thiols and lower

oxidation-reduction potential. Therefore, it appears that thrombophilic mothers do not expe-

rience oxidative stress in the circulation in the first two trimesters. However, the rise in GPx,

GR and SOD activities in the 3rd trimester of thrombophilic pregnancy implies that the risk of

oxidative stress is increased during the late pregnancy. These results are important for

developing antioxidative treatment that could tackle thrombophilia-related pregnancy

complications.

Introduction

Oxidative status of maternal blood is an important parameter of pregnancy [1]. It has a regula-

tory role in the processes of placental angiogenesis and development, gestation maintenance,

and the recognition of fetus-cells and immune maternal responses [2–4]. A positive correlation

has been established between oxidative status of the mother and the neonate [5]. It is impor-

tant to note that several studies have found that normal pregnancy is characterized by mild
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pro-oxidative changes in the status of maternal blood when compared to non-pregnant or

postpartum women [6–8]. However, more pronounced pro-oxidative changes (i.e. oxidative

stress) have been related to the development of different pregnancy complications, such as

pre-eclampsia, fetal growth restriction, miscarriage, and others [1, 9, 10]. Further, the develop-

ment of oxidative stress in the blood is known to induce thrombogenesis via mechanisms that

have been extensively studied [11–13], and which appear to take place in pregnancy complica-

tions that are related to oxidative stress [14, 15]. However, whether pro-thrombic conditions

that are induced by some other factors, such as inherited thrombophilias, may lead to oxidative

stress, is not clear.

Inherited thrombophilias represent genetic disorders that increase the risk of different com-

plications, fetal loss, and thromboembolism in pregnancy [16–18]. It has been suggested that

more than half of vascular complications of pregnancy can be attributed to genetic thrombo-

philias [19]. Pro-thrombic state results in haemostatic response and microthrombi formation

[17]. This may further lead to increased production of reactive oxygen species in the circula-

tion in relation to ischemia, mechanical stress/endothelial injury, and/or inflammation [20,

21]. Pertinent to this, we have found previously that oxidative status of thrombophilic mothers

shows significant pro-oxidative changes postpartum, immediately following the delivery [22,

23]. Besides this, little is known about the impact of thrombophilia on the oxidative status.

The aim of the present study was to determine oxidative status of maternal blood during

pregnancy burdened by inherited thrombophilias, and to compare it to women with normal

pregnancies. It is important to note that pregnancy represents a dynamic period with maternal

circulation undergoing significant physiological changes to meet the demands of the fetus and

the mother. For example, cardiac output rises by increasing heart rate and stroke volume,

reaching ~50% above the pre-pregnancy baseline near the end of the pregnancy [24, 25]. Also,

it appears that oxidative status of maternal blood shows a timeline of changes during normal

pregnancy [26, 27]. Therefore, it was important to measure parameters of oxidative status at

different timepoints–trimesters. Knowing oxidative status at different trimesters may be par-

ticularly important for improving the performance of antioxidant supplements in pregnancy

by matching the time of application with the periods of high risk of oxidative stress develop-

ment. The best approach in assessing oxidative status of circulation is to analyze: (i) antioxida-

tive enzymes in erythrocytes: superoxide dismutase (SOD; converts intracellular superoxide

radical anion to hydrogen peroxide (H2O2)), and catalase (CAT), and glutathione peroxidase

(GPx) and glutathione reductase (GR) couple, which remove H2O2 [28–31]; and (ii) redox

parameters of plasma: the level of reduced thiols (R-SH; highly susceptible to oxidation) [32],

and static oxidation-reduction potential (ORP; an integrated comprehensive metabolomic

analyte that measures the balance between stable oxidative and reductive species in biological

fluids) [33, 34].

Materials and methods

Patients

Study cohorts included 56 pregnant women with inherited thrombophilias, and three groups

of 10 age- and parity-matching women with normal pregnancy–controls (population details

are available in Table 1).

Inherited thrombophilias were detected by evaluating the presence of specific mutations/

deficiencies: protein S deficiency, prothrombin i.e. coagulation factor II (F2) gene mutation,

Factor V Leiden mutation, plasminogen activator inhibitor-1 (PAI-1) gene polymorphism,

and methylenetetrahydrofolate reductase (MTHFR) gene mutation [35, 36]. All patients were

diagnosed before the index pregnancy. Other complications involved: chronic hypertension—
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blood pressure exceeding 140/90 mm Hg before pregnancy or before gestation week 20, gesta-

tional hypertension–hypertension that developed after gestation week 20, and pre-eclampsia.

All women with thrombophilia received therapeutic doses of low molecular weight heparin,

from the beginning of the pregnancy to the postpartum period. Normal pregnancies were eli-

gible for the control group if they had an uncomplicated pregnancy that resulted in the birth of

a healthy newborn and no history of thromboembolism. No smokers were involved in the

study. All patients (controls and thrombophilic) received 1000 mg of vitamin C and 5 mg of

folate each day until gestational week 16; after that all patients received multivitamin supple-

ment that contained 100 mg of vitamin C each day. Institutional approval for the study was

granted by The Ethics Committee of University Clinic for Gynecology and Obstetrics „Nar-

odni front“, in accordance with internationally accepted ethical standards (The Helsinki Dec-

laration of 1964, as revised in 1975, 1983 and 1989), and each patient had signed the informed

consent form.

Samples

Blood samples (3 mL) were taken from all 56 pregnant women with thrombophilia in the 1st

(gestational week: 10–12), the 2nd (gestational weeks: 22–26), and the 3rd trimester (gestational

week: 34–38). Control samples were collected from 10 women with normal pregnancy for

each trimester in the same periods of gestation. The blood extraction was performed at the

same time to routine clinical measurements. Venous blood was collected after overnight fast-

ing using tubes containing 0.072 mL of 7.5% K3EDTA as the anticoagulant (Vacuette EDTA,

Greiner Bio-One, Austria), and centrifuged at 2000 g/15 min/4˚C to separate erythrocytes and

plasma. Erythrocytes were washed three times with 0.9% NaCl at 4˚C. Plasma and washed

erythrocytes were immediately placed in tubes, snap-frozen in liquid nitrogen, and stored at

-80˚C for further analysis.

Biochemical and electrochemical analysis

All chemicals were purchased from Merck (Darmstadt, Germany). Erythrocytes (0.5 mL) were

lysed by adding 3 mL of ice-cold distilled water. Hemoglobin (Hb) concentration was mea-

sured by Drabkin method. SOD activity was determined by the adrenaline method [37]. One

unit of activity is defined as the amount of enzyme that decreases the rate of adrenaline auto-

oxidation at pH 10.2 by 50%. Interference with Hb was eliminated by precipitation prior to the

Table 1. Population characteristics.

Controls Thrombophilia Types of thrombophilia n Zygosity#

1st trimester 2nd trimester 3rd trimester

n 30 56 Protein S deficiency 4 -

10 10 10

Age (years)� 35.4 ± 1.0 33.0 ± 0.7 F2 gene mutation 6 1/5

35.4 ± 1.5 33.7 ± 1.7 37.0 ± 1.9

Parity� 0.96 ± 0.13 0.58 ± 0.10 Factor V Leiden mutation 13 1/12

0.90 ± 0.23 1.20 ± 0.20 0.80 ± 0.20

Chronic hypertens. (n) 0 6 PAI-1 gene polymorphism 31 20/11

Gestational hypertens. (n) 0 14 MTHFR gene mutation 2 1/1

Pre-eclampsia (n) 0 8

� Values are presented as mean ± standard error. Values for controls are presented for all 30 subjects, and for 10 subjects in each trimester.
# Presented as homozygotes (n) /heterozygotes (n)

https://doi.org/10.1371/journal.pone.0234253.t001
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assay using ethanol/chloroform (1:1, v/v), that was followed by centrifugation at 5000 g/5 min/

4˚C. The activity of CAT was determined as described previously [38]. One unit is defined as

the amount of enzyme that reduces 1 mM of H2O2 per min. SOD and CAT activities were nor-

malized to Hb. The activity of GPx was determined using t-butylhydroperoxide as substrate

[39], and expressed in μmol NADPH/min/g Hb. GR activity was assayed as reported by Glatzle

et al. [40], and expressed in μmol NADPH/min/g Hb. The content of R-SH in plasma was

determined according to Ellman [41]. Static ORP (in mV) was measured at room temperature

using RedoxSYS System (Aytu BioScience, Inc., Englewood, CO, USA) [34]. Plasma (40 μL)

was applied to a pre-inserted sensor, and the readings were initiated automatically.

Statistical analysis

Statistical analyses were performed using STATISTICA 8.0 (StatSoft Inc., Tulsa, OK, USA).

Results are presented as box. Boxes represent the median and the 25th and 75th percentiles;

whiskers represent the non-outlier range. Outliers and extremes are defined as data point val-

ues that are more than 1.5× and 3× interquartile range outside the box, respectively. We ana-

lyzed differences between controls and thrombophilic pregnancies, controls and 4 different

inherited thrombophilias taken separately (data for MTHFR gene mutation thrombophilia

(n = 2) were an exception), controls and thrombophilic women with hypertension (n = 20),

and thrombophilic women with and without hypertension using nonparametric two-tailed

Mann–Whitney U test. The differences between different trimesters in thrombophilic preg-

nancies and between different types of inherited thrombophilia were established using Krus-

kal-Wallis ANOVA by ranks with Dunn’s post hoc test. Results were considered to be

statistically significant if p< 0.05.

Results

The activity of SOD in erythrocytes was about two-fold lower in thrombophilias than controls

during the entire pregnancy (Fig 1A). Similarly, CAT activity was lower in inherited thrombo-

philias during the first two trimesters (Fig 1B). It is important to note that SOD activity in the

3rd trimester of thrombophilic pregnancy was significantly higher than in the first two

trimesters.

Further, GPx activities in healthy and thrombophilic pregnancies were not significantly dif-

ferent in the first two trimesters (Fig 2A). In the 3rd trimester, GPx activity showed a drastic

increase in thrombophilic pregnancy and it was three-fold higher than in controls. GR activity

was lower in inherited thrombophilias than controls only in the 1st trimester (Fig 2B). Both,

GPx and GR activities showed a significant increase in the 3rd trimester of thrombophilic preg-

nancies compared to the first two trimesters.

Finally, R-SH concentrations were higher in the 1st and the 2nd trimester, whereas ORP was

lower in the 1st trimester in the plasma of pregnant women with thrombophilia than controls

(Fig 3). It is important to note here that lower ORP values stand for lower level of oxidizing

and/or higher level of reducing species. So, the results implicate that there is less oxidation in

thrombophilic pregnancies than controls. It is noteworthy that there were no changes in R-SH

concentration and ORP in different trimesters of thrombophilic pregnancy. Further, there was

no significant difference in any of the measured parameters between different types of inher-

ited thrombophilia. Also, thrombophilias with hypertension showed similar trends as all

thrombophilias in comparison to control values. There were no significant differences in any

of the parameters between thrombophilic pregnancies with or without hypertension (not

shown).
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Discussion

Surprisingly, the blood of pregnant women with inherited thrombophilias showed less oxida-

tion than controls during the first two trimesters. Pro-reductive oxidative status is implicated

by higher R-SH levels and by lower ORP in plasma, as well as by lower activities of SOD, CAT

and GR in erythrocytes. Therefore, it can be concluded that thrombophilic mothers do not

experience oxidative stress in the circulation in the first two trimesters. However, the rise in

GPx, GR and SOD activities in the 3rd trimester of thrombophilic pregnancy implies that the

risk of development of oxidative stress is increased during the late pregnancy. This is in accord

with our previous findings that placental tissue of thrombophilic mothers shows several-fold

higher activity of H2O2-removing enzymes (CAT, GPx and GR) than controls [22], and that

pro-oxidative changes of oxidative status take place in the blood of thrombophilic mothers

immediately after the delivery [23]. It is possible that an increase in the cardiovascular load

during pregnancy [24, 25], in combination with pro-thrombic conditions progressively leads

to pro-oxidative pressure that exceeds the capacities of baseline antioxidative defense and pro-

vokes upregulation of antioxidative enzymes. Pertinent to this, GPx showed particularly pro-

nounced increase near the term of thrombophilic pregnancy. Within erythrocytes, GPx

appears to be mainly located close to the membrane. It has been proposed that GPx is in charge

of preventing lipid peroxidation and removing H2O2 that enters the erythrocytes from plasma

[42, 43]. Therefore, erythrocytes, in addition to placental antioxidative system [22], may play
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Fig 1. The activities of superoxide dismutase (SOD) and catalase (CAT) in erythrocytes in different trimesters.

(A) SOD activity. (B) CAT activity. C–control (n = 10 for each trimester); T–thrombophilias (all; n = 56); S–protein S

deficiency (n = 4); F2 –F2 gene mutation (n = 6); LV–Factor V Leiden mutation (n = 13); PAI–PAI-1 polymorphism

(n = 31); HY–thrombophilic pregnancies burdened with hypertension (n = 20). Boxes represent the median and the

25th and 75th percentiles; whiskers represent the non-outlier range; circles–outliers; x—extremes. �—Statistically

different compared to control (p< 0.05). Different trimesters in thrombophilic pregnancy not sharing a common

letter in the box are significantly different.

https://doi.org/10.1371/journal.pone.0234253.g001
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an important role in the protection of maternal circulation from excessive amounts of H2O2 in

the last trimester of thrombophilic pregnancy. In close, it appears that near the term, pro-

thrombic conditions lead to increased production of H2O2 in the circulation (in relation to

ischemia/re-perfusion, endothelial injury, or inflammation [20, 21]). This is compensated by

upregulated enzymatic antioxidative systems in erythrocytes and placenta. Erythrocytes have

been proposed to act as a sink for extracellular H2O2 [44], whereas placental blood flow shows

a large volume of 600–700 mL/min [45]. It is important to stress out here that H2O2 diffusion

across cell membranes is facilitated by specific aquaporins (AQP) [46], which are present in

placenta (AQP3, AQP8, AQP9) [47], and on erythrocytes membrane (AQP3) [48]. At the

delivery, placenta is discarded and the protection of maternal circulation is weakened. So a

pro-oxidative shift in oxidative status of blood takes place [22], which may be the cause of the

increased risk of thrombosis and thromboembolism postpartum [49]. It is worth mentioning

that no significant differences were observed between different thrombophilia types or

between thrombophilic mothers with and without hypertension for any of the investigated

parameters. This implies that the established trimestral profile of oxidative status is not related

to a specific mutation or polymorphism or to the development of hypertension and that it rep-

resents a feature of thrombophilia per se. Finally, our results imply that the application of anti-

oxidative supplements/therapy is most appropriate in the 3rd trimester of thrombophilic

pregnancies.
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Fig 2. The activities of glutathione peroxidase (GPx) and reductase (GR) in erythrocytes in different trimesters.

(A) GPx activity. (B) GR activity. C–control (n = 10 for each trimester); T–thrombophilias (all; n = 56); S–protein S

deficiency (n = 4); F2 –F2 gene mutation (n = 6); LV–Factor V Leiden mutation (n = 13); PAI–PAI-1 polymorphism

(n = 31); HY–thrombophilic pregnancies burdened with hypertension (n = 20). Boxes represent the median and the

25th and 75th percentiles; whiskers represent the non-outlier range; circles–outliers; x—extremes. �—Statistically

different compared to control (p< 0.05). Different trimesters in thrombophilic pregnancy not sharing a common

letter in the box are significantly different.

https://doi.org/10.1371/journal.pone.0234253.g002
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