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Abstract  

Molecular dynamics simulations of the rigid-anvil collision test are performed to achieve the complete 

pulverization of slender nanoprojectiles. The simulation setup mimics the traditional Taylor test (the flat-

ended nanoscale bars collide with a rough rigid wall) at striking velocities that reach an awesome range 

from 20 km/s to 120 km/s. The objective is to investigate, so called, shattering fragmentation, defined 

by the complete disintegration (pulverization) of the slender monocrystalline nanoprojectile into the cloud 

of monatomic debris (mmax = mmax1 ≡ 1). The critical impact energy associated with this transition from 

the stochastic to the deterministic fragment distribution is investigated at two widely different initial 

temperatures of the slender nanoprojectile while scaling its size in a self-similar manner by varying their 

widths (diameters) at a fixed aspect ratio. For all but the smallest nanoprojectiles, the minimum 

achievable mmax >> mmax1 is discussed based on the physically-limiting striking velocity range. 
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1  Introduction 

Fragmentation is an irreversible kinetic phenomenon that occurs in numerous processes that cover a 
vast range of spatial and temporal scales. The ultrafast collision of the flat-ended projectile with the 
rigid target [1] is an extremely intense loading event belonging to the realm of akrology within the 
study of materials’ physics. The extremely steep gradients of state variables (e.g., [2]), well 
documented by shock experiments [3, 4], may cause phase transitions and lead to sequential fractures 
that culminate eventually in energetic expulsion of fragment debris. Since the shock wave excitation is 
inherently ultrafast, the present molecular dynamics (MD) method requires a sub-femtosecond time 
resolution to observe the collective dynamics of material on picosecond time scales and to reach the 
shattering transition, which renders simulations time-consuming. 

The fundamental principles of dynamic fragmentation of solids were investigated extensively in 
the past—theoretically, experimentally and numerically—and the substantial literature is compiled 
recently [5, 6, 7]. Examples of computational techniques utilized in the last decade in the dynamic 
fracture and fragmentation investigations include: MD [8-10]; particle models [11-13], lattice and 
discrete element models [14-19], finite element methods [20-22], and meshfree methods [23-25]. 

The shattering transition [26] is identified herein with a change from the stochastic fragment 
phase to the deterministic dust phase corresponding to the uniformly monatomic debris (mmax ≡ 1). 
(Note that hereinafter the fragment mass m and the nanoprojectile mass M are presented in units of 
m0; i.e., the number of atoms composing them.) The term “shattering” is inspired by Redner’s 
discussion of a mathematical pathology in a solution of the linear fragmentation rate equation 
(identified by the singularity of the kinetic exponent) “in which mass is lost to a dust phase consisting 
of an infinite number of zero mass particles” [27]. Needless to say, not only the critical point 
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coordinates, i.e. (v1, mmax ≡ 1), but also the mere achievability of this transition, are strongly 
dependent on the system size. In the following investigation, this system size is, for an arbitrarily 
fixed aspect ratio (length/width = L/d ≈ 7.1÷7.3; Fig. 1a), reflected by the width (diameter) of the 
slender nanoprojectile, 

0rdd 
1. This elusive terminal fragmentation, predicted by the piecewise-

linear model [10] to correspond to the impact velocity of approximately 45 km/s, has not been 
achieved in earlier investigations even at much higher striking velocities [28]. The capturing of the 
shattering fragmentation in the above-described manner may appear a purely academic endeavor. Be 
it as it may, it is a final ingredient necessary to complete the emerging reverse-sigmoid 
phenomenological model aimed at encapsulating unifying features of the nonlinear and saturable 
dependence of the maximum fragment mass upon the set of impact parameters and ballistic state 
variables. 

With this goal in mind, the series of 2D-MD simulations of the ballistic Taylor test [1] is 
augmented in this study by introducing: (i) an additional interatomic potential, (ii) the Nose-Hoover 
thermostat [29] fixing the initial (pre-impact) temperature, (iii) attosecond time steps,  and (iv) 
increased-atomic density targets addressing the problem of embedding the projectile atoms into the 
target lattice at enormous striking powers. Thus, the slender, flat-ended nanoprojectiles are made of a 
monocrystalline solid modelled either by the Lennard-Jones 6-12 (LJ) potential or the embedded-atom 
method (EAM) with a tacit assumption that the simplicity of these generic models does not impede 
the qualitative investigation aiming at general trends of nanoscale fragmentation.  

 

2  Computer simulation technique 

The present investigation is based on the traditional MD in which the dynamic state of an atomic 
system is defined by laws of classical mechanics with atomic motions being uniquely determined by 
an empirical potential. A monatomic system is comprised of atoms of equal masses (m0) that form an 
ideal defect-free triangular lattice (without any quenched disorder) and interact with their nearest 
neighbors according to either the LJ potential or the EAM to mimic a monocrystalline, flat-nosed 
nanoprojectile (Figs. 1a and 2). The former rudimentary model—expressed by Eq. (1b)—is described 
in detail in preceding studies [2, 10, 28], thus, a succinct summary is deemed sufficient herein.  
 

 
 

Fig. 1. Schematics of the rigid-anvil impact simulations: (a) the basic model – the traditional Taylor test  (TTT), (b) the 
lateral (side) impact test (LIT), and (c) the square-projectile impact (approximately the same mass as the preceding two). 
The latter two configurations are used solely for the investigation of the structural sensitivity of results (Section 3.2). The 
blue arrows depict the striking velocity direction. (The aspect ratio of the projectile in the first two setups and the masses of 
all three projectiles are as close as the 2D lattice discretization allows.)  

                                                
1 Rigorously, since the present two-dimensional (2D) model is not written in cylindrical/axisymmetric 
coordinates, � is simply a width (lateral dimension), instead of a diameter of the nanoprojectile (implying a 
circular cross-section). Nonetheless, the term diameter is occasionally retained hereinafter for the sake of clarity 
and to emphasize the analogy with three-dimensional Taylor test. 



 

 

 

3

 
The model parameters are selected based on the following physical properties of tungsten (74W): 

the atomic mass m0 = 3.1×10-25 kg (183.85 u), the atomic radius 1.4 Å (≡ r0/2, where r0 is the 
equilibrium interatomic distance), and the strength of attraction ε = 7.5×10-20 J [2]. The initial 
projectile size (14.5×104 nm corresponding to 53d ) is scaled as indicated throughout the 
investigation to pursue the stated objective, but the aspect ratio (L/d) is kept constant. The 
coordination number of bulk atoms in all reference configuration is six and the potential energy per 
atom is—depending on the system size—slightly in excess of the bulk value (–3 ε) due to the surface 
effects. (These effects make the impact-fragmentation results size dependent, which is well known and 
explored; e.g., [30].) Prior to collision, the projectile made of LJ solid is prepared at zero temperature 
while the EAM projectile is prepared either at 1 K or 1000 K (Fig. 2). The latter is selected arbitrarily, 
below the melting temperature of tungsten, to explore the effect of the elevated initial temperature. 
 

 
 

Fig. 2. Details of initial and deformed configurations of EAM nanoprojectiles with 18d . Figures (a) and (b) represent 

proximal and distal halves of nanoprojectiles (relative to the target; Fig. 1a) equilibrated at T0 = 1 K and T0 = 1000 K, 
respectively. Both deformed configurations refer to the systems initially equilibrated at 1000 K, but with two widely 
different striking velocities: (c) v = 1 km/s (t = 0.1 ps, Δt = 2.5 fs), and (d) v = 98 km/s (t = 0.015 ps, Δt = 0.025 fs). The 
increase of density of interatomic bonds in (d) compared to (c) reflects the enormous surge of pressure in the contact zone 
inherent to the extreme-hypervelocity impacts. (The lengths markers are presented in Å.)    

 
The EAM is constructed by following the time-honored approach of Holian and co-authors [31]. In 

short, the total configuration energy  
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 the pairwise-additive contribution, 
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that has of the same density-independent form and parameters as the preceding LJ model, and 
 the embedding energy,  
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that depends on the local environmental density (of electrons provided by the remaining atoms of the 
system). In the EAM of Holian and co-authors [31], this atomic electron density is defined by a 
pairwise sum over all neighboring atoms, ρi = ∑ w (rij), weighted by a spherical localization function 
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In the preceding expressions, χ ≈ 1/3 is the fractional pair-potential contribution to the total cohesion,  

  21  DDEcoh
 is the cohesive energy of the D-dimensional system, ρ0 is the normal local density 

(evaluated at the equilibrium configuration and corresponding, in this case, to the reciprocal value of 
the base of the natural logarithm), rmax is the potential cutoff distance, and lowercase subscripts i and j 
indicate atom labels [31]. The sensitivity of the simulation results to the Holian and co-authors' choice 
of χ ≈ 1/3 [31] is explored, and it is concluded that the selected value is acceptable for the present 
study. The particularly appealing aspect of the EAM is its physical picture of metallic bonding [32].  

As mentioned before, the EAM system is, in the present study, initially equilibrated at two widely-
different arbitrarily-selected temperatures (T0 = 1 K and 1000 K) by using the Nose-Hoover thermostat 
[29]. During the initial thermal equilibration, the equations of Nose-Hoover dynamics are solved 
numerically by using the Størmer algorithm  
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(The vector notation and particle indices are dropped for brevity.) Since the shock wave excitation is 
inherently ultrafast, the Cauchy problem is solved with the time step Δt of the order of fraction of 
femtoseconds (Table 1). The physical basis for the initial timestep estimate, that insures MD 
simulation stability, is discussed in [2]. Depending on the striking velocity and projectile size (i.e., the 
impact energy), this timestep is further reduced to supress the embedding of the projectile atoms into 
the surface layers of the rigid target (Table 1). Regardless of this timestep reduction, for the highest 
striking velocities and the largest nanoprojectiles used in the present study, it is not possible to prevent 
the occasional embedding. In order to address this problem, the atomic density of the target is 
increased by reduction of the interatomic density, as discussed shortly. The extremely small time 
resolution (e.g., [33]), required by the ultrahigh power density of the simulated event, in conjunction 
with necessity to reach the shattering fragmentation, makes the MD simulations time-consuming even 
for the inherently small (as it will be observed later) model size, and effectively limits the maximum 
achievable striking velocity. 

In the reversible central-difference equations (2), υ is the rate of coupling of the thermostat to the 
atoms, and ζ is the dimensionless flow variable defined by  10  TT&  [29]. In the present study, 
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the initial value of υ of the order of terahertz is estimated based on deliberations in the source 
reference [29] and the model parameters selected herein. This value is then varied for almost two 
orders of magnitude until υ = 45 THz is adopted based on the time history of the initial temperature 
during thermal equilibration. This huge value is intrinsically related to the selection of the time step 
discussed above. The thermostat is, naturally, turned off (i.e., υ = 0) at the moment of collision to 
capture the temperature surge immanent to the shock loading. Thus, the purpose of the thermostat is 
to provide the initial configuration of the Newtonian system (atomic positions and the corresponding 
velocity field) for the impact simulation. 

The sizes of nanoprojectile  65,57,53,45,33,19d , used in the preceding study [30] to simulate 

the traditional Taylor test and study the size effect, are scaled in the present investigation to include 

 23,22,21,19,18,17,15,13,11,9,7,5d . As mentioned above, in order to suppress occasional 

embedding of the projectile atoms into the target lattice at the highest impact energy densities, that 
may contaminate the investigation results, some simulations are—as indicated in Table 1—performed 
with an increased interatomic density of the rigid target achieved by the reduction of the interatomic 
distance  9.000T0T  rrr . The sensitivity of simulation results to this change of target interatomic 

distance—same as the projectile  10T r  and the increased  9.00T r —is explored for 15d as 

depicted in Fig. 5. Finally, the target density had to be further increased  85.00T r  for the two 

largest projectiles used in this study ( 23,22d ). The sensitivity of simulation results to this 
0Tr  

reduction—from 0.9 to 0.85—is explored for 19d as indicated in Fig. 5. Thus, the targets of 
increased atomic density are necessitated by the specific investigation objective and treated as an 
additional input variable in the present study.  

The various combinations of two interatomic potentials (LJ and EAM) and three initial 
temperatures (0 K, 1 K, 1000 K) are randomly assigned to the new set of nanoprojectile sizes (as 
indicated in Table 1 and Fig. 5) to explore their effect on the simulation results. This random, 
arbitrary assignment is driven by two objectives: (i) to evenly spread the above-mentioned simulation 
parameters within the explored d  range, and (ii) to improve the clarity of the results presented Fig. 5 
(by reducing the overlap of symbols).   

 
Table 1.  The simulation plan. The corresponding results are presented in Fig. 5. (Time steps are given in 

attoseconds [1 as = 1×10-18 s].2) 

d   
[–] 

5 7 9 11 13 15 17 18 19 21 22 23 

Int. 

Pot. 
LJ LJ EAM LJ LJ EAM EAM LJ EAM EAM LJ EAM EAM LJ 

T0 

[K] 

0 0 1 0 0 1000 1 0 1 1000 0 1 1000 0 

Δt 

[as] 
50 50 50 50 50 25 25 50 25 25 25 25 25 25 

0T
r  

[–] 
1 1 1,0.9 1 0.9 0.9 1 0.9 0.9 0.9 0.9 0.85 0.85 

 
 

Additionally, in order to explore the structural sensitiveness of results, simulations are also 
performed in the lateral impact setup (Fig. 1b), with slender nanoprojectiles corresponding to a subset 

 17,13,9d  being laid perpendicular to the impact direction. Note that, due to the triangular atomic 

initial configuration (e.g., Fig. 2a), the slender nanoprojectiles belonging to the latter subset upon the 

                                                
2 Time steps of this size are not unheard of in the contemporary MD. Attosecond science is a novel 
research area in which advanced MD calculations are performed at the time resolution of a few 
attoseconds whenever occurrence of some salient physical events necessitates such fine time scales 
(e.g., [33]). 
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90°-rotation3 (performed to assume the lateral impact configuration), transform, within the current 
MD framework, to the corresponding projectile lattices, 61×11, 89×15,  and 119×19, respectively, to 
retain, as close as possible, the same mass and aspect ratio of the original projectiles. 

 The link between two atoms ruptures when their mutual distance exceeds a predetermined critical 
value. This cut-off interatomic distance, R ≈ 1.7 r0, is selected herein to be between the first and 
second nearest neighbors in the reference triangular configuration of the perfect crystal prior to the 
thermal equilibration (note that R = rmax of Eq. (1d)). A fragment is defined as a self-bound cluster of 
atoms with interatomic distance less than the cut-off distance (r ≤ R) in a sequential atom-by-atom 
search for the nearest neighbors [2, 10]. Importantly, the shattering fragmentation is beset with 
aleatory variability; with monotonic increase of the striking velocity (for the fixed nanoprojectile size), 
the shattering fragmentation after the initial appearance, may disappear, and reappear. The shattering 
transition onsets reported in the present study refer to the first appearance of mmax = 1 in the stationary 
fragment distribution for the system size in question. 

It cannot be overemphasized that the fragmentation models proposed herein are generic in the 
sense that they aim to capture a specific feature of the investigated phenomenon on the given spatial 
and temporal scales. Their simplicity rests primarily on the 2D geometry and the elementary 
potentials. On the other hand, it will become obvious from the simulation results that the nanoscale 
projectile size is not a simplification but rather a necessary condition to achieve the shattering 
fragmentation. It has been already emphasized that the MD fragmentation simulation is a slow 
process, difficult to reach stationary fragment distribution [10, 34, 45]. Therefore, although the 
dimensionality of the system is known to influence shock physics and the universality classes of 
fragmentation phenomena [35], the 2D choice is necessitated by extremely laborious MD 
computations and justified by a qualitative character of the study. Furthermore, it has been 
demonstrated not so long ago that generic behaviors seem to be shared by fragmenting systems 
regardless of the details of their interaction potentials [8]. Last but not least, the plasticity in confined 
dimensions is a fascinating and rapidly developing research area in itself (e.g., [36-40]) that is, 
unfortunately, limited to the quasistatic nanoscale experiments at present; we hope that these 
simulations are precursors of small-scale dynamic experiments expected in the future. 

 

3  Observations and discussion 

The knowledge of the maximum fragment mass dependence upon the impact energy (the initial 
kinetic energy) of the projectile ( 2vK ) is of obvious interest for engineering applications. While the 

mean fragment mass illustrates the average character of the fragmentation process, the maximum 
fragment mass is potentially of considerable importance for the structural survival analysis since it 
provides a lower bound for definition of the secondary-impact design events. According to the MD 
simulation results presented in [28], the scaling relation  
 

 maxm  (3) 

 
captures the elucidated linearity observations within the lower and intermediate part of the 
hypervelocity impact range, with ξ ≈ 1 for the generic state variable Ξ  {K , Pmax, Tmax, 2

max& } 

(Fig. 3). (The variables in braces are the impact energy and the maximum values of pressure, 
temperature, and strain rate squared, in the order of appearance.) The upper bound for validity of the 
scaling relation (3) appears to be in the neighborhood of 30 km/s; therefore, Eq. (3) is applicable in 
the most part of the hypersonic range of practical interest. The dependence of the maximum fragment 
mass upon the aforementioned state variable Ξ for the entire (non-negligible, Ξ  Ξ0) fragmentation 
range is schematically depicted in Fig. 3 by a characteristic reverse-sigmoid curve in the logarithmic 
space [41]. 

                                                
3 Note: the rotation of the projectile contour rather than the corresponding lattice itself. Importantly, 
the projectile lattice configuration with respect to that of the target lattice is not changed. 
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3.1  Estimation of the shattering transition onset 

The terminal or shattering fragmentation (with the onset Ξ1 or, hereinafter, 2
11 vK ) is identified in 

the present study by (the first) occurrence of the uniformly monatomic dust (mmax ≡ 1) accounting for 
the deterministic fragment distribution. As already mentioned, the quest for the shattering 
fragmentation may appear purely academic at present. Be it as it may, estimation of this second 
critical point (

1K , 1) is pivotal for the completion of the reverse-sigmoid phenomenological model 

illustrated schematically by Fig. 3. 
 

 
 

Fig. 3. Schematic plot of the maximum fragment mass vs. the generic state variable Ξ  { K , Pmax, Tmax, 2
max& } in the 

logarithmic space where the scaling parameter is ξ  1 in the approximately linear intermediate hypervelocity range. This 
model disregards the minuscule fragmentation below the onset of the damage-fragmentation transition, Ξ < Ξ0. (Note that 
the actual overlap of four reverse-sigmoid curves related to the above-braced variables is achieved by the specific shifts of 
abscissa values as indicated in [41].)   

 
To facilitate the discussion, the maximum fragment mass vs. the impact velocity in the 

fragmentation phase (v ≥ v0) is presented as a logarithmic plot in the inset of Fig. 4 for three different 
nanoprojectile sizes, }53,33,19{d , used in the preceding study [30]. The monotonically decreasing 

curves exhibit the familiar reversed-sigmoid shape of Fig. 3 with ξ ≈ 2. Note that only two data points 
for 45d  are marked with symbol “×” in Fig. 4: the critical velocity of the damage-fragmentation 
transition (known from [30]) and an arbitrarily-selected additional point from the linear range. 
Similarly to this interpolation, the determination of two (v, mmax) data points (for the damage-
fragmentation transition and an arbitrarily selected striking velocity in the hypervelocity mid-range) 
appears sufficient for a reasonably reliable extrapolation of the reverse-sigmoid curves for larger 
systems that may be too computationally demanding for full-blown computational analyses (e.g., the 
gray dashed curve on the far right of Fig. 4). Since mmax can be considered an order parameter [18], it 
is reasonable to assume scaling of the  dvmm ,ˆ maxmax    simulation results in well-known form 

 
         1

0max ,ln dvdvFddvm    (6)

  
where β is the critical exponent of the order parameter and F designates the scaling function (e.g., 
[18, 42]) illustrated in the main panel of Fig. 4. 

Specifically, the reverse-sigmoid curves in the main panel of Fig. 4 are obtained by rescaling the 
raw simulation results (shown in the inset of the same figure) by appropriate powers of the 
nanoprojectile width defined by scaling exponents υ = 0.77  0.01 and β = –0.25  0.02. It is 
important to note that the preceding scaling exponents are identified based on the requirement of the 
critical-point data (v0, mmax0) collapse [41]. Therefore, unlike the mmax vs. v scaling of Timar an co-
authors [18] with emphasis on the linear-range data collapse, the main panel plot of Fig. 4 
corresponds to the overlap of the first critical points for }53,45,33{d  (marked by the arrow in the 
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upper-left corner of Fig. 4). As pointed out in [30], the first critical striking velocity corresponding to 
19d  is outside the validity range of the scaling 

 
   23, L

1
0   ddddv   (7)

  
thus, it is not expected to overlap with other critical points in the main panel of Fig. 4. Eq. (7) 
manifests the same form of the general size effect well known from the Hall-Petch equation. 
 
 

 
 

Fig. 4. Inset: Logarithmic plot of the maximum fragment mass (mmax)  vs. the striking velocity (v)  with symbols depicting 
the MD simulation results for four different projectile widths and curves the corresponding data fits the reverse-sigmoid 
curves. Main panel: Scaled logarithmic  dvmm ,ˆ maxmax    curves of the inset corresponding to the critical-point (v0, mmax0) 

collapse for the three different projectile widths }53,45,33{d  belonging to the power-law (7) validity range [30]. The 

dashed horizontal in the main panel marks the fifth quantile of dependent variable that corresponds to the inflection point at 
which the slope is evaluated. The solid square and triangles at the abscissa level designate the shattering fragmentation 
onsets for the four system sizes as discussed in Section 3.1.  

  
Notably, this effect (summarized in 1950s as “smaller is stronger” and recently endowed with the 

positively-nuanced meaning “smaller is better” [40]) also exhibits a breakdown at the small end of the 
system size range that is discussed at length in literature (e.g., [43, 44]). For example, in the recent 
experimental investigation of plasticity in small-sized metallic systems [36, 38], this saturation 
plateau of the yield strength is unambiguously observed. Since the onset of the projectile 
fragmentation, defined by the (first) critical value of the control parameter (e.g., v0), is inherently 
related to the material strength, it is physically reasonable that the power law (7)1 should break down 
at certain point (

Ld ), similarly like the strength–vs–size power law observed in the confined-

dimensions plasticity. A notable consequence of this breakdown of the power law (7)1 for 19d  is 
that the corresponding critical point is shifted to the left of the overlaping critical points 
corresponding to    L53,45,33 dd  , as clearly visible in the upper-left corner of the main panel of 

Fig. 4. 
Importantly, the data presented in Fig. 4 depicts (with the solid square) the occurrence of the 

shattering fragmentation (ln mmax ≡ 0) obtained, not-surprisingly, for the smallest projectile width 
(diameter), 19d , used in the preceding study [30]. The corresponding threshold kinetic energy is 
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where M = Na m0 is the total nanoprojectile mass defined in terms of the number of atoms (Na) and the 
atomic mass (m0), while v1 = 100 km/s is the critical velocity associated with the shattering transition 
for 19d (Fig. 4). 

The energy necessary to rupture all interatomic bonds of the corresponding nanoprojectile (dubbed 
herein the shattering energy) is 

    


b

r

b NdrrfN

0

  (8b) 

where Nb is the total number of interatomic bonds, f the interatomic force, and ε the strength of 
attraction (the depth of the potential well) equivalent to the energy necessary to rupture one bond. 
Based on Eqs. (8), and the data given in Table 2, the ratio of the critical energy and the energy 
actually needed to rupture all interatomic bonds for 19d  nanoprojectile is  1K  = 7000. This 

implies that only 0.014% of the impact energy is actually used for the bond rupture while the rest is 
transformed into the kinetic energy of the monatomic debris and thermally dissipated during 
fragmentation process. 

The scaled curves in Fig. 4 can be used for estimation of the onset of the shattering transition 
( 2

11 vK ) for the larger nanoscale projectiles ( }53,45,33{d ). Although it is obvious that this 

estimate would be more physically sound and likely more realistic than the one based on the linear 
model, v1 ≈ 45 km/s [10], a certain degree of arbitrariness is unavoidable since the reverse-sigmoid 
curves of Fig. 4 asymptotically approach ln mmax = 0. Consequently, a criterion is needed to pinpoint 
the threshold of the elusive shattering transition. The following analysis is performed to address that 
necessity. It is evident that the normalized critical energy of the shattering fragmentation,  1K , 

must increase with the increase of the nanoprojectile size. The set of additional simulations is 
performed herein to investigate that size effect. With the notable exception of the smallest 
nanoprojectile ( 5d ) that deviates towards the small-limit case4, all other estimates of the shattering 
transition onset  1K  fell rather close to the straight line in the semi-logarithmic space of Fig. 5 

regardless of the projectile orientation (Figs. 1a and 1b), the empirical potential, the target density, or 
the initial temperature of the solid projectile (at least up to T0 = 1000 K). 

 
Table 2.  The critical values of parameters indicating the first appearance of the shattering transition for various 

nanoprojectile sizes extrapolated (for 19d  ) based on Fig. 5 and scaling relation (9a). 

d  [-] 19 33 45 53 

Na 2831 8678 16243 22523 

Nb 8150 25435 47910 66606 

 
1

ΣK  [-] 7000. 63500. 430000. 1.50·106 

v1 [km/s] 100. 300. 780. 1500. 

 
Based on the trend outlined above, the following scaling relation is proposed  

 

















 

d
exp

1

Κ   (9a) 

where δ represents the slope in the semi-logarithmic space.  

                                                
4 The minimum value of (K/Σ)1 = 14.8 corresponding to v1 = 268 m/s is obtained for the flat-end 

impact of the three-atomic system configured as an equilateral triangle.  
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3.2  Investigation of structural sensitivity of the shattering transition onset 

The investigation of structural senstivity of the shattering transition onset values reported herein, is 
performed by using MD simulations with EAM at T0 = 1 K with }17,13,9{d  at two different impact 

configurations illustrated schematically in Figs. 1a and 1b. The lateral impact test (LIT) results are 
depicted in Fig. 5 with the laid ellipses (compared to the upright ellipses representing results of the 
basic slender-projectile rigid-anvil test, that is, the traditional Taylor test (TTT)). Moreover, the 
simulation corresponding to 13d , marked by a dashed vertical line in Fig. 5, in addition to the 
upright and laid ellipses, depicts a square hollow symbol corresponding to the square-like projectile of 
the aspect ratio ≈1.0 (Fig. 1c). (Note that all three of these projectiles have the same mass M to within 
3%.) The shattering transition onset values, corresponding to this sensitivity analysis, are also 
reported in Table 3. Each onset value represents the average of five different statistical realizations of 
the Maxwell-Boltzmann initial velocity field (reflected by the selection of the pseudorandom-number-
generator seed). Conspicuously, two bounding impact configurations (TTT vs. LIT) result in the same 
shattering energy to within 5%. According to Table 3, the shattering transition parameters for the 
TTT have, consistently, somewhat higher values which is physically sound since the corresponding 
fragmentation is, compared to the LIT, more non-uniform process5, characterized, if not precedeed, by 
a pronounced plastic distortion. This extensive plastic distortion (e.g., the mushrooming evident in 
Fig. 1) is a disipative process requiring a certain energy.  
 
Table 3.  Comparison of two shattering transition parameters obtained by using MD simulations (EAM, T0 = 1 K) 

with three different nanoprojectile sizes at two bounding impact configurations: TTT (traditional Taylor test; Fig. 1a) 

and LIT (lateral impact test; Fig. 1b). 

d  [-] 

 

9 13 17 

v1  

[km/s] 
 

1
ΣKln

[-] 

v1  

[km/s] 
 

1
ΣKln  

[-] 

v1  

[km/s] 
 

1
ΣKln

 [-] 

TTT 42.8 7.23 63.6 7.99 80.8 8.46 

LIT 42.0 7.12 61.2 7.91 78.8 8.40 

Dif. [%] 0.23 1.5 3.8 1.0 2.5 0.71 

 
 

This data scatter (LIT vs. TTT) is well within the other scattering of the simulation results 
presented in Fig. 5. (Notably, it is much smaller than the scatter of results among five different 
statistical realizations of the Maxwell-Boltzmann initial velocity field for the given initial 
temperature.) This observation suggests that the shattering energy is an inherent, structure-
insensitive, property of the material system. If so, the preceding scaling relation (as well as Fig. 5) 
could be recast in terms of the system mass M:  

 

 

















 

M
exp

1

Κ   (9b) 

 
The scaling relations (9) are proposed based on the set of MD simulations of the Taylor test with, 

admittedly, extremely small projectiles due to the inherent difficulty, if not inability, to capture the 
shattering fragmentation with the larger models. It is important to re-emphasize that the system size 
reduction is instrumental in the effort to achieve the shattering transition – it is a physical necessity 
rather than an artefact driven by a computational convenience. (There is no the shattering 
fragmentation at system sizes beyond the certain (rather low) limit!) The scaling relations (9) enable 
the estimate of the critical energy (or velocity) of the shattering fragmentation ( 2

11 vK ) for the 

                                                
5 In general, the more slender the projectile, the more non-uniform the TTT fragmentation process. 
The thinner the projectile, the more uniform the LIT fragmentation process. 
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projectile sizes used in the Taylor test simulations (Fig. 4) under the assumption that it remains valid 
for the said range of projectile widths. The extrapolation results are presented in Table 2 and depicted 
with triangles at the abscissa of the main panel of Fig. 4.   
 

 

Fig. 5. The normalized energy of the shattering fragmentation plotted for various nanoprojectile sizes. The simulations are 
performed with LJ potential (rectangular symbols) and EAM method (elliptic symbols) with rigid targets of three different 
atomic densities (as indicated by the corresponding interatomic distance, 

0Tr ). The EAM simulations are performed at two 

different temperatures: 1 K and 1000 K; the latter are marked by a solid circle in the middle of the elliptic symbol. Notably, 
the elliptic data points mark the average value of five different statistical realizations of the Maxwell-Boltzmann initial 
velocity field (reflected by the selection of the pseudorandom-number-generator seed). The hatched symbols depict three 
data points obtained for MD simulations with 15% reduction of the target interatomic distance to avoid penetration of the 
projectile material into the target (i.e., occasional embedding of the projectile atoms into the rigid wall). (The vertical 
elongation of the upright symbols suggests qualitatively the inherent aleatory variability of the results.) 

 

3.3  Comments on shattering fragmentation onset 

Based on the results presented in Table 2, it is obvious why the shattering fragmentation is so elusive 
for all but the smallest nanoprojectiles. The enormity of the critical velocities shown in Table 2 
practically precludes the possibility of successful simulations. More importantly, the physicochemical 
mechanisms operating at such impact velocities surely exceed the applicability of the traditional MD 
model. Furthermore, the present simulation results suggest that the shattering transition is not a 
sharply defined threshold but rather a stochastic property stretched across a relatively wide range of 
impact energy (which is illustrated purposely by the symbols in Fig. 5 elongated vertically to suggest 
not only the slender projectiles but also the aleatory variability of the results). Consequently, it seems 
more reasonable to call it the shattering transition zone rather than the shattering transition onset. Be 
it as it may, this protracted (“smudged”) stochastic approach of the fragmenting system to the 
shattering transition is rather illustrative of the asymptotic approach it represents in terms of the 
reverse-sigmoid model represented in Fig. 3. 

Finally, the dashed horizontal in the main panel of Fig. 4 designates the fifth quantile of 
dependent variable dmmaxln . The corresponding striking velocity,  dfv 5.0

, can be used as a 

location parameter that emphasizes the central tendency for the reverse-sigmoid curve for any given 
nanoprojectile width. Postprocessing of the simulation results presented in Fig. 4, indicates that 

 dv exp5.0   similarly to the expression (9a). Thus, assuming the repeating reverse-sigmoid curves 
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(as the main panel of Fig. 4), the known estimates of v0 and v0.5 enable positioning of the 
corresponding reverse-sigmoid curve for an arbitrary projectile size (e.g., the gray dashed curve at 
Fig. 4), which makes feasible a rough prediction of  vdmm ,ˆ

maxmax  .6 In that way, it is also possible 

to estimate the minimum achievable mmax, for any given projectile diameter, corresponding to some 
physically-limiting striking velocity v ≤ vlim. With regards to the results presented in Fig. 4 and Table 
2, and bearing in mind the constraint imposed by vlim, it is obvious that for the larger projectiles 

.11maxmax  mm  Thus, once more, there is a saturation sistem size beyond which the shattering 

fragmentation is impossible to achieve within the present computational framework. 
 

 

4  Summary 

The simple generic models are used in this study to achieve and investigate, so called, shattering 
fragmentation defined by the complete (terminal) pulverization of the nanoprojectile into the cloud of 
monatomic debris (mmax = mmax1 ≡ 1). The elusive phenomenon is achieved in the 2D-MD simulations 
for the very small nanoprojectiles. The results imply that the impact energy significantly exceeds the 
cohesive energy of the solid sample. In other words, only a miniscule part of the impact energy is 
actually used for the bond rupture while the overwhelming portion is transformed into the kinetic 
energy of the monatomic debris and thermally dissipated in the process. An empirical formula is 
proposed which implies that kinetic energy necessary to achieve the shattering fragmentation depends 
exponentially on the nanoprojectile width (diameter). This shattering-transition onset (or zone) is 
seemingly an inherent material property; if so, the preceding empirical formula could be recast in 
terms of the system mass. Furthermore, this threshold energy appears insensitive either to the choice 
of the empirical potential or the initial temperature of the solid projectile (at least up to 1000 K). 
Extrapolation of the proposed phenomenological dependence results in the enormous intensities of the 
second critical velocity, v1, that practically preclude the possibility of successful simulations for all but 
the smallest projectiles. From the standpoint of the fragmentation physics, the striking-velocity limits 
impose constraints on all but the smallest projectiles that render mmax >> mmax1 ≡ 1. Succinctly, the 
shattering fragmentation is achievable only in the range of very small nanoprojectiles and, 
consequently, it represents a true asymptote for the fragmentation events at the higher spatial scale.  
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