Centre for Leadership Development

Link to this page

Centre for Leadership Development

Authors

Publications

Light of the stars: calcium signals light up astrocytes in the presence of autoreactive CD4(+) T cells

Bogdanović Pristov, Jelena; Nikolić, Ljiljana M.

(Wolters Kluwer Medknow Publications, Mumbai, 2021)

TY  - JOUR
AU  - Bogdanović Pristov, Jelena
AU  - Nikolić, Ljiljana M.
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1472
PB  - Wolters Kluwer Medknow Publications, Mumbai
T2  - Neural Regeneration Research
T1  - Light of the stars: calcium signals light up astrocytes in the presence of autoreactive CD4(+) T cells
EP  - 2396
IS  - 12
SP  - 2395
VL  - 16
DO  - 10.4103/1673-5374.313036
ER  - 
@article{
author = "Bogdanović Pristov, Jelena and Nikolić, Ljiljana M.",
year = "2021",
publisher = "Wolters Kluwer Medknow Publications, Mumbai",
journal = "Neural Regeneration Research",
title = "Light of the stars: calcium signals light up astrocytes in the presence of autoreactive CD4(+) T cells",
pages = "2396-2395",
number = "12",
volume = "16",
doi = "10.4103/1673-5374.313036"
}
Bogdanović Pristov, J.,& Nikolić, L. M.. (2021). Light of the stars: calcium signals light up astrocytes in the presence of autoreactive CD4(+) T cells. in Neural Regeneration Research
Wolters Kluwer Medknow Publications, Mumbai., 16(12), 2395-2396.
https://doi.org/10.4103/1673-5374.313036
Bogdanović Pristov J, Nikolić LM. Light of the stars: calcium signals light up astrocytes in the presence of autoreactive CD4(+) T cells. in Neural Regeneration Research. 2021;16(12):2395-2396.
doi:10.4103/1673-5374.313036 .
Bogdanović Pristov, Jelena, Nikolić, Ljiljana M., "Light of the stars: calcium signals light up astrocytes in the presence of autoreactive CD4(+) T cells" in Neural Regeneration Research, 16, no. 12 (2021):2395-2396,
https://doi.org/10.4103/1673-5374.313036 . .
1

Central nervous system-infiltrated immune cells induce calcium increase in astrocytes via astroglial purinergic signaling

Bijelic, Dunja D.; Milicević, Katarina; Lazarević, Milica N.; Miljković, Đorđe; Bogdanović Pristov, Jelena; Savić, Danijela Z; Petković, Branka; Andjus, Pavle R.; Momcilović, Miljana; Nikolić, Ljiljana M.

(Wiley, Hoboken, 2020)

TY  - JOUR
AU  - Bijelic, Dunja D.
AU  - Milicević, Katarina
AU  - Lazarević, Milica N.
AU  - Miljković, Đorđe
AU  - Bogdanović Pristov, Jelena
AU  - Savić, Danijela Z
AU  - Petković, Branka
AU  - Andjus, Pavle R.
AU  - Momcilović, Miljana
AU  - Nikolić, Ljiljana M.
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1317
AB  - Interaction between autoreactive immune cells and astroglia is an important part of the pathologic processes that fuel neurodegeneration in multiple sclerosis. In this inflammatory disease, immune cells enter into the central nervous system (CNS) and they spread through CNS parenchyma, but the impact of these autoreactive immune cells on the activity pattern of astrocytes has not been defined. By exploiting naive astrocytes in culture and CNS-infiltrated immune cells (CNS IICs) isolated from rat with experimental autoimmune encephalomyelitis (EAE), here we demonstrate previously unrecognized properties of immune cell-astrocyte interaction. We show that CNS IICs but not the peripheral immune cell application, evokes a rapid and vigorous intracellular Ca(2+)increase in astrocytes by promoting glial release of ATP. ATP propagated Ca(2+)elevation through glial purinergic P2X7 receptor activation by the hemichannel-dependent nucleotide release mechanism. Astrocyte Ca(2+)increase is specifically triggered by the autoreactive CD4(+)T-cell application and these two cell types exhibit close spatial interaction in EAE. Therefore, Ca(2+)signals may mediate a rapid astroglial response to the autoreactive immune cells in their local environment. This property of immune cell-astrocyte interaction may be important to consider in studies interrogating CNS autoimmune disease.
PB  - Wiley, Hoboken
T2  - Journal of Neuroscience Research
T1  - Central nervous system-infiltrated immune cells induce calcium increase in astrocytes via astroglial purinergic signaling
EP  - 2332
IS  - 11
SP  - 2317
VL  - 98
DO  - 10.1002/jnr.24699
ER  - 
@article{
author = "Bijelic, Dunja D. and Milicević, Katarina and Lazarević, Milica N. and Miljković, Đorđe and Bogdanović Pristov, Jelena and Savić, Danijela Z and Petković, Branka and Andjus, Pavle R. and Momcilović, Miljana and Nikolić, Ljiljana M.",
year = "2020",
abstract = "Interaction between autoreactive immune cells and astroglia is an important part of the pathologic processes that fuel neurodegeneration in multiple sclerosis. In this inflammatory disease, immune cells enter into the central nervous system (CNS) and they spread through CNS parenchyma, but the impact of these autoreactive immune cells on the activity pattern of astrocytes has not been defined. By exploiting naive astrocytes in culture and CNS-infiltrated immune cells (CNS IICs) isolated from rat with experimental autoimmune encephalomyelitis (EAE), here we demonstrate previously unrecognized properties of immune cell-astrocyte interaction. We show that CNS IICs but not the peripheral immune cell application, evokes a rapid and vigorous intracellular Ca(2+)increase in astrocytes by promoting glial release of ATP. ATP propagated Ca(2+)elevation through glial purinergic P2X7 receptor activation by the hemichannel-dependent nucleotide release mechanism. Astrocyte Ca(2+)increase is specifically triggered by the autoreactive CD4(+)T-cell application and these two cell types exhibit close spatial interaction in EAE. Therefore, Ca(2+)signals may mediate a rapid astroglial response to the autoreactive immune cells in their local environment. This property of immune cell-astrocyte interaction may be important to consider in studies interrogating CNS autoimmune disease.",
publisher = "Wiley, Hoboken",
journal = "Journal of Neuroscience Research",
title = "Central nervous system-infiltrated immune cells induce calcium increase in astrocytes via astroglial purinergic signaling",
pages = "2332-2317",
number = "11",
volume = "98",
doi = "10.1002/jnr.24699"
}
Bijelic, D. D., Milicević, K., Lazarević, M. N., Miljković, Đ., Bogdanović Pristov, J., Savić, D. Z., Petković, B., Andjus, P. R., Momcilović, M.,& Nikolić, L. M.. (2020). Central nervous system-infiltrated immune cells induce calcium increase in astrocytes via astroglial purinergic signaling. in Journal of Neuroscience Research
Wiley, Hoboken., 98(11), 2317-2332.
https://doi.org/10.1002/jnr.24699
Bijelic DD, Milicević K, Lazarević MN, Miljković Đ, Bogdanović Pristov J, Savić DZ, Petković B, Andjus PR, Momcilović M, Nikolić LM. Central nervous system-infiltrated immune cells induce calcium increase in astrocytes via astroglial purinergic signaling. in Journal of Neuroscience Research. 2020;98(11):2317-2332.
doi:10.1002/jnr.24699 .
Bijelic, Dunja D., Milicević, Katarina, Lazarević, Milica N., Miljković, Đorđe, Bogdanović Pristov, Jelena, Savić, Danijela Z, Petković, Branka, Andjus, Pavle R., Momcilović, Miljana, Nikolić, Ljiljana M., "Central nervous system-infiltrated immune cells induce calcium increase in astrocytes via astroglial purinergic signaling" in Journal of Neuroscience Research, 98, no. 11 (2020):2317-2332,
https://doi.org/10.1002/jnr.24699 . .
3
14
6
14