Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200103 (University of Belgrade, Faculty of Electrical Engineering)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200103/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200103 (University of Belgrade, Faculty of Electrical Engineering) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 200103 (Univerzitet u Beogradu, Elektrotehnički fakultet) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 200103 (Универзитет у Београду, Електротехнички факултет) (sr)
Authors

Publications

Properties and Potential Application of Lead-Free (BaZr0.2Ti0.8O3) and Lead-Based (PbZr0.52Ti0.48O3) Flexible Thick Films

Bobić, Jelena; Ilić, Nikola; Despotovic, Zeljko V.; Džunuzović, Adis; Grigalaitis, Robertas; Stijepovic, Ivan; Stojanovic, Biljana; Vijatović Petrović, Mirjana

(MDPI, Basel, Switzerland, 2023)

TY  - JOUR
AU  - Bobić, Jelena
AU  - Ilić, Nikola
AU  - Despotovic, Zeljko V.
AU  - Džunuzović, Adis
AU  - Grigalaitis, Robertas
AU  - Stijepovic, Ivan
AU  - Stojanovic, Biljana
AU  - Vijatović Petrović, Mirjana
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2124
AB  - For the last several decades, energy harvesters based on piezoelectricity from mechanical
vibration have emerged as very promising devices that are being explored extensively for their
functionality in energy technologies. In this paper, a series of flexible lead-free BaZr0.2Ti0.8O3
(BZT)/PVDF and lead-based PbZr0.52Ti0.48O3 (PZT)/PVDF piezocomposites with variable filler
content up to 50 vol% were prepared by a hot pressing method. The structure and morphology
of the BZT and PZT powders, as well as the distribution of the piezo-active filler in the obtained
flexible films were characterized by XRD and SEM analysis. In addition, the remnant polarization
(Pr) and leakage current were also investigated to evaluate the breakdown strength in both types of flexible films. The calculations of storage energies and output voltage obtained for the investigated materials revealed an increasing trend with an increasing amount of BZT and PZT active phases.
The maximum storage energy of 0.42 J/cm3 (and energy efficiency of 40.7 %) was obtained for the
PZT–PVDF (40–60) films, while the maximum output voltage of about 10 V (~10 μA) was obtained
for the PZT–PVDF (50–50) flexible film. In addition, a comparison between the properties of the
lead-based and lead-free flexible films, as well as the potential use of these films as energy storage and energy harvesting systems were analyzed.
PB  - MDPI, Basel, Switzerland
T2  - Crystals
T1  - Properties and Potential Application of Lead-Free (BaZr0.2Ti0.8O3) and Lead-Based (PbZr0.52Ti0.48O3) Flexible Thick Films
IS  - 8
SP  - 1178
VL  - 13
DO  - 10.3390/cryst13081178
ER  - 
@article{
author = "Bobić, Jelena and Ilić, Nikola and Despotovic, Zeljko V. and Džunuzović, Adis and Grigalaitis, Robertas and Stijepovic, Ivan and Stojanovic, Biljana and Vijatović Petrović, Mirjana",
year = "2023",
abstract = "For the last several decades, energy harvesters based on piezoelectricity from mechanical
vibration have emerged as very promising devices that are being explored extensively for their
functionality in energy technologies. In this paper, a series of flexible lead-free BaZr0.2Ti0.8O3
(BZT)/PVDF and lead-based PbZr0.52Ti0.48O3 (PZT)/PVDF piezocomposites with variable filler
content up to 50 vol% were prepared by a hot pressing method. The structure and morphology
of the BZT and PZT powders, as well as the distribution of the piezo-active filler in the obtained
flexible films were characterized by XRD and SEM analysis. In addition, the remnant polarization
(Pr) and leakage current were also investigated to evaluate the breakdown strength in both types of flexible films. The calculations of storage energies and output voltage obtained for the investigated materials revealed an increasing trend with an increasing amount of BZT and PZT active phases.
The maximum storage energy of 0.42 J/cm3 (and energy efficiency of 40.7 %) was obtained for the
PZT–PVDF (40–60) films, while the maximum output voltage of about 10 V (~10 μA) was obtained
for the PZT–PVDF (50–50) flexible film. In addition, a comparison between the properties of the
lead-based and lead-free flexible films, as well as the potential use of these films as energy storage and energy harvesting systems were analyzed.",
publisher = "MDPI, Basel, Switzerland",
journal = "Crystals",
title = "Properties and Potential Application of Lead-Free (BaZr0.2Ti0.8O3) and Lead-Based (PbZr0.52Ti0.48O3) Flexible Thick Films",
number = "8",
pages = "1178",
volume = "13",
doi = "10.3390/cryst13081178"
}
Bobić, J., Ilić, N., Despotovic, Z. V., Džunuzović, A., Grigalaitis, R., Stijepovic, I., Stojanovic, B.,& Vijatović Petrović, M.. (2023). Properties and Potential Application of Lead-Free (BaZr0.2Ti0.8O3) and Lead-Based (PbZr0.52Ti0.48O3) Flexible Thick Films. in Crystals
MDPI, Basel, Switzerland., 13(8), 1178.
https://doi.org/10.3390/cryst13081178
Bobić J, Ilić N, Despotovic ZV, Džunuzović A, Grigalaitis R, Stijepovic I, Stojanovic B, Vijatović Petrović M. Properties and Potential Application of Lead-Free (BaZr0.2Ti0.8O3) and Lead-Based (PbZr0.52Ti0.48O3) Flexible Thick Films. in Crystals. 2023;13(8):1178.
doi:10.3390/cryst13081178 .
Bobić, Jelena, Ilić, Nikola, Despotovic, Zeljko V., Džunuzović, Adis, Grigalaitis, Robertas, Stijepovic, Ivan, Stojanovic, Biljana, Vijatović Petrović, Mirjana, "Properties and Potential Application of Lead-Free (BaZr0.2Ti0.8O3) and Lead-Based (PbZr0.52Ti0.48O3) Flexible Thick Films" in Crystals, 13, no. 8 (2023):1178,
https://doi.org/10.3390/cryst13081178 . .
4