The Role of Transcription Factors and Small RNAs in Abiotic Stress Response in Plants and Genetic Diversity of Plant Species Important for Agriculture and Biotechnology

Link to this page

info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/173005/RS//

The Role of Transcription Factors and Small RNAs in Abiotic Stress Response in Plants and Genetic Diversity of Plant Species Important for Agriculture and Biotechnology (en)
Молекуларни механизми одговора биљака на абиотички стрес-улога транскрипционих фактора и малих РНК и анализа генетичког диверзитета биљних култура од интереса за пољопривреду и биотехнологију (sr)
Molekularni mehanizmi odgovora biljaka na abiotički stres-uloga transkripcionih faktora i malih RNK i analiza genetičkog diverziteta biljnih kultura od interesa za poljoprivredu i biotehnologiju (sr_RS)
Authors

Publications

Silicon and Iron Differently Alleviate Copper Toxicity in Cucumber Leaves

Bosnic, Dragana; Bosnić, Predrag; Nikolic, Dragana; Nikolic, Miroslav; Samardžić, Jelena T.

(MDPI, Basel, 2019)

TY  - JOUR
AU  - Bosnic, Dragana
AU  - Bosnić, Predrag
AU  - Nikolic, Dragana
AU  - Nikolic, Miroslav
AU  - Samardžić, Jelena T.
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1220
AB  - Copper (Cu) toxicity in plants may lead to iron (Fe), zinc (Zn) and manganese (Mn) deficiencies. Here, we investigated the effect of Si and Fe supply on the concentrations of micronutrients and metal-chelating amino acids nicotianamine (NA) and histidine (His) in leaves of cucumber plants exposed to Cu in excess. Cucumber (Cucumis sativus L.) was treated with 10 mu M Cu, and additional 100 mu M Fe or/and 1.5 mM Si for five days. High Cu and decreased Zn, Fe and Mn concentrations were found in Cu treatment. Additional Fe supply had a more pronounced effect in decreasing Cu accumulation and improving the molar ratio between micronutrients as compared to the Si supply. However, the simultaneous supply of Fe and Si was the most effective treatment in alleviation of Cu-induced deficiency of Fe, Zn and Mn. Additional Fe supply increased the His but not NA concentration, while Si supply significantly increased both NA and His whereby the NA:Cu and His:Cu molar ratios exceeded the control values indicating that Si recruits Cu-chelation to achieve Cu tolerance. In conclusion, Si-mediated alleviation of Cu toxicity was directed toward Cu tolerance while Fe-alleviative effect was due to a dramatic decrease in Cu accumulation.
PB  - MDPI, Basel
T2  - Plants-Basel
T1  - Silicon and Iron Differently Alleviate Copper Toxicity in Cucumber Leaves
IS  - 12
VL  - 8
DO  - 10.3390/plants8120554
ER  - 
@article{
author = "Bosnic, Dragana and Bosnić, Predrag and Nikolic, Dragana and Nikolic, Miroslav and Samardžić, Jelena T.",
year = "2019",
abstract = "Copper (Cu) toxicity in plants may lead to iron (Fe), zinc (Zn) and manganese (Mn) deficiencies. Here, we investigated the effect of Si and Fe supply on the concentrations of micronutrients and metal-chelating amino acids nicotianamine (NA) and histidine (His) in leaves of cucumber plants exposed to Cu in excess. Cucumber (Cucumis sativus L.) was treated with 10 mu M Cu, and additional 100 mu M Fe or/and 1.5 mM Si for five days. High Cu and decreased Zn, Fe and Mn concentrations were found in Cu treatment. Additional Fe supply had a more pronounced effect in decreasing Cu accumulation and improving the molar ratio between micronutrients as compared to the Si supply. However, the simultaneous supply of Fe and Si was the most effective treatment in alleviation of Cu-induced deficiency of Fe, Zn and Mn. Additional Fe supply increased the His but not NA concentration, while Si supply significantly increased both NA and His whereby the NA:Cu and His:Cu molar ratios exceeded the control values indicating that Si recruits Cu-chelation to achieve Cu tolerance. In conclusion, Si-mediated alleviation of Cu toxicity was directed toward Cu tolerance while Fe-alleviative effect was due to a dramatic decrease in Cu accumulation.",
publisher = "MDPI, Basel",
journal = "Plants-Basel",
title = "Silicon and Iron Differently Alleviate Copper Toxicity in Cucumber Leaves",
number = "12",
volume = "8",
doi = "10.3390/plants8120554"
}
Bosnic, D., Bosnić, P., Nikolic, D., Nikolic, M.,& Samardžić, J. T.. (2019). Silicon and Iron Differently Alleviate Copper Toxicity in Cucumber Leaves. in Plants-Basel
MDPI, Basel., 8(12).
https://doi.org/10.3390/plants8120554
Bosnic D, Bosnić P, Nikolic D, Nikolic M, Samardžić JT. Silicon and Iron Differently Alleviate Copper Toxicity in Cucumber Leaves. in Plants-Basel. 2019;8(12).
doi:10.3390/plants8120554 .
Bosnic, Dragana, Bosnić, Predrag, Nikolic, Dragana, Nikolic, Miroslav, Samardžić, Jelena T., "Silicon and Iron Differently Alleviate Copper Toxicity in Cucumber Leaves" in Plants-Basel, 8, no. 12 (2019),
https://doi.org/10.3390/plants8120554 . .
26
27

Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution

Nikolic, Dragana B.; Nesic, Sofija; Bosnic, Dragana; Kostić Kravljanac, Ljiljana; Nikolic, Miroslav; Samardžić, Jelena T.

(Frontiers Media Sa, Lausanne, 2019)

TY  - JOUR
AU  - Nikolic, Dragana B.
AU  - Nesic, Sofija
AU  - Bosnic, Dragana
AU  - Kostić Kravljanac, Ljiljana
AU  - Nikolic, Miroslav
AU  - Samardžić, Jelena T.
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1284
AB  - The beneficial effects of silicon (Si) have been shown on plants using reduction-based strategy for iron (Fe) acquisition. Here we investigated the influence of Si on Fe deficiency stress alleviation in barley (Hordeum vulgare), a crop plant which uses the chelation-based strategy for Fe acquisition. Analyses of chlorophyll content, ROS accumulation, antioxidative status, concentrations of Fe and other micronutrients, along with the expression of Strategy II genes were studied in response to Si supply. Si successfully ameliorated Fe deficiency in barley, diminishing chlorophyll and biomass loss, and improving the activity of antioxidative enzymes, resulting in lowered reactive oxidative species accumulation in the youngest leaves. Alleviation of Fe deficiency stress correlated well with the Si-induced increase of Fe content in the youngest leaves, while it was decreased in root. Moreover, Si nutrition lowered accumulation of other micronutrients in the youngest leaves of Fe deprived plants, by retaining them in the root. On the transcriptional level, Si led to an expedient increase in the expression of genes involved in Strategy II Fe acquisition in roots at the early stage of Fe deficiency stress, while decreasing their expression in a prolonged stress response. Expression of Strategy II genes was remarkably upregulated in the leaves of Si supplied plants. This study broadens the perspective of mechanisms of Si action, providing evidence for ameliorative effects of Si on Strategy II plants, including its influence on accumulation and distribution of microelements, as well as on the expression of the Strategy II genes.
PB  - Frontiers Media Sa, Lausanne
T2  - Frontiers in Plant Science
T1  - Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution
VL  - 10
DO  - 10.3389/fpls.2019.00416
ER  - 
@article{
author = "Nikolic, Dragana B. and Nesic, Sofija and Bosnic, Dragana and Kostić Kravljanac, Ljiljana and Nikolic, Miroslav and Samardžić, Jelena T.",
year = "2019",
abstract = "The beneficial effects of silicon (Si) have been shown on plants using reduction-based strategy for iron (Fe) acquisition. Here we investigated the influence of Si on Fe deficiency stress alleviation in barley (Hordeum vulgare), a crop plant which uses the chelation-based strategy for Fe acquisition. Analyses of chlorophyll content, ROS accumulation, antioxidative status, concentrations of Fe and other micronutrients, along with the expression of Strategy II genes were studied in response to Si supply. Si successfully ameliorated Fe deficiency in barley, diminishing chlorophyll and biomass loss, and improving the activity of antioxidative enzymes, resulting in lowered reactive oxidative species accumulation in the youngest leaves. Alleviation of Fe deficiency stress correlated well with the Si-induced increase of Fe content in the youngest leaves, while it was decreased in root. Moreover, Si nutrition lowered accumulation of other micronutrients in the youngest leaves of Fe deprived plants, by retaining them in the root. On the transcriptional level, Si led to an expedient increase in the expression of genes involved in Strategy II Fe acquisition in roots at the early stage of Fe deficiency stress, while decreasing their expression in a prolonged stress response. Expression of Strategy II genes was remarkably upregulated in the leaves of Si supplied plants. This study broadens the perspective of mechanisms of Si action, providing evidence for ameliorative effects of Si on Strategy II plants, including its influence on accumulation and distribution of microelements, as well as on the expression of the Strategy II genes.",
publisher = "Frontiers Media Sa, Lausanne",
journal = "Frontiers in Plant Science",
title = "Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution",
volume = "10",
doi = "10.3389/fpls.2019.00416"
}
Nikolic, D. B., Nesic, S., Bosnic, D., Kostić Kravljanac, L., Nikolic, M.,& Samardžić, J. T.. (2019). Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution. in Frontiers in Plant Science
Frontiers Media Sa, Lausanne., 10.
https://doi.org/10.3389/fpls.2019.00416
Nikolic DB, Nesic S, Bosnic D, Kostić Kravljanac L, Nikolic M, Samardžić JT. Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution. in Frontiers in Plant Science. 2019;10.
doi:10.3389/fpls.2019.00416 .
Nikolic, Dragana B., Nesic, Sofija, Bosnic, Dragana, Kostić Kravljanac, Ljiljana, Nikolic, Miroslav, Samardžić, Jelena T., "Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution" in Frontiers in Plant Science, 10 (2019),
https://doi.org/10.3389/fpls.2019.00416 . .
2
45
43

Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity

Bosnic, Dragana; Nikolic, Dragana; Timotijević, Gordana; Pavlović, Jelena; Vaculik, Marek; Samardžić, Jelena T.; Nikolic, Miroslav

(Springer, Dordrecht, 2019)

TY  - JOUR
AU  - Bosnic, Dragana
AU  - Nikolic, Dragana
AU  - Timotijević, Gordana
AU  - Pavlović, Jelena
AU  - Vaculik, Marek
AU  - Samardžić, Jelena T.
AU  - Nikolic, Miroslav
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1212
AB  - Aims Although silicon (Si) is known to increase plant resistance to metal toxicity stress, the mechanisms responsible for alleviation of copper (Cu) toxicity are still insufficiently clear. We investigated the role of Si on Cu-binding processes involved in buffering excessive Cu in cucumber (Cucumis sativus L.) tissues. Methods Cucumber plants were subjected to moderate Cu toxicity stress (10 mu M Cu) without (-Si) or with (+Si) supply of 1.5 mM Si. We analyzed total and cell wall concentrations of Cu and Cu-binding compounds (organic acids and Cu-proteins) along with parameters of oxidative stress (e.g. lipid peroxidation and lignification). Results Supply of Si decreased total Cu concentration in both root and leaf tissues, but increased the root cell wall Cu fraction. Also, Si increased superoxide dismutase (SOD) activity in 10 mu M Cu-treated plants. Concomitantly, protein levels of Cu/Zn SOD isoforms (CSD1 and CSD2) in root tissues also increased in +Si plants. The leaf Cu-binding compounds, such as aconitate and plastocyanin (including the expression of CsPC gene) were higher in the +Si plants. Consequently, Si supply effectively lowered lipid peroxidation in both roots and leaves of Cu-stressed plants. Conclusions Supply of Si enhanced both the accumulation of Cu-binding molecules (Zn/Cu SOD in roots; aconitate and plastocyanin in leaves), and the Cu-binding capacity of the root cell wall.
PB  - Springer, Dordrecht
T2  - Plant and Soil
T1  - Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity
EP  - 641
IS  - 1-2
SP  - 629
VL  - 441
DO  - 10.1007/s11104-019-04151-5
ER  - 
@article{
author = "Bosnic, Dragana and Nikolic, Dragana and Timotijević, Gordana and Pavlović, Jelena and Vaculik, Marek and Samardžić, Jelena T. and Nikolic, Miroslav",
year = "2019",
abstract = "Aims Although silicon (Si) is known to increase plant resistance to metal toxicity stress, the mechanisms responsible for alleviation of copper (Cu) toxicity are still insufficiently clear. We investigated the role of Si on Cu-binding processes involved in buffering excessive Cu in cucumber (Cucumis sativus L.) tissues. Methods Cucumber plants were subjected to moderate Cu toxicity stress (10 mu M Cu) without (-Si) or with (+Si) supply of 1.5 mM Si. We analyzed total and cell wall concentrations of Cu and Cu-binding compounds (organic acids and Cu-proteins) along with parameters of oxidative stress (e.g. lipid peroxidation and lignification). Results Supply of Si decreased total Cu concentration in both root and leaf tissues, but increased the root cell wall Cu fraction. Also, Si increased superoxide dismutase (SOD) activity in 10 mu M Cu-treated plants. Concomitantly, protein levels of Cu/Zn SOD isoforms (CSD1 and CSD2) in root tissues also increased in +Si plants. The leaf Cu-binding compounds, such as aconitate and plastocyanin (including the expression of CsPC gene) were higher in the +Si plants. Consequently, Si supply effectively lowered lipid peroxidation in both roots and leaves of Cu-stressed plants. Conclusions Supply of Si enhanced both the accumulation of Cu-binding molecules (Zn/Cu SOD in roots; aconitate and plastocyanin in leaves), and the Cu-binding capacity of the root cell wall.",
publisher = "Springer, Dordrecht",
journal = "Plant and Soil",
title = "Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity",
pages = "641-629",
number = "1-2",
volume = "441",
doi = "10.1007/s11104-019-04151-5"
}
Bosnic, D., Nikolic, D., Timotijević, G., Pavlović, J., Vaculik, M., Samardžić, J. T.,& Nikolic, M.. (2019). Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity. in Plant and Soil
Springer, Dordrecht., 441(1-2), 629-641.
https://doi.org/10.1007/s11104-019-04151-5
Bosnic D, Nikolic D, Timotijević G, Pavlović J, Vaculik M, Samardžić JT, Nikolic M. Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity. in Plant and Soil. 2019;441(1-2):629-641.
doi:10.1007/s11104-019-04151-5 .
Bosnic, Dragana, Nikolic, Dragana, Timotijević, Gordana, Pavlović, Jelena, Vaculik, Marek, Samardžić, Jelena T., Nikolic, Miroslav, "Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity" in Plant and Soil, 441, no. 1-2 (2019):629-641,
https://doi.org/10.1007/s11104-019-04151-5 . .
1
35
1
35

Silicon mediates sodium transport and partitioning in maize under moderate salt stress

Bosnić, Predrag; Bosnic, Dragana; Jasnic, Jovana; Nikolic, Miroslav

(Pergamon-Elsevier Science Ltd, Oxford, 2018)

TY  - JOUR
AU  - Bosnić, Predrag
AU  - Bosnic, Dragana
AU  - Jasnic, Jovana
AU  - Nikolic, Miroslav
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1106
AB  - Silicon (Si) is known to alleviate salt stress in various crops; however, the influence of Si on sodium (Na) transport and partitioning at the tissue, cell and organelle levels is poorly understood. Maize (Zea mays L.) hybrid sensitive to salt stress was exposed to moderate salt stress (40 mM NaCl; simulating conditions in salinized agricultural soils) without or with supply of 1.5 mM Si(OH)(4). We investigated the expression of SOS genes encoding Na+ efflux transporter in various root tissues of maize, paralleled by measurements of tissue Na concentration. In addition, subcellular localization of Na (using Na fluorescent dye) within the leaf mesophyll cells was also performed. Silicon supplied plants accumulate less Na in both root apex and cortex, but allocate more Na+ to the leaves via the xylem. This was accompanied by increased expression of ZrnSOS1 and ZmSOS2 in the root apex and cortex facilitating Na+ exclusion, and in the root stele for enhanced Na+ loading into the xylem. Also, Si down-regulated the expression of ZmHKT1 in the root stele, which further decreased Na+ unloading from the xylem. Consequently, Si increased accumulation of Na in leaves, but also enhances sequestration of Na+ into the vacuoles thereby decreasing Na+ accumulation in the chloroplasts. In response to moderate salt stress in maize, Si shifts the typical glycophyte behavior of this species towards that of halophytes.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Environmental and Experimental Botany
T1  - Silicon mediates sodium transport and partitioning in maize under moderate salt stress
EP  - 687
SP  - 681
VL  - 155
DO  - 10.1016/j.envexpbot.2018.08.018
ER  - 
@article{
author = "Bosnić, Predrag and Bosnic, Dragana and Jasnic, Jovana and Nikolic, Miroslav",
year = "2018",
abstract = "Silicon (Si) is known to alleviate salt stress in various crops; however, the influence of Si on sodium (Na) transport and partitioning at the tissue, cell and organelle levels is poorly understood. Maize (Zea mays L.) hybrid sensitive to salt stress was exposed to moderate salt stress (40 mM NaCl; simulating conditions in salinized agricultural soils) without or with supply of 1.5 mM Si(OH)(4). We investigated the expression of SOS genes encoding Na+ efflux transporter in various root tissues of maize, paralleled by measurements of tissue Na concentration. In addition, subcellular localization of Na (using Na fluorescent dye) within the leaf mesophyll cells was also performed. Silicon supplied plants accumulate less Na in both root apex and cortex, but allocate more Na+ to the leaves via the xylem. This was accompanied by increased expression of ZrnSOS1 and ZmSOS2 in the root apex and cortex facilitating Na+ exclusion, and in the root stele for enhanced Na+ loading into the xylem. Also, Si down-regulated the expression of ZmHKT1 in the root stele, which further decreased Na+ unloading from the xylem. Consequently, Si increased accumulation of Na in leaves, but also enhances sequestration of Na+ into the vacuoles thereby decreasing Na+ accumulation in the chloroplasts. In response to moderate salt stress in maize, Si shifts the typical glycophyte behavior of this species towards that of halophytes.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Environmental and Experimental Botany",
title = "Silicon mediates sodium transport and partitioning in maize under moderate salt stress",
pages = "687-681",
volume = "155",
doi = "10.1016/j.envexpbot.2018.08.018"
}
Bosnić, P., Bosnic, D., Jasnic, J.,& Nikolic, M.. (2018). Silicon mediates sodium transport and partitioning in maize under moderate salt stress. in Environmental and Experimental Botany
Pergamon-Elsevier Science Ltd, Oxford., 155, 681-687.
https://doi.org/10.1016/j.envexpbot.2018.08.018
Bosnić P, Bosnic D, Jasnic J, Nikolic M. Silicon mediates sodium transport and partitioning in maize under moderate salt stress. in Environmental and Experimental Botany. 2018;155:681-687.
doi:10.1016/j.envexpbot.2018.08.018 .
Bosnić, Predrag, Bosnic, Dragana, Jasnic, Jovana, Nikolic, Miroslav, "Silicon mediates sodium transport and partitioning in maize under moderate salt stress" in Environmental and Experimental Botany, 155 (2018):681-687,
https://doi.org/10.1016/j.envexpbot.2018.08.018 . .
57
3
54

Silicon mediates ion uptake, transport and homeostasis in plants under mineral stress

Nikolic, Miroslav; Kostić Kravljanac, Ljiljana; Pavlović, Jelena; Bosnić, Predrag

(University of Copenhagen, Denmark, 2017)

TY  - CONF
AU  - Nikolic, Miroslav
AU  - Kostić Kravljanac, Ljiljana
AU  - Pavlović, Jelena
AU  - Bosnić, Predrag
PY  - 2017
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2149
AB  - Silicon is the only known mineral element that effectively alleviates multiple environmental stress in many plant species. Over the past decade rapid progress has been made in understanding the mechanisms through which Si mediates mineral excess and/or toxicity stress. It has been demonstrated that Si mediates uptake and transport of mineral elements at excess by regulating expression of various transporter genes (e.g. Kim et al., 2014; Akcay and Erkan, 2016; Che et al., 2016); however, the role of Si in nutrient uptake and transport under nutrient deficiency conditions is still insufficiently understood. In this presentation, I will talk about Si influence on (a) root P- starvation responses for rhizosphere mobilization and uptake of Pi in wheat (Triticum aestivum) and (b) acquisition and long-distance transport of Fe in cucumber (Cucumis sativus) under low Fe conditions; our recent unpublished work on (c) Si-regulated expression of the transporters involved in Na homeostasis in maize (Zea mays) subjected to NaCl stress will also be discussed.
PB  - University of Copenhagen, Denmark
C3  - XVIII International Plant Nutrition Colloquium with Boron and Manganese Satellite Meetings, August 19-24, 2017, Copenhagen, Denmark
T1  - Silicon mediates ion uptake, transport and homeostasis in plants under mineral stress
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2149
ER  - 
@conference{
author = "Nikolic, Miroslav and Kostić Kravljanac, Ljiljana and Pavlović, Jelena and Bosnić, Predrag",
year = "2017",
abstract = "Silicon is the only known mineral element that effectively alleviates multiple environmental stress in many plant species. Over the past decade rapid progress has been made in understanding the mechanisms through which Si mediates mineral excess and/or toxicity stress. It has been demonstrated that Si mediates uptake and transport of mineral elements at excess by regulating expression of various transporter genes (e.g. Kim et al., 2014; Akcay and Erkan, 2016; Che et al., 2016); however, the role of Si in nutrient uptake and transport under nutrient deficiency conditions is still insufficiently understood. In this presentation, I will talk about Si influence on (a) root P- starvation responses for rhizosphere mobilization and uptake of Pi in wheat (Triticum aestivum) and (b) acquisition and long-distance transport of Fe in cucumber (Cucumis sativus) under low Fe conditions; our recent unpublished work on (c) Si-regulated expression of the transporters involved in Na homeostasis in maize (Zea mays) subjected to NaCl stress will also be discussed.",
publisher = "University of Copenhagen, Denmark",
journal = "XVIII International Plant Nutrition Colloquium with Boron and Manganese Satellite Meetings, August 19-24, 2017, Copenhagen, Denmark",
title = "Silicon mediates ion uptake, transport and homeostasis in plants under mineral stress",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2149"
}
Nikolic, M., Kostić Kravljanac, L., Pavlović, J.,& Bosnić, P.. (2017). Silicon mediates ion uptake, transport and homeostasis in plants under mineral stress. in XVIII International Plant Nutrition Colloquium with Boron and Manganese Satellite Meetings, August 19-24, 2017, Copenhagen, Denmark
University of Copenhagen, Denmark..
https://hdl.handle.net/21.15107/rcub_rimsi_2149
Nikolic M, Kostić Kravljanac L, Pavlović J, Bosnić P. Silicon mediates ion uptake, transport and homeostasis in plants under mineral stress. in XVIII International Plant Nutrition Colloquium with Boron and Manganese Satellite Meetings, August 19-24, 2017, Copenhagen, Denmark. 2017;.
https://hdl.handle.net/21.15107/rcub_rimsi_2149 .
Nikolic, Miroslav, Kostić Kravljanac, Ljiljana, Pavlović, Jelena, Bosnić, Predrag, "Silicon mediates ion uptake, transport and homeostasis in plants under mineral stress" in XVIII International Plant Nutrition Colloquium with Boron and Manganese Satellite Meetings, August 19-24, 2017, Copenhagen, Denmark (2017),
https://hdl.handle.net/21.15107/rcub_rimsi_2149 .

Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions

Kostić Kravljanac, Ljiljana; Nikolić, Nina; Bosnic, Dragana; Samardžić, Jelena T.; Nikolic, Miroslav

(Springer, Dordrecht, 2017)

TY  - JOUR
AU  - Kostić Kravljanac, Ljiljana
AU  - Nikolić, Nina
AU  - Bosnic, Dragana
AU  - Samardžić, Jelena T.
AU  - Nikolic, Miroslav
PY  - 2017
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1067
AB  - Although silicon (Si) is known to improve plant growth under low phosphorus (P) conditions, the in planta mechanisms responsible for this effect are still unknown. Here, we investigated the role of Si on P uptake along with the expression of Pi transporters in wheat (Triticum aestivum L.) grown in low P acid soil in comparison with P fertilization and liming. A combined approach was performed including analyses of rhizosphere soil, tissue P content, the expression of the root Pi transporter genes (TaPHT1.1 and TaPHT1.2), and the root exudation of citrate and malate. Supply of Si in a form of Na2SiO3 increased shoot P concentration to an adequate level in the range of P-fertilized plants. Silicon ameliorated low soil pH and high Al3+ comparable to the effect of liming. The in planta effect of Si on up-regulating the expression of TaPHT1.1 and TaPHT1.2 was several fold higher and consequently P uptake doubled compared to both P fertilization and liming. In addition, Si directly stimulated root Pi acquisition by prominently increasing both malate and citrate exudation rate. Application of Si increased root exudation of organic acids that mobilize Pi in the rhizosphere and up-regulated Pi transporters in wheat roots.
PB  - Springer, Dordrecht
T2  - Plant and Soil
T1  - Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions
EP  - 455
IS  - 1-2
SP  - 447
VL  - 419
DO  - 10.1007/s11104-017-3364-0
ER  - 
@article{
author = "Kostić Kravljanac, Ljiljana and Nikolić, Nina and Bosnic, Dragana and Samardžić, Jelena T. and Nikolic, Miroslav",
year = "2017",
abstract = "Although silicon (Si) is known to improve plant growth under low phosphorus (P) conditions, the in planta mechanisms responsible for this effect are still unknown. Here, we investigated the role of Si on P uptake along with the expression of Pi transporters in wheat (Triticum aestivum L.) grown in low P acid soil in comparison with P fertilization and liming. A combined approach was performed including analyses of rhizosphere soil, tissue P content, the expression of the root Pi transporter genes (TaPHT1.1 and TaPHT1.2), and the root exudation of citrate and malate. Supply of Si in a form of Na2SiO3 increased shoot P concentration to an adequate level in the range of P-fertilized plants. Silicon ameliorated low soil pH and high Al3+ comparable to the effect of liming. The in planta effect of Si on up-regulating the expression of TaPHT1.1 and TaPHT1.2 was several fold higher and consequently P uptake doubled compared to both P fertilization and liming. In addition, Si directly stimulated root Pi acquisition by prominently increasing both malate and citrate exudation rate. Application of Si increased root exudation of organic acids that mobilize Pi in the rhizosphere and up-regulated Pi transporters in wheat roots.",
publisher = "Springer, Dordrecht",
journal = "Plant and Soil",
title = "Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions",
pages = "455-447",
number = "1-2",
volume = "419",
doi = "10.1007/s11104-017-3364-0"
}
Kostić Kravljanac, L., Nikolić, N., Bosnic, D., Samardžić, J. T.,& Nikolic, M.. (2017). Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. in Plant and Soil
Springer, Dordrecht., 419(1-2), 447-455.
https://doi.org/10.1007/s11104-017-3364-0
Kostić Kravljanac L, Nikolić N, Bosnic D, Samardžić JT, Nikolic M. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. in Plant and Soil. 2017;419(1-2):447-455.
doi:10.1007/s11104-017-3364-0 .
Kostić Kravljanac, Ljiljana, Nikolić, Nina, Bosnic, Dragana, Samardžić, Jelena T., Nikolic, Miroslav, "Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions" in Plant and Soil, 419, no. 1-2 (2017):447-455,
https://doi.org/10.1007/s11104-017-3364-0 . .
2
151
12
143

Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat

Kostić Kravljanac, Ljiljana; Nikolić, Nina; Samardžić, Jelena T.; Milisavljević, Mira; Maksimović, Vuk; Cakmak, Dragan; Manojlović, Dragan; Nikolic, Miroslav

(Springer, New York, 2015)

TY  - JOUR
AU  - Kostić Kravljanac, Ljiljana
AU  - Nikolić, Nina
AU  - Samardžić, Jelena T.
AU  - Milisavljević, Mira
AU  - Maksimović, Vuk
AU  - Cakmak, Dragan
AU  - Manojlović, Dragan
AU  - Nikolic, Miroslav
PY  - 2015
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/838
AB  - We studied the effect of liming and P fertilization of extremely acid soil (accidently acidified by sulfidic mining waste) on P availability and the subsequent adaptive responses of wheat roots. The wheat plants were grown in rhizoboxes allowing precise sampling of rhizosphere and bulk soil for sequential extraction of P fractions and determination of exchangeable Al. Root exudates were collected by pieces of paper for electrophoresis and subjected to HPLC analysis. Expression of organic anions and P-i transporter genes was analyzed by a real-time quantitative PCR. The concomitant application of lime with P fertilization increased the concentrations of plant-available P fractions in both rhizosphere and bulk compartments. The applied soil amendments strongly affected plant growth, biomass partitioning and shoot P accumulation. Liming enhanced root exudation of citrate in P unfertilized plants, while the high malate efflux was maintained until both P deficiency and Al toxicity were eliminated by the amendments. We showed the importance of liming for recovering of P acquisition potential of wheat roots, which can be strongly impaired in acid soils. Our results clearly demonstrated that P-deficient roots not subjected to Al stress in the limed soil can maintain high efflux of malate and even increase efflux of citrate along with the enhanced expression of related anion transporters (TaMATE1 and TaALMT1).
PB  - Springer, New York
T2  - Biology and Fertility of Soils
T1  - Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat
EP  - 298
IS  - 3
SP  - 289
VL  - 51
DO  - 10.1007/s00374-014-0975-y
ER  - 
@article{
author = "Kostić Kravljanac, Ljiljana and Nikolić, Nina and Samardžić, Jelena T. and Milisavljević, Mira and Maksimović, Vuk and Cakmak, Dragan and Manojlović, Dragan and Nikolic, Miroslav",
year = "2015",
abstract = "We studied the effect of liming and P fertilization of extremely acid soil (accidently acidified by sulfidic mining waste) on P availability and the subsequent adaptive responses of wheat roots. The wheat plants were grown in rhizoboxes allowing precise sampling of rhizosphere and bulk soil for sequential extraction of P fractions and determination of exchangeable Al. Root exudates were collected by pieces of paper for electrophoresis and subjected to HPLC analysis. Expression of organic anions and P-i transporter genes was analyzed by a real-time quantitative PCR. The concomitant application of lime with P fertilization increased the concentrations of plant-available P fractions in both rhizosphere and bulk compartments. The applied soil amendments strongly affected plant growth, biomass partitioning and shoot P accumulation. Liming enhanced root exudation of citrate in P unfertilized plants, while the high malate efflux was maintained until both P deficiency and Al toxicity were eliminated by the amendments. We showed the importance of liming for recovering of P acquisition potential of wheat roots, which can be strongly impaired in acid soils. Our results clearly demonstrated that P-deficient roots not subjected to Al stress in the limed soil can maintain high efflux of malate and even increase efflux of citrate along with the enhanced expression of related anion transporters (TaMATE1 and TaALMT1).",
publisher = "Springer, New York",
journal = "Biology and Fertility of Soils",
title = "Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat",
pages = "298-289",
number = "3",
volume = "51",
doi = "10.1007/s00374-014-0975-y"
}
Kostić Kravljanac, L., Nikolić, N., Samardžić, J. T., Milisavljević, M., Maksimović, V., Cakmak, D., Manojlović, D.,& Nikolic, M.. (2015). Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat. in Biology and Fertility of Soils
Springer, New York., 51(3), 289-298.
https://doi.org/10.1007/s00374-014-0975-y
Kostić Kravljanac L, Nikolić N, Samardžić JT, Milisavljević M, Maksimović V, Cakmak D, Manojlović D, Nikolic M. Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat. in Biology and Fertility of Soils. 2015;51(3):289-298.
doi:10.1007/s00374-014-0975-y .
Kostić Kravljanac, Ljiljana, Nikolić, Nina, Samardžić, Jelena T., Milisavljević, Mira, Maksimović, Vuk, Cakmak, Dragan, Manojlović, Dragan, Nikolic, Miroslav, "Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat" in Biology and Fertility of Soils, 51, no. 3 (2015):289-298,
https://doi.org/10.1007/s00374-014-0975-y . .
22
15
23

Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis

Timotijević, Gordana; Milisavljević, Mira; Nikolic, Dragana B.; Milovanović, Bosko M.; Nikolic, Dragana S.; Nikolic, Miroslav; Samardžić, Jelena T.

(Društvo genetičara Srbije, Beograd, 2015)

TY  - JOUR
AU  - Timotijević, Gordana
AU  - Milisavljević, Mira
AU  - Nikolic, Dragana B.
AU  - Milovanović, Bosko M.
AU  - Nikolic, Dragana S.
AU  - Nikolic, Miroslav
AU  - Samardžić, Jelena T.
PY  - 2015
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/848
AB  - MicroRNAs (miRNAs) belong to the class of small non-coding RNAs which have important roles throughout development as well as in plant response to diverse environmental stresses. Some of plant miRNAs are essential for regulation and maintenance of nutritive homeostasis when nutrients are in excess or shortage comparing to optimal concentration for certain plant species. Better understanding of miRNAs functions implies development of efficient technology for profiling their gene expression. We set out to establish validate the methodology for miRNA gene expression analysis in cucumber grown under suboptimal mineral nutrient regimes, including iron deficiency. Reverse transcription by "stem-loop" primers in combination with Real time PCR method is one of potential approaches for quantification of miRNA gene expression. In this paper we presented a method for "stem loop" primer design specific for miR398, as well as reaction optimization and determination of Real time PCR efficiency. Proving the accuracy of this method was imperative as "stem loop" RT which consider separate transcription of target and endogenous control. The method was verified by comparison of the obtained data with results of miR398 expression achieved using a commercial kit based on simultaneous conversion of all RNAs in cDNAs.
PB  - Društvo genetičara Srbije, Beograd
T2  - Genetika-Belgrade
T1  - Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis
EP  - 416
IS  - 2
SP  - 405
VL  - 47
DO  - 10.2298/GENSR1502405T
ER  - 
@article{
author = "Timotijević, Gordana and Milisavljević, Mira and Nikolic, Dragana B. and Milovanović, Bosko M. and Nikolic, Dragana S. and Nikolic, Miroslav and Samardžić, Jelena T.",
year = "2015",
abstract = "MicroRNAs (miRNAs) belong to the class of small non-coding RNAs which have important roles throughout development as well as in plant response to diverse environmental stresses. Some of plant miRNAs are essential for regulation and maintenance of nutritive homeostasis when nutrients are in excess or shortage comparing to optimal concentration for certain plant species. Better understanding of miRNAs functions implies development of efficient technology for profiling their gene expression. We set out to establish validate the methodology for miRNA gene expression analysis in cucumber grown under suboptimal mineral nutrient regimes, including iron deficiency. Reverse transcription by "stem-loop" primers in combination with Real time PCR method is one of potential approaches for quantification of miRNA gene expression. In this paper we presented a method for "stem loop" primer design specific for miR398, as well as reaction optimization and determination of Real time PCR efficiency. Proving the accuracy of this method was imperative as "stem loop" RT which consider separate transcription of target and endogenous control. The method was verified by comparison of the obtained data with results of miR398 expression achieved using a commercial kit based on simultaneous conversion of all RNAs in cDNAs.",
publisher = "Društvo genetičara Srbije, Beograd",
journal = "Genetika-Belgrade",
title = "Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis",
pages = "416-405",
number = "2",
volume = "47",
doi = "10.2298/GENSR1502405T"
}
Timotijević, G., Milisavljević, M., Nikolic, D. B., Milovanović, B. M., Nikolic, D. S., Nikolic, M.,& Samardžić, J. T.. (2015). Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis. in Genetika-Belgrade
Društvo genetičara Srbije, Beograd., 47(2), 405-416.
https://doi.org/10.2298/GENSR1502405T
Timotijević G, Milisavljević M, Nikolic DB, Milovanović BM, Nikolic DS, Nikolic M, Samardžić JT. Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis. in Genetika-Belgrade. 2015;47(2):405-416.
doi:10.2298/GENSR1502405T .
Timotijević, Gordana, Milisavljević, Mira, Nikolic, Dragana B., Milovanović, Bosko M., Nikolic, Dragana S., Nikolic, Miroslav, Samardžić, Jelena T., "Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis" in Genetika-Belgrade, 47, no. 2 (2015):405-416,
https://doi.org/10.2298/GENSR1502405T . .

Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast

Pavlović, Jelena; Samardžić, Jelena T.; Maksimović, Vuk; Timotijević, Gordana; Stević, Nenad M; Laursen, Kristian H; Hansen, Thomas H; Husted, Soren; Schjoerring, Jan K; Liang, Yongchao; Nikolic, Miroslav

(Wiley, Hoboken, 2013)

TY  - JOUR
AU  - Pavlović, Jelena
AU  - Samardžić, Jelena T.
AU  - Maksimović, Vuk
AU  - Timotijević, Gordana
AU  - Stević, Nenad M
AU  - Laursen, Kristian H
AU  - Hansen, Thomas H
AU  - Husted, Soren
AU  - Schjoerring, Jan K
AU  - Liang, Yongchao
AU  - Nikolic, Miroslav
PY  - 2013
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/665
AB  - Root responses to lack of iron (Fe) have mainly been studied in nutrient solution experiments devoid of silicon (Si). Here we investigated how Si ameliorates Fe deficiency in cucumber (Cucumis sativus) with focus on the storage and utilization of Fe in the root apoplast. A combined approach was performed including analyses of apoplastic Fe, reduction-based Fe acquisition and Fe-mobilizing compounds in roots along with the expression of related genes. Si-treated plants accumulated higher concentrations of root apoplastic Fe, which rapidly decreased when Fe was withheld from the nutrient solution. Under Fe-deficient conditions, Si also increased the accumulation of Fe-mobilizing compounds in roots. Si supply stimulated root activity of Fe acquisition at the early stage of Fe deficiency stress through regulation of gene expression levels of proteins involved in Fe acquisition. However, when the period of Fe deprivation was extended, these reactions further decreased as a consequence of Si-induced enhancement of the Fe status of the plants. This work provides new evidence for the beneficial role of Si in plant nutrition and clearly indicates that Si-mediated alleviation of Fe deficiency includes an increase of the apoplastic Fe pool in roots and an enhancement of Fe acquisition.
PB  - Wiley, Hoboken
T2  - New Phytologist
T1  - Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast
EP  - 1107
IS  - 4
SP  - 1096
VL  - 198
DO  - 10.1111/nph.12213
ER  - 
@article{
author = "Pavlović, Jelena and Samardžić, Jelena T. and Maksimović, Vuk and Timotijević, Gordana and Stević, Nenad M and Laursen, Kristian H and Hansen, Thomas H and Husted, Soren and Schjoerring, Jan K and Liang, Yongchao and Nikolic, Miroslav",
year = "2013",
abstract = "Root responses to lack of iron (Fe) have mainly been studied in nutrient solution experiments devoid of silicon (Si). Here we investigated how Si ameliorates Fe deficiency in cucumber (Cucumis sativus) with focus on the storage and utilization of Fe in the root apoplast. A combined approach was performed including analyses of apoplastic Fe, reduction-based Fe acquisition and Fe-mobilizing compounds in roots along with the expression of related genes. Si-treated plants accumulated higher concentrations of root apoplastic Fe, which rapidly decreased when Fe was withheld from the nutrient solution. Under Fe-deficient conditions, Si also increased the accumulation of Fe-mobilizing compounds in roots. Si supply stimulated root activity of Fe acquisition at the early stage of Fe deficiency stress through regulation of gene expression levels of proteins involved in Fe acquisition. However, when the period of Fe deprivation was extended, these reactions further decreased as a consequence of Si-induced enhancement of the Fe status of the plants. This work provides new evidence for the beneficial role of Si in plant nutrition and clearly indicates that Si-mediated alleviation of Fe deficiency includes an increase of the apoplastic Fe pool in roots and an enhancement of Fe acquisition.",
publisher = "Wiley, Hoboken",
journal = "New Phytologist",
title = "Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast",
pages = "1107-1096",
number = "4",
volume = "198",
doi = "10.1111/nph.12213"
}
Pavlović, J., Samardžić, J. T., Maksimović, V., Timotijević, G., Stević, N. M., Laursen, K. H., Hansen, T. H., Husted, S., Schjoerring, J. K., Liang, Y.,& Nikolic, M.. (2013). Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. in New Phytologist
Wiley, Hoboken., 198(4), 1096-1107.
https://doi.org/10.1111/nph.12213
Pavlović J, Samardžić JT, Maksimović V, Timotijević G, Stević NM, Laursen KH, Hansen TH, Husted S, Schjoerring JK, Liang Y, Nikolic M. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. in New Phytologist. 2013;198(4):1096-1107.
doi:10.1111/nph.12213 .
Pavlović, Jelena, Samardžić, Jelena T., Maksimović, Vuk, Timotijević, Gordana, Stević, Nenad M, Laursen, Kristian H, Hansen, Thomas H, Husted, Soren, Schjoerring, Jan K, Liang, Yongchao, Nikolic, Miroslav, "Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast" in New Phytologist, 198, no. 4 (2013):1096-1107,
https://doi.org/10.1111/nph.12213 . .
11
184
59
180