Cvjetićanin, Nikola

Link to this page

Authority KeyName Variants
5b9975c3-5594-4996-8998-df7887a63a7f
  • Cvjetićanin, Nikola (2)
Projects

Author's Bibliography

Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers

Ahmetović, Sanita; Vasiljević, Zorka Z; Krstić, Jugoslav B.; Finšgar, Matjaž; Solonenko, Dmytro; Bartolić, Dragana; Tadić, Nenad B.; Mišković, Goran; Cvjetićanin, Nikola; Nikolić, Maria Vesna

(Elsevier, 2024)

TY  - JOUR
AU  - Ahmetović, Sanita
AU  - Vasiljević, Zorka Z
AU  - Krstić, Jugoslav B.
AU  - Finšgar, Matjaž
AU  - Solonenko, Dmytro
AU  - Bartolić, Dragana
AU  - Tadić, Nenad B.
AU  - Mišković, Goran
AU  - Cvjetićanin, Nikola
AU  - Nikolić, Maria Vesna
PY  - 2024
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/3204
AB  - In this paper, we have systematically studied the structural, morphological, and optical properties of Ni-doped TiO2, synthesized via a simple, cost-effective electrospinning method followed by calcination at 500 C. The nanofibers with a core-shell structure were relatively homogeneous, smooth and randomly oriented, and there were no significant differences in fiber diameters due to Ni2+ content. Core loss mapping using electron energy loss spectroscopy confirmed an even distribution of titanium and relatively uniform nickel in the fibers. It was found that doping with 0.5 mol.% Ni2+ decreased the rutile content, while doping with 1 mol.% Ni2+ resulted in a pure anatase phase with a significantly increased specific surface area (36.6 m2/g). Further increase in Ni2+ content (3-10 mol.%) not only prolonged the response of TiO2 nanofibers to visible light, but also increased the specific surface area (49.5 m2/g), decreased crystallite size (7 nm), and increased rutile content in TiO2 (33 wt.%). Photoluminescence analysis revealed that doping TiO2 with different amounts of Ni2+ leads to a gradual decrease of emission spectra intensity and red shift in the maxima positions. The XPS results confirmed that as the Ni2+ content enlarged, the Ti2+ and Ti3+ content increased significantly, effectively promoting the formation of oxygen vacancies. Raman analysis showed that an increase in nickel content (3-5 mol.%) led to a decrease and shift in peak intensity due to Ti3+ formation and also the possible presence of NiTiO3 phases. HRTEM analysis showed that Ni was doped into the substitution sites of both the anatase and rutile TiO2 lattice but had a stronger influence on the distortion of the anatase phase. The photocatalytic activity of Ni-doped TiO2 nanofibers was explored by analyzing the degradation of an antibiotic, oxytetracycline, monitored in laboratory conditions under visible light irradiation. After 60 minutes of irradiation, the degradation  of OTC with 1Ni-TiO2 reached 76.4% and with 10Ni-TiO2 70.5%.
PB  - Elsevier
T2  - Surfaces and Interfaces
T1  - Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers
SP  - 104434
VL  - 49
DO  - 10.1016/j.surfin.2024.104434
ER  - 
@article{
author = "Ahmetović, Sanita and Vasiljević, Zorka Z and Krstić, Jugoslav B. and Finšgar, Matjaž and Solonenko, Dmytro and Bartolić, Dragana and Tadić, Nenad B. and Mišković, Goran and Cvjetićanin, Nikola and Nikolić, Maria Vesna",
year = "2024",
abstract = "In this paper, we have systematically studied the structural, morphological, and optical properties of Ni-doped TiO2, synthesized via a simple, cost-effective electrospinning method followed by calcination at 500 C. The nanofibers with a core-shell structure were relatively homogeneous, smooth and randomly oriented, and there were no significant differences in fiber diameters due to Ni2+ content. Core loss mapping using electron energy loss spectroscopy confirmed an even distribution of titanium and relatively uniform nickel in the fibers. It was found that doping with 0.5 mol.% Ni2+ decreased the rutile content, while doping with 1 mol.% Ni2+ resulted in a pure anatase phase with a significantly increased specific surface area (36.6 m2/g). Further increase in Ni2+ content (3-10 mol.%) not only prolonged the response of TiO2 nanofibers to visible light, but also increased the specific surface area (49.5 m2/g), decreased crystallite size (7 nm), and increased rutile content in TiO2 (33 wt.%). Photoluminescence analysis revealed that doping TiO2 with different amounts of Ni2+ leads to a gradual decrease of emission spectra intensity and red shift in the maxima positions. The XPS results confirmed that as the Ni2+ content enlarged, the Ti2+ and Ti3+ content increased significantly, effectively promoting the formation of oxygen vacancies. Raman analysis showed that an increase in nickel content (3-5 mol.%) led to a decrease and shift in peak intensity due to Ti3+ formation and also the possible presence of NiTiO3 phases. HRTEM analysis showed that Ni was doped into the substitution sites of both the anatase and rutile TiO2 lattice but had a stronger influence on the distortion of the anatase phase. The photocatalytic activity of Ni-doped TiO2 nanofibers was explored by analyzing the degradation of an antibiotic, oxytetracycline, monitored in laboratory conditions under visible light irradiation. After 60 minutes of irradiation, the degradation  of OTC with 1Ni-TiO2 reached 76.4% and with 10Ni-TiO2 70.5%.",
publisher = "Elsevier",
journal = "Surfaces and Interfaces",
title = "Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers",
pages = "104434",
volume = "49",
doi = "10.1016/j.surfin.2024.104434"
}
Ahmetović, S., Vasiljević, Z. Z., Krstić, J. B., Finšgar, M., Solonenko, D., Bartolić, D., Tadić, N. B., Mišković, G., Cvjetićanin, N.,& Nikolić, M. V.. (2024). Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers. in Surfaces and Interfaces
Elsevier., 49, 104434.
https://doi.org/10.1016/j.surfin.2024.104434
Ahmetović S, Vasiljević ZZ, Krstić JB, Finšgar M, Solonenko D, Bartolić D, Tadić NB, Mišković G, Cvjetićanin N, Nikolić MV. Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers. in Surfaces and Interfaces. 2024;49:104434.
doi:10.1016/j.surfin.2024.104434 .
Ahmetović, Sanita, Vasiljević, Zorka Z, Krstić, Jugoslav B., Finšgar, Matjaž, Solonenko, Dmytro, Bartolić, Dragana, Tadić, Nenad B., Mišković, Goran, Cvjetićanin, Nikola, Nikolić, Maria Vesna, "Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers" in Surfaces and Interfaces, 49 (2024):104434,
https://doi.org/10.1016/j.surfin.2024.104434 . .

INVESTIGATING THE EFFECTS OF Zr DOPING ON THE TITANIUM DIOXIDE NANOFIBRES

Ahmetović, Sanita; Vasiljević, Zorka Z; Rajić, Vladimir; Bartolić, Dragana; Novaković, Mirjana; Tadić, Nenad B.; Cvjetićanin, Nikola; Nikolić, Maria Vesna

(Faculty of Technology, University of Novi Sad Bul. cara Lazara 1, 21000 Novi Sad, Serbia, 2023)

TY  - CONF
AU  - Ahmetović, Sanita
AU  - Vasiljević, Zorka Z
AU  - Rajić, Vladimir
AU  - Bartolić, Dragana
AU  - Novaković, Mirjana
AU  - Tadić, Nenad B.
AU  - Cvjetićanin, Nikola
AU  - Nikolić, Maria Vesna
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2158
AB  - In this work, titanium dioxide (TiO2) nanofibers doped with 0.5–5 mol% 
zirconium ions (Zr4+) were synthesized by combining the sol-gel process and 
electrospinning method, and calcined at 500 °C. The morphological, structural and 
optical properties of pure and Zr-doped TiO2 nanofibers were investigated. According to 
the XRD and FTIR analyses, the addition of Zr as a dopant suppressed the 
transformation of anatase to rutile phase. Scanning electron microscopy showed that all 
fibers were smooth, fragile and randomly oriented after the calcination process. HRTEM 
analysis revealed that Zr4+ ions were incorporated at the substitutional sites in the anatase 
TiO2 crystalline lattice. The photocatalytic efficiency for degradation of methylene blue 
(MB) was examined for both pure and Zr-doped TiO2 samples. Nanofibers doped with 
1% of Zr4+ ions have shown the highest photocatalytic activity of 98%, wich can be 
explained by considering lower PL intensity in the PL spectrum of this sample, 
indicating suppressed electron-hole recombination.
PB  - Faculty of Technology, University of Novi Sad  Bul. cara Lazara 1, 21000 Novi Sad, Serbia
C3  - Programme and book of abstracts / 15th ECerS Conference for Young Scientists in Ceramics, October 11-14, 2023, Novi Sad
T1  - INVESTIGATING THE EFFECTS OF Zr DOPING ON THE TITANIUM  DIOXIDE NANOFIBRES
SP  - 134/OA-101
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2158
ER  - 
@conference{
author = "Ahmetović, Sanita and Vasiljević, Zorka Z and Rajić, Vladimir and Bartolić, Dragana and Novaković, Mirjana and Tadić, Nenad B. and Cvjetićanin, Nikola and Nikolić, Maria Vesna",
year = "2023",
abstract = "In this work, titanium dioxide (TiO2) nanofibers doped with 0.5–5 mol% 
zirconium ions (Zr4+) were synthesized by combining the sol-gel process and 
electrospinning method, and calcined at 500 °C. The morphological, structural and 
optical properties of pure and Zr-doped TiO2 nanofibers were investigated. According to 
the XRD and FTIR analyses, the addition of Zr as a dopant suppressed the 
transformation of anatase to rutile phase. Scanning electron microscopy showed that all 
fibers were smooth, fragile and randomly oriented after the calcination process. HRTEM 
analysis revealed that Zr4+ ions were incorporated at the substitutional sites in the anatase 
TiO2 crystalline lattice. The photocatalytic efficiency for degradation of methylene blue 
(MB) was examined for both pure and Zr-doped TiO2 samples. Nanofibers doped with 
1% of Zr4+ ions have shown the highest photocatalytic activity of 98%, wich can be 
explained by considering lower PL intensity in the PL spectrum of this sample, 
indicating suppressed electron-hole recombination.",
publisher = "Faculty of Technology, University of Novi Sad  Bul. cara Lazara 1, 21000 Novi Sad, Serbia",
journal = "Programme and book of abstracts / 15th ECerS Conference for Young Scientists in Ceramics, October 11-14, 2023, Novi Sad",
title = "INVESTIGATING THE EFFECTS OF Zr DOPING ON THE TITANIUM  DIOXIDE NANOFIBRES",
pages = "134/OA-101",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2158"
}
Ahmetović, S., Vasiljević, Z. Z., Rajić, V., Bartolić, D., Novaković, M., Tadić, N. B., Cvjetićanin, N.,& Nikolić, M. V.. (2023). INVESTIGATING THE EFFECTS OF Zr DOPING ON THE TITANIUM  DIOXIDE NANOFIBRES. in Programme and book of abstracts / 15th ECerS Conference for Young Scientists in Ceramics, October 11-14, 2023, Novi Sad
Faculty of Technology, University of Novi Sad  Bul. cara Lazara 1, 21000 Novi Sad, Serbia., 134/OA-101.
https://hdl.handle.net/21.15107/rcub_rimsi_2158
Ahmetović S, Vasiljević ZZ, Rajić V, Bartolić D, Novaković M, Tadić NB, Cvjetićanin N, Nikolić MV. INVESTIGATING THE EFFECTS OF Zr DOPING ON THE TITANIUM  DIOXIDE NANOFIBRES. in Programme and book of abstracts / 15th ECerS Conference for Young Scientists in Ceramics, October 11-14, 2023, Novi Sad. 2023;:134/OA-101.
https://hdl.handle.net/21.15107/rcub_rimsi_2158 .
Ahmetović, Sanita, Vasiljević, Zorka Z, Rajić, Vladimir, Bartolić, Dragana, Novaković, Mirjana, Tadić, Nenad B., Cvjetićanin, Nikola, Nikolić, Maria Vesna, "INVESTIGATING THE EFFECTS OF Zr DOPING ON THE TITANIUM  DIOXIDE NANOFIBRES" in Programme and book of abstracts / 15th ECerS Conference for Young Scientists in Ceramics, October 11-14, 2023, Novi Sad (2023):134/OA-101,
https://hdl.handle.net/21.15107/rcub_rimsi_2158 .