Gavrilović, A.

Link to this page

Authority KeyName Variants
orcid::0000-0003-3585-149X
  • Gavrilović, A. (1)
Projects

Author's Bibliography

The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts

Tripković, D.; Stevanović, Sanja I.; Gavrilović, A.; Rogan, Jelena; Lačnjevac, Uroš; Kravić, T.; Jovanović, V. M.

(Springer, New York, 2018)

TY  - JOUR
AU  - Tripković, D.
AU  - Stevanović, Sanja I.
AU  - Gavrilović, A.
AU  - Rogan, Jelena
AU  - Lačnjevac, Uroš
AU  - Kravić, T.
AU  - Jovanović, V. M.
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1118
AB  - In our previous paper, we described in detail studies of Sn influence on electrocatalytic activity of PtSn catalyst for CO and formic acid oxidation (StevanoviAc et al., J. Phys. Chem. C, 118 (2014) 278-289). The catalyst was composed of a Pt phase, Pt3Sn alloy and very small SnO2 particles. Different electrochemical treatment enabled studies of PtSn/C having Sn both in surface and subsurface layers and skeleton structure of this catalyst with Sn only in subsurface layers. The results obtained revealed the promotional effect of surface Sn whether alloyed or as oxide above all in preventing accumulation of CO and blocking the surface Pt atoms. As a consequence, in formic acid oxidation, the currents are not entering the plateau but increasing constantly until reaching a maximum. It was concluded that at lower potentials the effect of Sn on formic acid oxidation was predominantly electronic but with increasing the potential bi-functional mechanism prevailed due to the leading role of SnO2. This role of SnO2 is restated in the present study. Therefore, CO and formic acid oxidation were examined at PtSnO2/C catalyst. The catalyst was synthesised by the same microwave-assisted polyol procedure. According to XRD analysis, the catalyst is composed of a Pt phase and SnO2 phase. The reactions were examined on PtSnO2/C catalyst treated on the same way as PtSn/C. Comparing the results obtained, the role of SnO2 is confirmed and at the same time the significance of alloyed Sn and its electronic effect is revealed.
PB  - Springer, New York
T2  - Electrocatalysis
T1  - The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts
EP  - 85
IS  - 1
SP  - 76
VL  - 9
DO  - 10.1007/s12678-017-0424-4
ER  - 
@article{
author = "Tripković, D. and Stevanović, Sanja I. and Gavrilović, A. and Rogan, Jelena and Lačnjevac, Uroš and Kravić, T. and Jovanović, V. M.",
year = "2018",
abstract = "In our previous paper, we described in detail studies of Sn influence on electrocatalytic activity of PtSn catalyst for CO and formic acid oxidation (StevanoviAc et al., J. Phys. Chem. C, 118 (2014) 278-289). The catalyst was composed of a Pt phase, Pt3Sn alloy and very small SnO2 particles. Different electrochemical treatment enabled studies of PtSn/C having Sn both in surface and subsurface layers and skeleton structure of this catalyst with Sn only in subsurface layers. The results obtained revealed the promotional effect of surface Sn whether alloyed or as oxide above all in preventing accumulation of CO and blocking the surface Pt atoms. As a consequence, in formic acid oxidation, the currents are not entering the plateau but increasing constantly until reaching a maximum. It was concluded that at lower potentials the effect of Sn on formic acid oxidation was predominantly electronic but with increasing the potential bi-functional mechanism prevailed due to the leading role of SnO2. This role of SnO2 is restated in the present study. Therefore, CO and formic acid oxidation were examined at PtSnO2/C catalyst. The catalyst was synthesised by the same microwave-assisted polyol procedure. According to XRD analysis, the catalyst is composed of a Pt phase and SnO2 phase. The reactions were examined on PtSnO2/C catalyst treated on the same way as PtSn/C. Comparing the results obtained, the role of SnO2 is confirmed and at the same time the significance of alloyed Sn and its electronic effect is revealed.",
publisher = "Springer, New York",
journal = "Electrocatalysis",
title = "The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts",
pages = "85-76",
number = "1",
volume = "9",
doi = "10.1007/s12678-017-0424-4"
}
Tripković, D., Stevanović, S. I., Gavrilović, A., Rogan, J., Lačnjevac, U., Kravić, T.,& Jovanović, V. M.. (2018). The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts. in Electrocatalysis
Springer, New York., 9(1), 76-85.
https://doi.org/10.1007/s12678-017-0424-4
Tripković D, Stevanović SI, Gavrilović A, Rogan J, Lačnjevac U, Kravić T, Jovanović VM. The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts. in Electrocatalysis. 2018;9(1):76-85.
doi:10.1007/s12678-017-0424-4 .
Tripković, D., Stevanović, Sanja I., Gavrilović, A., Rogan, Jelena, Lačnjevac, Uroš, Kravić, T., Jovanović, V. M., "The Role of SnO2 on Electrocatalytic Activity of PtSn Catalysts" in Electrocatalysis, 9, no. 1 (2018):76-85,
https://doi.org/10.1007/s12678-017-0424-4 . .
11
8
11