Martinov, Jelena

Link to this page

Authority KeyName Variants
69c698cd-a027-4611-89dd-220e76246975
  • Martinov, Jelena (1)
Projects

Author's Bibliography

Apple pectin-derived oligosaccharides produce carbon dioxide radical anion in Fenton reaction and prevent growth of Escherichia coli and Staphylococcus aureus

Martinov, Jelena; Krstic, Miodrag; Spasic, Snežana; Miletic, Srdjan; Stefanovic-Kojic, Jovana; Nikolić-Kokić, Aleksandra; Blagojević, Duško; Spasojević, Ivan; Spasić, Mihajlo

(Elsevier Science Bv, Amsterdam, 2017)

TY  - JOUR
AU  - Martinov, Jelena
AU  - Krstic, Miodrag
AU  - Spasic, Snežana
AU  - Miletic, Srdjan
AU  - Stefanovic-Kojic, Jovana
AU  - Nikolić-Kokić, Aleksandra
AU  - Blagojević, Duško
AU  - Spasojević, Ivan
AU  - Spasić, Mihajlo
PY  - 2017
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1050
AB  - Pectin is the main soluble fiber in apples or citruses. It may be fermented by gut microbiota to metabolites showing local intestinal and systemic effects. A wide range of beneficial effects of dietary pectin includes impacts on the redox milieu and microbiota profile. We prepared pectin-derived oligosaccharides (apple (APDO) and citrus) and polygalacturonic acid-derived oligosaccharides, using alkaline hydrolysis by hydrogen peroxide, and analyzed them by Foufier Transform Infrared spectrometry. Furthermore, we analyzed the effects of pectin derived oligosaccharides on hydroxyl radical (HO center dot)-generating Fenton reaction using electron paramagnetic resonance spin-trapping spectroscopy, and the effects on the growth of Escherichia coli and Staphylococcus minus in the presence of dietary-relevant HO center dot-generating system (iron + ascorbate). The oligosaccharides react with HO center dot radical to produce carbon dioxide radical anion (CO2 center dot (-)). A comparative analysis showed that APDO has the most prominent bacteriostatic effect. This might be at least partially related to the higher capacity of APDO to produce CO2 center dot (-), which specifically targets proteins and appears to have a longer lifetime and larger diffusion radius in biological systems compared to HO center dot.
PB  - Elsevier Science Bv, Amsterdam
T2  - Food Research International
T1  - Apple pectin-derived oligosaccharides produce carbon dioxide radical anion in Fenton reaction and prevent growth of Escherichia coli and Staphylococcus aureus
EP  - 136
SP  - 132
VL  - 100
DO  - 10.1016/j.foodres.2017.08.040
ER  - 
@article{
author = "Martinov, Jelena and Krstic, Miodrag and Spasic, Snežana and Miletic, Srdjan and Stefanovic-Kojic, Jovana and Nikolić-Kokić, Aleksandra and Blagojević, Duško and Spasojević, Ivan and Spasić, Mihajlo",
year = "2017",
abstract = "Pectin is the main soluble fiber in apples or citruses. It may be fermented by gut microbiota to metabolites showing local intestinal and systemic effects. A wide range of beneficial effects of dietary pectin includes impacts on the redox milieu and microbiota profile. We prepared pectin-derived oligosaccharides (apple (APDO) and citrus) and polygalacturonic acid-derived oligosaccharides, using alkaline hydrolysis by hydrogen peroxide, and analyzed them by Foufier Transform Infrared spectrometry. Furthermore, we analyzed the effects of pectin derived oligosaccharides on hydroxyl radical (HO center dot)-generating Fenton reaction using electron paramagnetic resonance spin-trapping spectroscopy, and the effects on the growth of Escherichia coli and Staphylococcus minus in the presence of dietary-relevant HO center dot-generating system (iron + ascorbate). The oligosaccharides react with HO center dot radical to produce carbon dioxide radical anion (CO2 center dot (-)). A comparative analysis showed that APDO has the most prominent bacteriostatic effect. This might be at least partially related to the higher capacity of APDO to produce CO2 center dot (-), which specifically targets proteins and appears to have a longer lifetime and larger diffusion radius in biological systems compared to HO center dot.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Food Research International",
title = "Apple pectin-derived oligosaccharides produce carbon dioxide radical anion in Fenton reaction and prevent growth of Escherichia coli and Staphylococcus aureus",
pages = "136-132",
volume = "100",
doi = "10.1016/j.foodres.2017.08.040"
}
Martinov, J., Krstic, M., Spasic, S., Miletic, S., Stefanovic-Kojic, J., Nikolić-Kokić, A., Blagojević, D., Spasojević, I.,& Spasić, M.. (2017). Apple pectin-derived oligosaccharides produce carbon dioxide radical anion in Fenton reaction and prevent growth of Escherichia coli and Staphylococcus aureus. in Food Research International
Elsevier Science Bv, Amsterdam., 100, 132-136.
https://doi.org/10.1016/j.foodres.2017.08.040
Martinov J, Krstic M, Spasic S, Miletic S, Stefanovic-Kojic J, Nikolić-Kokić A, Blagojević D, Spasojević I, Spasić M. Apple pectin-derived oligosaccharides produce carbon dioxide radical anion in Fenton reaction and prevent growth of Escherichia coli and Staphylococcus aureus. in Food Research International. 2017;100:132-136.
doi:10.1016/j.foodres.2017.08.040 .
Martinov, Jelena, Krstic, Miodrag, Spasic, Snežana, Miletic, Srdjan, Stefanovic-Kojic, Jovana, Nikolić-Kokić, Aleksandra, Blagojević, Duško, Spasojević, Ivan, Spasić, Mihajlo, "Apple pectin-derived oligosaccharides produce carbon dioxide radical anion in Fenton reaction and prevent growth of Escherichia coli and Staphylococcus aureus" in Food Research International, 100 (2017):132-136,
https://doi.org/10.1016/j.foodres.2017.08.040 . .
10
12
8
14