Kriechbaum, Manfred

Link to this page

Authority KeyName Variants
d60d3b0d-701b-4652-8d2f-f36cb58b3840
  • Kriechbaum, Manfred (1)

Author's Bibliography

KIT-5-Assisted Synthesis of Mesoporous SnO2 for High-Performance Humidity Sensors with a Swift Response/Recovery Speed

Vojisavljević, Katarina; Savić, Slavica M.; Počuča-Nešić, Milica; Hodžić, Aden; Kriechbaum, Manfred; Ribić, Vesna; Rečnik, Aleksander; Mitrović, Jelena; Branković, Goran; Djokic, Veljko

(MDPI, 2023)

TY  - JOUR
AU  - Vojisavljević, Katarina
AU  - Savić, Slavica M.
AU  - Počuča-Nešić, Milica
AU  - Hodžić, Aden
AU  - Kriechbaum, Manfred
AU  - Ribić, Vesna
AU  - Rečnik, Aleksander
AU  - Mitrović, Jelena
AU  - Branković, Goran
AU  - Djokic, Veljko
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1860
AB  - Developing highly efficient semiconductor metal oxide (SMOX) sensors capable of accurate and fast responses to environmental humidity is still a challenging task. In addition to a not so pronounced sensitivity to relative humidity change, most of the SMOXs cannot meet the criteria of real-time humidity sensing due to their long response/recovery time. The way to tackle this problem is to control adsorption/desorption processes, i.e., water-vapor molecular dynamics, over the sensor’s active layer through the powder and pore morphology design. With this in mind, a KIT-5-mediated synthesis was used to achieve mesoporous tin (IV) oxide replica (SnO2-R) with controlled pore size and ordering through template inversion and compared with a sol-gel synthesized powder (SnO2-SG). Unlike SnO2-SG, SnO2-R possessed a high specific surface area and quite an open pore structure, similar to the KIT-5, as observed by TEM, BET and SWAXS analyses. According to TEM, SnO2-R consisted of fine-grained globular particles and some percent of exaggerated, grown twinned crystals. The distinctive morphology of the SnO2-R-based sensor, with its specific pore structure and an increased number of oxygen-related defects associated with the powder preparation process and detected at the sensor surface by XPS analysis, contributed to excellent humidity sensing performances at room temperature, comprised of a low hysteresis error (3.7%), sensitivity of 406.8 kΩ/RH% and swift response/recovery speed (4 s/6 s).
PB  - MDPI
T2  - Molecules
T1  - KIT-5-Assisted Synthesis of Mesoporous SnO2 for High-Performance Humidity Sensors with a Swift Response/Recovery Speed
IS  - 4
SP  - 1754
VL  - 28
DO  - 10.3390/molecules28041754
ER  - 
@article{
author = "Vojisavljević, Katarina and Savić, Slavica M. and Počuča-Nešić, Milica and Hodžić, Aden and Kriechbaum, Manfred and Ribić, Vesna and Rečnik, Aleksander and Mitrović, Jelena and Branković, Goran and Djokic, Veljko",
year = "2023",
abstract = "Developing highly efficient semiconductor metal oxide (SMOX) sensors capable of accurate and fast responses to environmental humidity is still a challenging task. In addition to a not so pronounced sensitivity to relative humidity change, most of the SMOXs cannot meet the criteria of real-time humidity sensing due to their long response/recovery time. The way to tackle this problem is to control adsorption/desorption processes, i.e., water-vapor molecular dynamics, over the sensor’s active layer through the powder and pore morphology design. With this in mind, a KIT-5-mediated synthesis was used to achieve mesoporous tin (IV) oxide replica (SnO2-R) with controlled pore size and ordering through template inversion and compared with a sol-gel synthesized powder (SnO2-SG). Unlike SnO2-SG, SnO2-R possessed a high specific surface area and quite an open pore structure, similar to the KIT-5, as observed by TEM, BET and SWAXS analyses. According to TEM, SnO2-R consisted of fine-grained globular particles and some percent of exaggerated, grown twinned crystals. The distinctive morphology of the SnO2-R-based sensor, with its specific pore structure and an increased number of oxygen-related defects associated with the powder preparation process and detected at the sensor surface by XPS analysis, contributed to excellent humidity sensing performances at room temperature, comprised of a low hysteresis error (3.7%), sensitivity of 406.8 kΩ/RH% and swift response/recovery speed (4 s/6 s).",
publisher = "MDPI",
journal = "Molecules",
title = "KIT-5-Assisted Synthesis of Mesoporous SnO2 for High-Performance Humidity Sensors with a Swift Response/Recovery Speed",
number = "4",
pages = "1754",
volume = "28",
doi = "10.3390/molecules28041754"
}
Vojisavljević, K., Savić, S. M., Počuča-Nešić, M., Hodžić, A., Kriechbaum, M., Ribić, V., Rečnik, A., Mitrović, J., Branković, G.,& Djokic, V.. (2023). KIT-5-Assisted Synthesis of Mesoporous SnO2 for High-Performance Humidity Sensors with a Swift Response/Recovery Speed. in Molecules
MDPI., 28(4), 1754.
https://doi.org/10.3390/molecules28041754
Vojisavljević K, Savić SM, Počuča-Nešić M, Hodžić A, Kriechbaum M, Ribić V, Rečnik A, Mitrović J, Branković G, Djokic V. KIT-5-Assisted Synthesis of Mesoporous SnO2 for High-Performance Humidity Sensors with a Swift Response/Recovery Speed. in Molecules. 2023;28(4):1754.
doi:10.3390/molecules28041754 .
Vojisavljević, Katarina, Savić, Slavica M., Počuča-Nešić, Milica, Hodžić, Aden, Kriechbaum, Manfred, Ribić, Vesna, Rečnik, Aleksander, Mitrović, Jelena, Branković, Goran, Djokic, Veljko, "KIT-5-Assisted Synthesis of Mesoporous SnO2 for High-Performance Humidity Sensors with a Swift Response/Recovery Speed" in Molecules, 28, no. 4 (2023):1754,
https://doi.org/10.3390/molecules28041754 . .
3