Savic, Danijela

Link to this page

Authority KeyName Variants
93530f0b-51a1-442c-b1d8-e293fc996343
  • Savic, Danijela (1)
Projects

Author's Bibliography

MEMBRANE CURRENTS OF C6 CELLS IN PHARMACOLOGICAL INVESTIGATION

Nikolic, Ljiljana; Savic, Danijela; Korać Jačić, Jelena; Petkovic, Branka; Stojadinovic, Gordana; Martac, Ljiljana; Bogdanović Pristov, Jelena

(Society of Physical Chemists of Serbia, 2022)

TY  - CONF
AU  - Nikolic, Ljiljana
AU  - Savic, Danijela
AU  - Korać Jačić, Jelena
AU  - Petkovic, Branka
AU  - Stojadinovic, Gordana
AU  - Martac, Ljiljana
AU  - Bogdanović Pristov, Jelena
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2010
AB  - Living cells exhibit multiple ion channel proteins and malfunction of these channels underlies 
numerous diseases. Channelopathies include diseases of the nervous, cardiovascular, respiratory, 
endocrine, urinary, and immune system. Currently, ion channels represent the second-largest target for existing drugs. Here, using the whole-cell patch-clamp technique, we explored the epinephrine effect on membrane ionic currents in glioma C6 cells. We demonstrate that epinephrine specifically evokes an increase of C6 cells outward ionic currents that is stable within 10 min, while it does not affect inward currents. Our results thus provide fine resolution and time frame for targeting ion channel activity that is crucial in pharmacological investigations.
PB  - Society of Physical Chemists of Serbia
C3  - PHYSICAL CHEMISTRY 2022, 16th International Conference on Fundamental and Applied Aspects  of Physical Chemistry (Proceedings)
T1  - MEMBRANE CURRENTS OF C6 CELLS IN PHARMACOLOGICAL  INVESTIGATION
EP  - 592
SP  - 589
VL  - 2
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2010
ER  - 
@conference{
author = "Nikolic, Ljiljana and Savic, Danijela and Korać Jačić, Jelena and Petkovic, Branka and Stojadinovic, Gordana and Martac, Ljiljana and Bogdanović Pristov, Jelena",
year = "2022",
abstract = "Living cells exhibit multiple ion channel proteins and malfunction of these channels underlies 
numerous diseases. Channelopathies include diseases of the nervous, cardiovascular, respiratory, 
endocrine, urinary, and immune system. Currently, ion channels represent the second-largest target for existing drugs. Here, using the whole-cell patch-clamp technique, we explored the epinephrine effect on membrane ionic currents in glioma C6 cells. We demonstrate that epinephrine specifically evokes an increase of C6 cells outward ionic currents that is stable within 10 min, while it does not affect inward currents. Our results thus provide fine resolution and time frame for targeting ion channel activity that is crucial in pharmacological investigations.",
publisher = "Society of Physical Chemists of Serbia",
journal = "PHYSICAL CHEMISTRY 2022, 16th International Conference on Fundamental and Applied Aspects  of Physical Chemistry (Proceedings)",
title = "MEMBRANE CURRENTS OF C6 CELLS IN PHARMACOLOGICAL  INVESTIGATION",
pages = "592-589",
volume = "2",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2010"
}
Nikolic, L., Savic, D., Korać Jačić, J., Petkovic, B., Stojadinovic, G., Martac, L.,& Bogdanović Pristov, J.. (2022). MEMBRANE CURRENTS OF C6 CELLS IN PHARMACOLOGICAL  INVESTIGATION. in PHYSICAL CHEMISTRY 2022, 16th International Conference on Fundamental and Applied Aspects  of Physical Chemistry (Proceedings)
Society of Physical Chemists of Serbia., 2, 589-592.
https://hdl.handle.net/21.15107/rcub_rimsi_2010
Nikolic L, Savic D, Korać Jačić J, Petkovic B, Stojadinovic G, Martac L, Bogdanović Pristov J. MEMBRANE CURRENTS OF C6 CELLS IN PHARMACOLOGICAL  INVESTIGATION. in PHYSICAL CHEMISTRY 2022, 16th International Conference on Fundamental and Applied Aspects  of Physical Chemistry (Proceedings). 2022;2:589-592.
https://hdl.handle.net/21.15107/rcub_rimsi_2010 .
Nikolic, Ljiljana, Savic, Danijela, Korać Jačić, Jelena, Petkovic, Branka, Stojadinovic, Gordana, Martac, Ljiljana, Bogdanović Pristov, Jelena, "MEMBRANE CURRENTS OF C6 CELLS IN PHARMACOLOGICAL  INVESTIGATION" in PHYSICAL CHEMISTRY 2022, 16th International Conference on Fundamental and Applied Aspects  of Physical Chemistry (Proceedings), 2 (2022):589-592,
https://hdl.handle.net/21.15107/rcub_rimsi_2010 .