Timotijević, Gordana

Link to this page

Authority KeyName Variants
7555fb3d-8bc0-4279-abaa-4355e42cd7f8
  • Timotijević, Gordana (4)
Projects

Author's Bibliography

Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity

Bosnic, Dragana; Nikolic, Dragana; Timotijević, Gordana; Pavlović, Jelena; Vaculik, Marek; Samardžić, Jelena T.; Nikolic, Miroslav

(Springer, Dordrecht, 2019)

TY  - JOUR
AU  - Bosnic, Dragana
AU  - Nikolic, Dragana
AU  - Timotijević, Gordana
AU  - Pavlović, Jelena
AU  - Vaculik, Marek
AU  - Samardžić, Jelena T.
AU  - Nikolic, Miroslav
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1212
AB  - Aims Although silicon (Si) is known to increase plant resistance to metal toxicity stress, the mechanisms responsible for alleviation of copper (Cu) toxicity are still insufficiently clear. We investigated the role of Si on Cu-binding processes involved in buffering excessive Cu in cucumber (Cucumis sativus L.) tissues. Methods Cucumber plants were subjected to moderate Cu toxicity stress (10 mu M Cu) without (-Si) or with (+Si) supply of 1.5 mM Si. We analyzed total and cell wall concentrations of Cu and Cu-binding compounds (organic acids and Cu-proteins) along with parameters of oxidative stress (e.g. lipid peroxidation and lignification). Results Supply of Si decreased total Cu concentration in both root and leaf tissues, but increased the root cell wall Cu fraction. Also, Si increased superoxide dismutase (SOD) activity in 10 mu M Cu-treated plants. Concomitantly, protein levels of Cu/Zn SOD isoforms (CSD1 and CSD2) in root tissues also increased in +Si plants. The leaf Cu-binding compounds, such as aconitate and plastocyanin (including the expression of CsPC gene) were higher in the +Si plants. Consequently, Si supply effectively lowered lipid peroxidation in both roots and leaves of Cu-stressed plants. Conclusions Supply of Si enhanced both the accumulation of Cu-binding molecules (Zn/Cu SOD in roots; aconitate and plastocyanin in leaves), and the Cu-binding capacity of the root cell wall.
PB  - Springer, Dordrecht
T2  - Plant and Soil
T1  - Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity
EP  - 641
IS  - 1-2
SP  - 629
VL  - 441
DO  - 10.1007/s11104-019-04151-5
ER  - 
@article{
author = "Bosnic, Dragana and Nikolic, Dragana and Timotijević, Gordana and Pavlović, Jelena and Vaculik, Marek and Samardžić, Jelena T. and Nikolic, Miroslav",
year = "2019",
abstract = "Aims Although silicon (Si) is known to increase plant resistance to metal toxicity stress, the mechanisms responsible for alleviation of copper (Cu) toxicity are still insufficiently clear. We investigated the role of Si on Cu-binding processes involved in buffering excessive Cu in cucumber (Cucumis sativus L.) tissues. Methods Cucumber plants were subjected to moderate Cu toxicity stress (10 mu M Cu) without (-Si) or with (+Si) supply of 1.5 mM Si. We analyzed total and cell wall concentrations of Cu and Cu-binding compounds (organic acids and Cu-proteins) along with parameters of oxidative stress (e.g. lipid peroxidation and lignification). Results Supply of Si decreased total Cu concentration in both root and leaf tissues, but increased the root cell wall Cu fraction. Also, Si increased superoxide dismutase (SOD) activity in 10 mu M Cu-treated plants. Concomitantly, protein levels of Cu/Zn SOD isoforms (CSD1 and CSD2) in root tissues also increased in +Si plants. The leaf Cu-binding compounds, such as aconitate and plastocyanin (including the expression of CsPC gene) were higher in the +Si plants. Consequently, Si supply effectively lowered lipid peroxidation in both roots and leaves of Cu-stressed plants. Conclusions Supply of Si enhanced both the accumulation of Cu-binding molecules (Zn/Cu SOD in roots; aconitate and plastocyanin in leaves), and the Cu-binding capacity of the root cell wall.",
publisher = "Springer, Dordrecht",
journal = "Plant and Soil",
title = "Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity",
pages = "641-629",
number = "1-2",
volume = "441",
doi = "10.1007/s11104-019-04151-5"
}
Bosnic, D., Nikolic, D., Timotijević, G., Pavlović, J., Vaculik, M., Samardžić, J. T.,& Nikolic, M.. (2019). Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity. in Plant and Soil
Springer, Dordrecht., 441(1-2), 629-641.
https://doi.org/10.1007/s11104-019-04151-5
Bosnic D, Nikolic D, Timotijević G, Pavlović J, Vaculik M, Samardžić JT, Nikolic M. Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity. in Plant and Soil. 2019;441(1-2):629-641.
doi:10.1007/s11104-019-04151-5 .
Bosnic, Dragana, Nikolic, Dragana, Timotijević, Gordana, Pavlović, Jelena, Vaculik, Marek, Samardžić, Jelena T., Nikolic, Miroslav, "Silicon alleviates copper (Cu) toxicity in cucumber by increased Cu-binding capacity" in Plant and Soil, 441, no. 1-2 (2019):629-641,
https://doi.org/10.1007/s11104-019-04151-5 . .
1
35
1
35

Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions

Pavlović, Jelena; Samardžić, Jelena T.; Kostić Kravljanac, Ljiljana; Laursen, Kristian H.; Natic, Maja; Timotijević, Gordana; Schjoerring, Jan K.; Nikolic, Miroslav

(Oxford Univ Press, Oxford, 2016)

TY  - JOUR
AU  - Pavlović, Jelena
AU  - Samardžić, Jelena T.
AU  - Kostić Kravljanac, Ljiljana
AU  - Laursen, Kristian H.
AU  - Natic, Maja
AU  - Timotijević, Gordana
AU  - Schjoerring, Jan K.
AU  - Nikolic, Miroslav
PY  - 2016
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1002
AB  - Background and Aims Retranslocation of iron (Fe) from source tissues enhances plant tolerance to Fe deficiency. Previous work has shown that silicon (Si) can alleviate Fe deficiency by enhancing acquisition and root to shoot translocation of Fe. Here the role of Si in Fe mobilization in older leaves and the subsequent retranslocation of Fe to young leaves of cucumber (Cucumis sativus) plants growing under Fe-limiting conditions was investigated. Methods Iron (Fe-57 or naturally occurring isotopes) was measured in leaves at different positions on plants hydroponically growing with or without Si supply. In parallel, the concentration of the Fe chelator nicotianamine (NA) along with the expression of nicotianamine synthase (NAS) involved in its biosynthesis and the expression of yellow stripe-like (YSL) transcripts mediating Fe-NA transport were also determined. Key Results In plants not receiving Si, approximately half of the total Fe content remained in the oldest leaf. In contrast, Si-treated plants showed an almost even Fe distribution among leaves with four different developmental stages, thus providing evidence of enhanced Fe remobilization from source leaves. This Si-stimulated Fe export was paralleled by an increased NA accumulation and expression of the YSL1 transporter for phloem loading/unloading of the Fe-NA complex. Conclusions The results suggest that Si enhances remobilization of Fe from older to younger leaves by a more efficient NA-mediated Fe transport via the phloem. In addition, from this and previous work, a model is proposed of how Si acts to improve Fe homeostasis under Fe deficiency in cucumber.
PB  - Oxford Univ Press, Oxford
T2  - Annals of Botany
T1  - Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions
EP  - 280
IS  - 2
SP  - 271
VL  - 118
DO  - 10.1093/aob/mcw105
ER  - 
@article{
author = "Pavlović, Jelena and Samardžić, Jelena T. and Kostić Kravljanac, Ljiljana and Laursen, Kristian H. and Natic, Maja and Timotijević, Gordana and Schjoerring, Jan K. and Nikolic, Miroslav",
year = "2016",
abstract = "Background and Aims Retranslocation of iron (Fe) from source tissues enhances plant tolerance to Fe deficiency. Previous work has shown that silicon (Si) can alleviate Fe deficiency by enhancing acquisition and root to shoot translocation of Fe. Here the role of Si in Fe mobilization in older leaves and the subsequent retranslocation of Fe to young leaves of cucumber (Cucumis sativus) plants growing under Fe-limiting conditions was investigated. Methods Iron (Fe-57 or naturally occurring isotopes) was measured in leaves at different positions on plants hydroponically growing with or without Si supply. In parallel, the concentration of the Fe chelator nicotianamine (NA) along with the expression of nicotianamine synthase (NAS) involved in its biosynthesis and the expression of yellow stripe-like (YSL) transcripts mediating Fe-NA transport were also determined. Key Results In plants not receiving Si, approximately half of the total Fe content remained in the oldest leaf. In contrast, Si-treated plants showed an almost even Fe distribution among leaves with four different developmental stages, thus providing evidence of enhanced Fe remobilization from source leaves. This Si-stimulated Fe export was paralleled by an increased NA accumulation and expression of the YSL1 transporter for phloem loading/unloading of the Fe-NA complex. Conclusions The results suggest that Si enhances remobilization of Fe from older to younger leaves by a more efficient NA-mediated Fe transport via the phloem. In addition, from this and previous work, a model is proposed of how Si acts to improve Fe homeostasis under Fe deficiency in cucumber.",
publisher = "Oxford Univ Press, Oxford",
journal = "Annals of Botany",
title = "Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions",
pages = "280-271",
number = "2",
volume = "118",
doi = "10.1093/aob/mcw105"
}
Pavlović, J., Samardžić, J. T., Kostić Kravljanac, L., Laursen, K. H., Natic, M., Timotijević, G., Schjoerring, J. K.,& Nikolic, M.. (2016). Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions. in Annals of Botany
Oxford Univ Press, Oxford., 118(2), 271-280.
https://doi.org/10.1093/aob/mcw105
Pavlović J, Samardžić JT, Kostić Kravljanac L, Laursen KH, Natic M, Timotijević G, Schjoerring JK, Nikolic M. Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions. in Annals of Botany. 2016;118(2):271-280.
doi:10.1093/aob/mcw105 .
Pavlović, Jelena, Samardžić, Jelena T., Kostić Kravljanac, Ljiljana, Laursen, Kristian H., Natic, Maja, Timotijević, Gordana, Schjoerring, Jan K., Nikolic, Miroslav, "Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions" in Annals of Botany, 118, no. 2 (2016):271-280,
https://doi.org/10.1093/aob/mcw105 . .
15
48
28
47

Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis

Timotijević, Gordana; Milisavljević, Mira; Nikolic, Dragana B.; Milovanović, Bosko M.; Nikolic, Dragana S.; Nikolic, Miroslav; Samardžić, Jelena T.

(Društvo genetičara Srbije, Beograd, 2015)

TY  - JOUR
AU  - Timotijević, Gordana
AU  - Milisavljević, Mira
AU  - Nikolic, Dragana B.
AU  - Milovanović, Bosko M.
AU  - Nikolic, Dragana S.
AU  - Nikolic, Miroslav
AU  - Samardžić, Jelena T.
PY  - 2015
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/848
AB  - MicroRNAs (miRNAs) belong to the class of small non-coding RNAs which have important roles throughout development as well as in plant response to diverse environmental stresses. Some of plant miRNAs are essential for regulation and maintenance of nutritive homeostasis when nutrients are in excess or shortage comparing to optimal concentration for certain plant species. Better understanding of miRNAs functions implies development of efficient technology for profiling their gene expression. We set out to establish validate the methodology for miRNA gene expression analysis in cucumber grown under suboptimal mineral nutrient regimes, including iron deficiency. Reverse transcription by "stem-loop" primers in combination with Real time PCR method is one of potential approaches for quantification of miRNA gene expression. In this paper we presented a method for "stem loop" primer design specific for miR398, as well as reaction optimization and determination of Real time PCR efficiency. Proving the accuracy of this method was imperative as "stem loop" RT which consider separate transcription of target and endogenous control. The method was verified by comparison of the obtained data with results of miR398 expression achieved using a commercial kit based on simultaneous conversion of all RNAs in cDNAs.
PB  - Društvo genetičara Srbije, Beograd
T2  - Genetika-Belgrade
T1  - Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis
EP  - 416
IS  - 2
SP  - 405
VL  - 47
DO  - 10.2298/GENSR1502405T
ER  - 
@article{
author = "Timotijević, Gordana and Milisavljević, Mira and Nikolic, Dragana B. and Milovanović, Bosko M. and Nikolic, Dragana S. and Nikolic, Miroslav and Samardžić, Jelena T.",
year = "2015",
abstract = "MicroRNAs (miRNAs) belong to the class of small non-coding RNAs which have important roles throughout development as well as in plant response to diverse environmental stresses. Some of plant miRNAs are essential for regulation and maintenance of nutritive homeostasis when nutrients are in excess or shortage comparing to optimal concentration for certain plant species. Better understanding of miRNAs functions implies development of efficient technology for profiling their gene expression. We set out to establish validate the methodology for miRNA gene expression analysis in cucumber grown under suboptimal mineral nutrient regimes, including iron deficiency. Reverse transcription by "stem-loop" primers in combination with Real time PCR method is one of potential approaches for quantification of miRNA gene expression. In this paper we presented a method for "stem loop" primer design specific for miR398, as well as reaction optimization and determination of Real time PCR efficiency. Proving the accuracy of this method was imperative as "stem loop" RT which consider separate transcription of target and endogenous control. The method was verified by comparison of the obtained data with results of miR398 expression achieved using a commercial kit based on simultaneous conversion of all RNAs in cDNAs.",
publisher = "Društvo genetičara Srbije, Beograd",
journal = "Genetika-Belgrade",
title = "Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis",
pages = "416-405",
number = "2",
volume = "47",
doi = "10.2298/GENSR1502405T"
}
Timotijević, G., Milisavljević, M., Nikolic, D. B., Milovanović, B. M., Nikolic, D. S., Nikolic, M.,& Samardžić, J. T.. (2015). Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis. in Genetika-Belgrade
Društvo genetičara Srbije, Beograd., 47(2), 405-416.
https://doi.org/10.2298/GENSR1502405T
Timotijević G, Milisavljević M, Nikolic DB, Milovanović BM, Nikolic DS, Nikolic M, Samardžić JT. Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis. in Genetika-Belgrade. 2015;47(2):405-416.
doi:10.2298/GENSR1502405T .
Timotijević, Gordana, Milisavljević, Mira, Nikolic, Dragana B., Milovanović, Bosko M., Nikolic, Dragana S., Nikolic, Miroslav, Samardžić, Jelena T., "Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis" in Genetika-Belgrade, 47, no. 2 (2015):405-416,
https://doi.org/10.2298/GENSR1502405T . .

Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast

Pavlović, Jelena; Samardžić, Jelena T.; Maksimović, Vuk; Timotijević, Gordana; Stević, Nenad M; Laursen, Kristian H; Hansen, Thomas H; Husted, Soren; Schjoerring, Jan K; Liang, Yongchao; Nikolic, Miroslav

(Wiley, Hoboken, 2013)

TY  - JOUR
AU  - Pavlović, Jelena
AU  - Samardžić, Jelena T.
AU  - Maksimović, Vuk
AU  - Timotijević, Gordana
AU  - Stević, Nenad M
AU  - Laursen, Kristian H
AU  - Hansen, Thomas H
AU  - Husted, Soren
AU  - Schjoerring, Jan K
AU  - Liang, Yongchao
AU  - Nikolic, Miroslav
PY  - 2013
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/665
AB  - Root responses to lack of iron (Fe) have mainly been studied in nutrient solution experiments devoid of silicon (Si). Here we investigated how Si ameliorates Fe deficiency in cucumber (Cucumis sativus) with focus on the storage and utilization of Fe in the root apoplast. A combined approach was performed including analyses of apoplastic Fe, reduction-based Fe acquisition and Fe-mobilizing compounds in roots along with the expression of related genes. Si-treated plants accumulated higher concentrations of root apoplastic Fe, which rapidly decreased when Fe was withheld from the nutrient solution. Under Fe-deficient conditions, Si also increased the accumulation of Fe-mobilizing compounds in roots. Si supply stimulated root activity of Fe acquisition at the early stage of Fe deficiency stress through regulation of gene expression levels of proteins involved in Fe acquisition. However, when the period of Fe deprivation was extended, these reactions further decreased as a consequence of Si-induced enhancement of the Fe status of the plants. This work provides new evidence for the beneficial role of Si in plant nutrition and clearly indicates that Si-mediated alleviation of Fe deficiency includes an increase of the apoplastic Fe pool in roots and an enhancement of Fe acquisition.
PB  - Wiley, Hoboken
T2  - New Phytologist
T1  - Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast
EP  - 1107
IS  - 4
SP  - 1096
VL  - 198
DO  - 10.1111/nph.12213
ER  - 
@article{
author = "Pavlović, Jelena and Samardžić, Jelena T. and Maksimović, Vuk and Timotijević, Gordana and Stević, Nenad M and Laursen, Kristian H and Hansen, Thomas H and Husted, Soren and Schjoerring, Jan K and Liang, Yongchao and Nikolic, Miroslav",
year = "2013",
abstract = "Root responses to lack of iron (Fe) have mainly been studied in nutrient solution experiments devoid of silicon (Si). Here we investigated how Si ameliorates Fe deficiency in cucumber (Cucumis sativus) with focus on the storage and utilization of Fe in the root apoplast. A combined approach was performed including analyses of apoplastic Fe, reduction-based Fe acquisition and Fe-mobilizing compounds in roots along with the expression of related genes. Si-treated plants accumulated higher concentrations of root apoplastic Fe, which rapidly decreased when Fe was withheld from the nutrient solution. Under Fe-deficient conditions, Si also increased the accumulation of Fe-mobilizing compounds in roots. Si supply stimulated root activity of Fe acquisition at the early stage of Fe deficiency stress through regulation of gene expression levels of proteins involved in Fe acquisition. However, when the period of Fe deprivation was extended, these reactions further decreased as a consequence of Si-induced enhancement of the Fe status of the plants. This work provides new evidence for the beneficial role of Si in plant nutrition and clearly indicates that Si-mediated alleviation of Fe deficiency includes an increase of the apoplastic Fe pool in roots and an enhancement of Fe acquisition.",
publisher = "Wiley, Hoboken",
journal = "New Phytologist",
title = "Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast",
pages = "1107-1096",
number = "4",
volume = "198",
doi = "10.1111/nph.12213"
}
Pavlović, J., Samardžić, J. T., Maksimović, V., Timotijević, G., Stević, N. M., Laursen, K. H., Hansen, T. H., Husted, S., Schjoerring, J. K., Liang, Y.,& Nikolic, M.. (2013). Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. in New Phytologist
Wiley, Hoboken., 198(4), 1096-1107.
https://doi.org/10.1111/nph.12213
Pavlović J, Samardžić JT, Maksimović V, Timotijević G, Stević NM, Laursen KH, Hansen TH, Husted S, Schjoerring JK, Liang Y, Nikolic M. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. in New Phytologist. 2013;198(4):1096-1107.
doi:10.1111/nph.12213 .
Pavlović, Jelena, Samardžić, Jelena T., Maksimović, Vuk, Timotijević, Gordana, Stević, Nenad M, Laursen, Kristian H, Hansen, Thomas H, Husted, Soren, Schjoerring, Jan K, Liang, Yongchao, Nikolic, Miroslav, "Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast" in New Phytologist, 198, no. 4 (2013):1096-1107,
https://doi.org/10.1111/nph.12213 . .
11
184
59
180