Vlahović, Branislav

Link to this page

Authority KeyName Variants
05de9549-25f9-4ca7-b6ff-d97ff576fc6d
  • Vlahović, Branislav (7)
Projects

Author's Bibliography

Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance

Nikolić, Maria Vesna; Labus, Nebojša J.; Pavlović, Vera P.; Marković, Smilja; Luković, Miloljub; Tadić, Nenad B.; Vujančević, Jelena; Vlahović, Branislav; Pavlović, Vladimir B

(Springer, Dordrecht, 2020)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Labus, Nebojša J.
AU  - Pavlović, Vera P.
AU  - Marković, Smilja
AU  - Luković, Miloljub
AU  - Tadić, Nenad B.
AU  - Vujančević, Jelena
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1364
AB  - Nanocrystalline Zn2SnO4/SnO2 powder was obtained by a solid state reaction of ZnO and SnO2 nanopowders mixed in the molar ratio 1:1. The phase composition of the obtained powder was studied by XRD and Raman spectroscopy, morphology and texture were characterized by FESEM, TEM, BET and Hg porosimetry, while XPS and FTIR spectroscopy were used to determine the surface chemistry. The influence of humidity on complex impedance was monitored on bulk samples in the relative humidity (RH) range 30-90% in a climatic chamber in the frequency range 42 Hz- 1 MHz at working temperatures of 25 and 50 degrees C. Change in RH had a significant influence on impedance reduction, especially noticeable in the lower frequency range, indicating potential application of this nanocomposite as a humidity sensing material. Increase in RH led to an increase in AC conductivity that changed with frequency according to the Jonscher power law. The frequency exponent decreased with increase in RH and sample temperature indicating that the correlated hopping barrier model is the dominant conduction mechanism. Complex impedance was analyzed using an equivalent circuit consisting of a parallel resistance and constant phase element, showing the dominant influence of grain boundaries at both working temperatures (25 and 50 degrees C). The resistance decreased, while the capacitance and relaxation frequency increased with increase in RH. At high humidity an added Wartburg element enabled modeling of the charge diffusion process.
PB  - Springer, Dordrecht
T2  - Journal of Electroceramics
T1  - Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance
EP  - 147
IS  - 4
SP  - 135
VL  - 45
DO  - 10.1007/s10832-021-00232-z
ER  - 
@article{
author = "Nikolić, Maria Vesna and Labus, Nebojša J. and Pavlović, Vera P. and Marković, Smilja and Luković, Miloljub and Tadić, Nenad B. and Vujančević, Jelena and Vlahović, Branislav and Pavlović, Vladimir B",
year = "2020",
abstract = "Nanocrystalline Zn2SnO4/SnO2 powder was obtained by a solid state reaction of ZnO and SnO2 nanopowders mixed in the molar ratio 1:1. The phase composition of the obtained powder was studied by XRD and Raman spectroscopy, morphology and texture were characterized by FESEM, TEM, BET and Hg porosimetry, while XPS and FTIR spectroscopy were used to determine the surface chemistry. The influence of humidity on complex impedance was monitored on bulk samples in the relative humidity (RH) range 30-90% in a climatic chamber in the frequency range 42 Hz- 1 MHz at working temperatures of 25 and 50 degrees C. Change in RH had a significant influence on impedance reduction, especially noticeable in the lower frequency range, indicating potential application of this nanocomposite as a humidity sensing material. Increase in RH led to an increase in AC conductivity that changed with frequency according to the Jonscher power law. The frequency exponent decreased with increase in RH and sample temperature indicating that the correlated hopping barrier model is the dominant conduction mechanism. Complex impedance was analyzed using an equivalent circuit consisting of a parallel resistance and constant phase element, showing the dominant influence of grain boundaries at both working temperatures (25 and 50 degrees C). The resistance decreased, while the capacitance and relaxation frequency increased with increase in RH. At high humidity an added Wartburg element enabled modeling of the charge diffusion process.",
publisher = "Springer, Dordrecht",
journal = "Journal of Electroceramics",
title = "Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance",
pages = "147-135",
number = "4",
volume = "45",
doi = "10.1007/s10832-021-00232-z"
}
Nikolić, M. V., Labus, N. J., Pavlović, V. P., Marković, S., Luković, M., Tadić, N. B., Vujančević, J., Vlahović, B.,& Pavlović, V. B.. (2020). Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance. in Journal of Electroceramics
Springer, Dordrecht., 45(4), 135-147.
https://doi.org/10.1007/s10832-021-00232-z
Nikolić MV, Labus NJ, Pavlović VP, Marković S, Luković M, Tadić NB, Vujančević J, Vlahović B, Pavlović VB. Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance. in Journal of Electroceramics. 2020;45(4):135-147.
doi:10.1007/s10832-021-00232-z .
Nikolić, Maria Vesna, Labus, Nebojša J., Pavlović, Vera P., Marković, Smilja, Luković, Miloljub, Tadić, Nenad B., Vujančević, Jelena, Vlahović, Branislav, Pavlović, Vladimir B, "Nanocrystalline Zn2SnO4/SnO2: Crystal structure and humidity influence on complex impedance" in Journal of Electroceramics, 45, no. 4 (2020):135-147,
https://doi.org/10.1007/s10832-021-00232-z . .
5
5

Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing

Nikolić, Maria Vesna; Vasiljević, Zorka Z; Luković, Miloljub; Pavlović, Vera P.; Krstic, Jugoslav B.; Vujančević, Jelena; Tadić, Nenad B.; Vlahović, Branislav; Pavlović, Vladimir B

(Wiley, Hoboken, 2019)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Z
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Krstic, Jugoslav B.
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1261
AB  - Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy and transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the formation of nanocrystalline zinc-ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30%-90% in the frequency range 42 Hz-1 MHz at room temperature (25 degrees C) and 50 degrees C. At 42 Hz at both analyzed temperatures the impedance reduced 46 times in the humidity range 30%-90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.
PB  - Wiley, Hoboken
T2  - International Journal of Applied Ceramic Technology
T1  - Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing
EP  - 993
IS  - 3
SP  - 981
VL  - 16
DO  - 10.1111/ijac.13190
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Z and Luković, Miloljub and Pavlović, Vera P. and Krstic, Jugoslav B. and Vujančević, Jelena and Tadić, Nenad B. and Vlahović, Branislav and Pavlović, Vladimir B",
year = "2019",
abstract = "Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy and transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the formation of nanocrystalline zinc-ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30%-90% in the frequency range 42 Hz-1 MHz at room temperature (25 degrees C) and 50 degrees C. At 42 Hz at both analyzed temperatures the impedance reduced 46 times in the humidity range 30%-90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.",
publisher = "Wiley, Hoboken",
journal = "International Journal of Applied Ceramic Technology",
title = "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing",
pages = "993-981",
number = "3",
volume = "16",
doi = "10.1111/ijac.13190"
}
Nikolić, M. V., Vasiljević, Z. Z., Luković, M., Pavlović, V. P., Krstic, J. B., Vujančević, J., Tadić, N. B., Vlahović, B.,& Pavlović, V. B.. (2019). Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology
Wiley, Hoboken., 16(3), 981-993.
https://doi.org/10.1111/ijac.13190
Nikolić MV, Vasiljević ZZ, Luković M, Pavlović VP, Krstic JB, Vujančević J, Tadić NB, Vlahović B, Pavlović VB. Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology. 2019;16(3):981-993.
doi:10.1111/ijac.13190 .
Nikolić, Maria Vesna, Vasiljević, Zorka Z, Luković, Miloljub, Pavlović, Vera P., Krstic, Jugoslav B., Vujančević, Jelena, Tadić, Nenad B., Vlahović, Branislav, Pavlović, Vladimir B, "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing" in International Journal of Applied Ceramic Technology, 16, no. 3 (2019):981-993,
https://doi.org/10.1111/ijac.13190 . .
37
15
37

Structure and enhanced antimicrobial activity of mechanically activated nano TiO2

Pavlović, Vera P.; Vujančević, Jelena; Masković, Pavle; Ćirković, Jovana; Papan, Jelena M.; Kosanović, Darko; Dramicanin, Miroslav D.; Petrović, Predrag B.; Vlahović, Branislav; Pavlović, Vladimir B

(Wiley, Hoboken, 2019)

TY  - JOUR
AU  - Pavlović, Vera P.
AU  - Vujančević, Jelena
AU  - Masković, Pavle
AU  - Ćirković, Jovana
AU  - Papan, Jelena M.
AU  - Kosanović, Darko
AU  - Dramicanin, Miroslav D.
AU  - Petrović, Predrag B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1229
AB  - Titanium dioxide is a photocatalyst, known not only for its ability to oxidize organic contaminants, but also for its antimicrobial properties. In this article, significant enhancement of the antimicrobial activity of TiO2 (up to 32 times) was demonstrated after its activation by ball milling. The antimicrobial activity was analyzed for one fungal and 13 bacterial ATCC strains using the microdilution method and recording the minimum inhibitory concentration (MIC) values. In order to further investigate the correlation between the mechanical activation of TiO2 and its antimicrobial activity, the structure, morphology and phase composition of the material were studied by means of Electron Microscopy, X-ray diffraction and nitrogen adsorption-desorption measurements. UV-Vis diffuse reflectance spectra were recorded and the Kubelka-Munk function was applied to convert reflectance into the equivalent band gap energy (E-g) and, consequently, to investigate changes in the E-g value. X-ray photoelectron spectroscopy was used to analyze the influence of mechanical activation on the Ti 2p and O 1s spectra. The presented results are expected to enable the development of more sustainable and effective advanced TiO2-based materials with antimicrobial properties that could be used in numerous green technology applications.
PB  - Wiley, Hoboken
T2  - Journal of the American Ceramic Society
T1  - Structure and enhanced antimicrobial activity of mechanically activated nano TiO2
EP  - 7745
IS  - 12
SP  - 7735
VL  - 102
DO  - 10.1111/jace.16668
ER  - 
@article{
author = "Pavlović, Vera P. and Vujančević, Jelena and Masković, Pavle and Ćirković, Jovana and Papan, Jelena M. and Kosanović, Darko and Dramicanin, Miroslav D. and Petrović, Predrag B. and Vlahović, Branislav and Pavlović, Vladimir B",
year = "2019",
abstract = "Titanium dioxide is a photocatalyst, known not only for its ability to oxidize organic contaminants, but also for its antimicrobial properties. In this article, significant enhancement of the antimicrobial activity of TiO2 (up to 32 times) was demonstrated after its activation by ball milling. The antimicrobial activity was analyzed for one fungal and 13 bacterial ATCC strains using the microdilution method and recording the minimum inhibitory concentration (MIC) values. In order to further investigate the correlation between the mechanical activation of TiO2 and its antimicrobial activity, the structure, morphology and phase composition of the material were studied by means of Electron Microscopy, X-ray diffraction and nitrogen adsorption-desorption measurements. UV-Vis diffuse reflectance spectra were recorded and the Kubelka-Munk function was applied to convert reflectance into the equivalent band gap energy (E-g) and, consequently, to investigate changes in the E-g value. X-ray photoelectron spectroscopy was used to analyze the influence of mechanical activation on the Ti 2p and O 1s spectra. The presented results are expected to enable the development of more sustainable and effective advanced TiO2-based materials with antimicrobial properties that could be used in numerous green technology applications.",
publisher = "Wiley, Hoboken",
journal = "Journal of the American Ceramic Society",
title = "Structure and enhanced antimicrobial activity of mechanically activated nano TiO2",
pages = "7745-7735",
number = "12",
volume = "102",
doi = "10.1111/jace.16668"
}
Pavlović, V. P., Vujančević, J., Masković, P., Ćirković, J., Papan, J. M., Kosanović, D., Dramicanin, M. D., Petrović, P. B., Vlahović, B.,& Pavlović, V. B.. (2019). Structure and enhanced antimicrobial activity of mechanically activated nano TiO2. in Journal of the American Ceramic Society
Wiley, Hoboken., 102(12), 7735-7745.
https://doi.org/10.1111/jace.16668
Pavlović VP, Vujančević J, Masković P, Ćirković J, Papan JM, Kosanović D, Dramicanin MD, Petrović PB, Vlahović B, Pavlović VB. Structure and enhanced antimicrobial activity of mechanically activated nano TiO2. in Journal of the American Ceramic Society. 2019;102(12):7735-7745.
doi:10.1111/jace.16668 .
Pavlović, Vera P., Vujančević, Jelena, Masković, Pavle, Ćirković, Jovana, Papan, Jelena M., Kosanović, Darko, Dramicanin, Miroslav D., Petrović, Predrag B., Vlahović, Branislav, Pavlović, Vladimir B, "Structure and enhanced antimicrobial activity of mechanically activated nano TiO2" in Journal of the American Ceramic Society, 102, no. 12 (2019):7735-7745,
https://doi.org/10.1111/jace.16668 . .
13
4
12

Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films

Nikolić, Maria Vesna; Vasiljević, Zorka Z; Luković, Miloljub; Pavlović, Vera P.; Vujančević, Jelena; Radovanović, Milan; Krstić, Jugoslav B.; Vlahović, Branislav; Pavlović, Vladimir B

(Elsevier, 2018)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Z
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Vujančević, Jelena
AU  - Radovanović, Milan
AU  - Krstić, Jugoslav B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1553
AB  - Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (α-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 °C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz–1 MHz with humidity was analyzed at room temperature (25 °C) and 50 °C in the relative humidity range 30–90% and 40–90%, respectively. At 42 Hz, and room temperature the impedance reduced ∼28 times, while at 50 °C it reduced ∼147 times in the relative humidity range 40–90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 °C and 2.64% at 50 °C) showing that this is a promising material for application in humidity sensing.
PB  - Elsevier
T2  - Sensors and Actuators B: Chemical
T1  - Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films
EP  - 664
SP  - 654
VL  - 277
DO  - 10.1016/j.snb.2018.09.063
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Z and Luković, Miloljub and Pavlović, Vera P. and Vujančević, Jelena and Radovanović, Milan and Krstić, Jugoslav B. and Vlahović, Branislav and Pavlović, Vladimir B",
year = "2018",
abstract = "Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (α-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 °C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz–1 MHz with humidity was analyzed at room temperature (25 °C) and 50 °C in the relative humidity range 30–90% and 40–90%, respectively. At 42 Hz, and room temperature the impedance reduced ∼28 times, while at 50 °C it reduced ∼147 times in the relative humidity range 40–90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 °C and 2.64% at 50 °C) showing that this is a promising material for application in humidity sensing.",
publisher = "Elsevier",
journal = "Sensors and Actuators B: Chemical",
title = "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films",
pages = "664-654",
volume = "277",
doi = "10.1016/j.snb.2018.09.063"
}
Nikolić, M. V., Vasiljević, Z. Z., Luković, M., Pavlović, V. P., Vujančević, J., Radovanović, M., Krstić, J. B., Vlahović, B.,& Pavlović, V. B.. (2018). Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. in Sensors and Actuators B: Chemical
Elsevier., 277, 654-664.
https://doi.org/10.1016/j.snb.2018.09.063
Nikolić MV, Vasiljević ZZ, Luković M, Pavlović VP, Vujančević J, Radovanović M, Krstić JB, Vlahović B, Pavlović VB. Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. in Sensors and Actuators B: Chemical. 2018;277:654-664.
doi:10.1016/j.snb.2018.09.063 .
Nikolić, Maria Vesna, Vasiljević, Zorka Z, Luković, Miloljub, Pavlović, Vera P., Vujančević, Jelena, Radovanović, Milan, Krstić, Jugoslav B., Vlahović, Branislav, Pavlović, Vladimir B, "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films" in Sensors and Actuators B: Chemical, 277 (2018):654-664,
https://doi.org/10.1016/j.snb.2018.09.063 . .
40
22
38

Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films

Nikolić, Maria Vesna; Vasiljević, Zorka Z; Luković, Miloljub; Pavlović, Vera P.; Vujančević, Jelena; Radovanović, Milan; Krstić, Jugoslav B.; Vlahović, Branislav; Pavlović, Vladimir B

(Elsevier Science Sa, Lausanne, 2018)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Z
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Vujančević, Jelena
AU  - Radovanović, Milan
AU  - Krstić, Jugoslav B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1112
AB  - Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (alpha-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 degrees C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz-1 MHz with humidity was analyzed at room temperature (25 degrees C) and 50 degrees C in the relative humidity range 30-90% and 40-90%, respectively. At 42 Hz, and room temperature the impedance reduced similar to 28 times, while at 50 degrees C it reduced similar to 147 times in the relative humidity range 40-90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 degrees C and 2.64% at 50 degrees C) showing that this is a promising material for application in humidity sensing.
PB  - Elsevier Science Sa, Lausanne
T2  - Sensors and Actuators B-Chemical
T1  - Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films
EP  - 664
SP  - 654
VL  - 277
DO  - 10.1016/j.snb.2018.09.063
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Z and Luković, Miloljub and Pavlović, Vera P. and Vujančević, Jelena and Radovanović, Milan and Krstić, Jugoslav B. and Vlahović, Branislav and Pavlović, Vladimir B",
year = "2018",
abstract = "Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (alpha-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 degrees C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz-1 MHz with humidity was analyzed at room temperature (25 degrees C) and 50 degrees C in the relative humidity range 30-90% and 40-90%, respectively. At 42 Hz, and room temperature the impedance reduced similar to 28 times, while at 50 degrees C it reduced similar to 147 times in the relative humidity range 40-90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 degrees C and 2.64% at 50 degrees C) showing that this is a promising material for application in humidity sensing.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Sensors and Actuators B-Chemical",
title = "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films",
pages = "664-654",
volume = "277",
doi = "10.1016/j.snb.2018.09.063"
}
Nikolić, M. V., Vasiljević, Z. Z., Luković, M., Pavlović, V. P., Vujančević, J., Radovanović, M., Krstić, J. B., Vlahović, B.,& Pavlović, V. B.. (2018). Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. in Sensors and Actuators B-Chemical
Elsevier Science Sa, Lausanne., 277, 654-664.
https://doi.org/10.1016/j.snb.2018.09.063
Nikolić MV, Vasiljević ZZ, Luković M, Pavlović VP, Vujančević J, Radovanović M, Krstić JB, Vlahović B, Pavlović VB. Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. in Sensors and Actuators B-Chemical. 2018;277:654-664.
doi:10.1016/j.snb.2018.09.063 .
Nikolić, Maria Vesna, Vasiljević, Zorka Z, Luković, Miloljub, Pavlović, Vera P., Vujančević, Jelena, Radovanović, Milan, Krstić, Jugoslav B., Vlahović, Branislav, Pavlović, Vladimir B, "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films" in Sensors and Actuators B-Chemical, 277 (2018):654-664,
https://doi.org/10.1016/j.snb.2018.09.063 . .
40
22
38

Structure and photocatalytic properties of sintered TiO2 nanotube arrays

Vujančević, Jelena; Bjelajac, Anđelika; Ćirković, Jovana; Pavlović, Vera P.; Horvath, Endre; Forro, Laszlo; Vlahović, Branislav; Mitrić, Miodrag; Janacković, Đorđe; Pavlović, Vladimir B

(Međunarodni Institut za nauku o sinterovanju, Beograd, 2018)

TY  - JOUR
AU  - Vujančević, Jelena
AU  - Bjelajac, Anđelika
AU  - Ćirković, Jovana
AU  - Pavlović, Vera P.
AU  - Horvath, Endre
AU  - Forro, Laszlo
AU  - Vlahović, Branislav
AU  - Mitrić, Miodrag
AU  - Janacković, Đorđe
AU  - Pavlović, Vladimir B
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1125
AB  - One-dimensional (1D) TiO2 nanotubes perpendicular to the substrate were obtained by electrochemical oxidation of titanium foil in an acid electrolyte. In order to alter the crystallinity and the morphology of films the as-anodized amorphous TiO2 nanotube films were sintered at elevated temperatures. The evolution of the morphology was visualized via scanning electron microscopy (SEM), while the crystalline structure was investigated by Xray diffraction (XRD) and Raman spectroscopy. The chemical composition was studied by Xray photoelectron spectroscopy (XPS). The effects of crystallinity and morphology of TiO2 nanotube (NTs) films on photocatalytic degradation of methyl orange (MO) in an aqueous solution under UV light irradiation were also investigated. The TiO2 nanotubes sintered at 650 degrees C for 30 min had the highest degree of crystallinity and exhibited the best photocatalytic activity among the studied TiO2 nanotube films.
PB  - Međunarodni Institut za nauku o sinterovanju, Beograd
T2  - Science of Sintering
T1  - Structure and photocatalytic properties of sintered TiO2 nanotube arrays
EP  - 50
IS  - 1
SP  - 39
VL  - 50
DO  - 10.2298/SOS1801039V
ER  - 
@article{
author = "Vujančević, Jelena and Bjelajac, Anđelika and Ćirković, Jovana and Pavlović, Vera P. and Horvath, Endre and Forro, Laszlo and Vlahović, Branislav and Mitrić, Miodrag and Janacković, Đorđe and Pavlović, Vladimir B",
year = "2018",
abstract = "One-dimensional (1D) TiO2 nanotubes perpendicular to the substrate were obtained by electrochemical oxidation of titanium foil in an acid electrolyte. In order to alter the crystallinity and the morphology of films the as-anodized amorphous TiO2 nanotube films were sintered at elevated temperatures. The evolution of the morphology was visualized via scanning electron microscopy (SEM), while the crystalline structure was investigated by Xray diffraction (XRD) and Raman spectroscopy. The chemical composition was studied by Xray photoelectron spectroscopy (XPS). The effects of crystallinity and morphology of TiO2 nanotube (NTs) films on photocatalytic degradation of methyl orange (MO) in an aqueous solution under UV light irradiation were also investigated. The TiO2 nanotubes sintered at 650 degrees C for 30 min had the highest degree of crystallinity and exhibited the best photocatalytic activity among the studied TiO2 nanotube films.",
publisher = "Međunarodni Institut za nauku o sinterovanju, Beograd",
journal = "Science of Sintering",
title = "Structure and photocatalytic properties of sintered TiO2 nanotube arrays",
pages = "50-39",
number = "1",
volume = "50",
doi = "10.2298/SOS1801039V"
}
Vujančević, J., Bjelajac, A., Ćirković, J., Pavlović, V. P., Horvath, E., Forro, L., Vlahović, B., Mitrić, M., Janacković, Đ.,& Pavlović, V. B.. (2018). Structure and photocatalytic properties of sintered TiO2 nanotube arrays. in Science of Sintering
Međunarodni Institut za nauku o sinterovanju, Beograd., 50(1), 39-50.
https://doi.org/10.2298/SOS1801039V
Vujančević J, Bjelajac A, Ćirković J, Pavlović VP, Horvath E, Forro L, Vlahović B, Mitrić M, Janacković Đ, Pavlović VB. Structure and photocatalytic properties of sintered TiO2 nanotube arrays. in Science of Sintering. 2018;50(1):39-50.
doi:10.2298/SOS1801039V .
Vujančević, Jelena, Bjelajac, Anđelika, Ćirković, Jovana, Pavlović, Vera P., Horvath, Endre, Forro, Laszlo, Vlahović, Branislav, Mitrić, Miodrag, Janacković, Đorđe, Pavlović, Vladimir B, "Structure and photocatalytic properties of sintered TiO2 nanotube arrays" in Science of Sintering, 50, no. 1 (2018):39-50,
https://doi.org/10.2298/SOS1801039V . .
8
9
11

Raman Responses in Mechanically Activated BaTiO3

Pavlović, Vera P.; Nikolić, Maria Vesna; Pavlović, Vladimir B; Blanusa, Jovan L; Stevanović, Suzana; Mitic, Vojislav V; Šćepanović, Maja; Vlahović, Branislav

(Wiley, Hoboken, 2014)

TY  - JOUR
AU  - Pavlović, Vera P.
AU  - Nikolić, Maria Vesna
AU  - Pavlović, Vladimir B
AU  - Blanusa, Jovan L
AU  - Stevanović, Suzana
AU  - Mitic, Vojislav V
AU  - Šćepanović, Maja
AU  - Vlahović, Branislav
PY  - 2014
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/761
AB  - The structure and lattice dynamics of mechanically activated BaTiO3 was investigated in this study. Phonon behavior and crystal structure stability of the obtained nanocrystalline BaTiO3 were discussed from the view point of crystallite size effects and microstrains induced by mechanical activation. A systematic study of Raman responses indicates that mechanical activation has a distinct influence on BaTiO3 lattice spectra affecting the intensity, width, and position of Raman modes. The measured Raman spectra were deconvoluted and phonon parameters were estimated. It has been established that applied mechanical activation leads to a significant decrease in the mean crystallites size, but nevertheless enables formation of tetragonal nanocrystalline BaTiO3.
PB  - Wiley, Hoboken
T2  - Journal of the American Ceramic Society
T1  - Raman Responses in Mechanically Activated BaTiO3
EP  - 608
IS  - 2
SP  - 601
VL  - 97
DO  - 10.1111/jace.12423
ER  - 
@article{
author = "Pavlović, Vera P. and Nikolić, Maria Vesna and Pavlović, Vladimir B and Blanusa, Jovan L and Stevanović, Suzana and Mitic, Vojislav V and Šćepanović, Maja and Vlahović, Branislav",
year = "2014",
abstract = "The structure and lattice dynamics of mechanically activated BaTiO3 was investigated in this study. Phonon behavior and crystal structure stability of the obtained nanocrystalline BaTiO3 were discussed from the view point of crystallite size effects and microstrains induced by mechanical activation. A systematic study of Raman responses indicates that mechanical activation has a distinct influence on BaTiO3 lattice spectra affecting the intensity, width, and position of Raman modes. The measured Raman spectra were deconvoluted and phonon parameters were estimated. It has been established that applied mechanical activation leads to a significant decrease in the mean crystallites size, but nevertheless enables formation of tetragonal nanocrystalline BaTiO3.",
publisher = "Wiley, Hoboken",
journal = "Journal of the American Ceramic Society",
title = "Raman Responses in Mechanically Activated BaTiO3",
pages = "608-601",
number = "2",
volume = "97",
doi = "10.1111/jace.12423"
}
Pavlović, V. P., Nikolić, M. V., Pavlović, V. B., Blanusa, J. L., Stevanović, S., Mitic, V. V., Šćepanović, M.,& Vlahović, B.. (2014). Raman Responses in Mechanically Activated BaTiO3. in Journal of the American Ceramic Society
Wiley, Hoboken., 97(2), 601-608.
https://doi.org/10.1111/jace.12423
Pavlović VP, Nikolić MV, Pavlović VB, Blanusa JL, Stevanović S, Mitic VV, Šćepanović M, Vlahović B. Raman Responses in Mechanically Activated BaTiO3. in Journal of the American Ceramic Society. 2014;97(2):601-608.
doi:10.1111/jace.12423 .
Pavlović, Vera P., Nikolić, Maria Vesna, Pavlović, Vladimir B, Blanusa, Jovan L, Stevanović, Suzana, Mitic, Vojislav V, Šćepanović, Maja, Vlahović, Branislav, "Raman Responses in Mechanically Activated BaTiO3" in Journal of the American Ceramic Society, 97, no. 2 (2014):601-608,
https://doi.org/10.1111/jace.12423 . .
19
15
21