Rogan, Jelena

Link to this page

Authority KeyName Variants
4fb6c990-3577-43e9-9dc5-804cf1bc05b0
  • Rogan, Jelena (2)

Author's Bibliography

Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor

Radovanović, Lidija; Radovanović, Zeljko; Simović, Bojana; Vasić (prev. Arsenović), Milica; Balanč, Bojana; Dapčević, Aleksandra; Dramićanin, Miroslav; Rogan, Jelena

(Srpsko hemijsko društvo, Beograd, 2023)

TY  - JOUR
AU  - Radovanović, Lidija
AU  - Radovanović, Zeljko
AU  - Simović, Bojana
AU  - Vasić (prev. Arsenović), Milica
AU  - Balanč, Bojana
AU  - Dapčević, Aleksandra
AU  - Dramićanin, Miroslav
AU  - Rogan, Jelena
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1891
AB  - A biphasic [Mn(dipya)(H2O)4](tpht)/{[Zn(dipya)(tpht)]•H2O}n complex material, I, (dipya = 2,2’-dipyridylamine, tpht2- = dianion of terephthalatic acid) was synthesized by ligand exchange reaction and characterized by XRPD and FTIR spectroscopy. A ZnO/ZnMn2O4 composite, II, has been prepared via thermal decomposition of precursor I in an air atmosphere at 450°C. XRPD, FTIR and FESEM analyses of II revealed the simultaneous presence of spherical nanoparticles of wurtzite ZnO and elongated nanoparticles of spinel ZnMn2O4. The specific surface area of II was determined by the BET method, whereas the volume and average size of the mesopores were calculated in accordance with the BJH method. The measurements of the mean size, polydispersity index and zeta potential showed colloidal instability of II. Two band gap values of 2.4 and 3.3 eV were determined using UV-Vis diffuse reflectance spectroscopy, while the measurements of photoluminescence revealed that II is active in the blue region of the visible spectrum. Testing of composite II as a pigmentary material showed that it can be used for the colouring of a ceramic glaze.
AB  - Двофазни [Mn(dipya)(H2O)4](tpht)/{[Zn(dipya)(tpht)]·H2O}n комплексни материјал, I,
(dipya = 2,2’-дипиридиламин, tpht2– = дианјон 1,4-бензендикарбоксилне киселине) синтетисан је реакцијом измене лиганада и окарактерисан XRPD мeтoдом и FTIR спектроскопијом. Композит ZnO/ZnMn2O4, II, добијен је термичком разградњом прекурcopa I у атмосфери ваздуха на 450 °C. XRPD мeтoдом, FTIR спектроскопијом и FESEM микроскопијом композита II утврђено је истовремено присуство сферних наночестица ZnO
вирцитне структуре и издужених наночестица ZnMn2O4 са структуром спинела. Специфична површина II одређена је BET методом, док су запремина и просечна величина мезопора израчунати у складу са BJH методом. Средња величина, индекс полидисперзије и цета потенцијал измерени су фотонском корелационом спектроскопијом и електрофоретским расејањем светлости и показали су нестабилност композита II. Вредности
ширине забрањене зоне 2,4 и 3,3 eV одређене су UV-Vis дифузно-рефлексионом спектроскопијом, док су мерења фотолуминесценције показала да је II активан у плавој области видљивог дела спектра. Испитивање композита II као пигментног материјала показало је да се може користити за бојење керамичке глазуре.
PB  - Srpsko hemijsko društvo, Beograd
T2  - Journal of the Serbian Chemical Society
T1  - Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor
EP  - 325
IS  - 3
SP  - 313
VL  - 88
DO  - 10.2298/JSC221102090R
ER  - 
@article{
author = "Radovanović, Lidija and Radovanović, Zeljko and Simović, Bojana and Vasić (prev. Arsenović), Milica and Balanč, Bojana and Dapčević, Aleksandra and Dramićanin, Miroslav and Rogan, Jelena",
year = "2023",
abstract = "A biphasic [Mn(dipya)(H2O)4](tpht)/{[Zn(dipya)(tpht)]•H2O}n complex material, I, (dipya = 2,2’-dipyridylamine, tpht2- = dianion of terephthalatic acid) was synthesized by ligand exchange reaction and characterized by XRPD and FTIR spectroscopy. A ZnO/ZnMn2O4 composite, II, has been prepared via thermal decomposition of precursor I in an air atmosphere at 450°C. XRPD, FTIR and FESEM analyses of II revealed the simultaneous presence of spherical nanoparticles of wurtzite ZnO and elongated nanoparticles of spinel ZnMn2O4. The specific surface area of II was determined by the BET method, whereas the volume and average size of the mesopores were calculated in accordance with the BJH method. The measurements of the mean size, polydispersity index and zeta potential showed colloidal instability of II. Two band gap values of 2.4 and 3.3 eV were determined using UV-Vis diffuse reflectance spectroscopy, while the measurements of photoluminescence revealed that II is active in the blue region of the visible spectrum. Testing of composite II as a pigmentary material showed that it can be used for the colouring of a ceramic glaze., Двофазни [Mn(dipya)(H2O)4](tpht)/{[Zn(dipya)(tpht)]·H2O}n комплексни материјал, I,
(dipya = 2,2’-дипиридиламин, tpht2– = дианјон 1,4-бензендикарбоксилне киселине) синтетисан је реакцијом измене лиганада и окарактерисан XRPD мeтoдом и FTIR спектроскопијом. Композит ZnO/ZnMn2O4, II, добијен је термичком разградњом прекурcopa I у атмосфери ваздуха на 450 °C. XRPD мeтoдом, FTIR спектроскопијом и FESEM микроскопијом композита II утврђено је истовремено присуство сферних наночестица ZnO
вирцитне структуре и издужених наночестица ZnMn2O4 са структуром спинела. Специфична површина II одређена је BET методом, док су запремина и просечна величина мезопора израчунати у складу са BJH методом. Средња величина, индекс полидисперзије и цета потенцијал измерени су фотонском корелационом спектроскопијом и електрофоретским расејањем светлости и показали су нестабилност композита II. Вредности
ширине забрањене зоне 2,4 и 3,3 eV одређене су UV-Vis дифузно-рефлексионом спектроскопијом, док су мерења фотолуминесценције показала да је II активан у плавој области видљивог дела спектра. Испитивање композита II као пигментног материјала показало је да се може користити за бојење керамичке глазуре.",
publisher = "Srpsko hemijsko društvo, Beograd",
journal = "Journal of the Serbian Chemical Society",
title = "Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor",
pages = "325-313",
number = "3",
volume = "88",
doi = "10.2298/JSC221102090R"
}
Radovanović, L., Radovanović, Z., Simović, B., Vasić (prev. Arsenović), M., Balanč, B., Dapčević, A., Dramićanin, M.,& Rogan, J.. (2023). Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor. in Journal of the Serbian Chemical Society
Srpsko hemijsko društvo, Beograd., 88(3), 313-325.
https://doi.org/10.2298/JSC221102090R
Radovanović L, Radovanović Z, Simović B, Vasić (prev. Arsenović) M, Balanč B, Dapčević A, Dramićanin M, Rogan J. Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor. in Journal of the Serbian Chemical Society. 2023;88(3):313-325.
doi:10.2298/JSC221102090R .
Radovanović, Lidija, Radovanović, Zeljko, Simović, Bojana, Vasić (prev. Arsenović), Milica, Balanč, Bojana, Dapčević, Aleksandra, Dramićanin, Miroslav, Rogan, Jelena, "Structure and properties of ZnO/ZnMn2O4 composite obtained by thermal decomposition of terephthalate precursor" in Journal of the Serbian Chemical Society, 88, no. 3 (2023):313-325,
https://doi.org/10.2298/JSC221102090R . .

Tm(III)-doped d-Bi2O3 for solid - oxide fuel cells

Dapčevć, Aleksandra; Dejan, Poleti; Rogan, Jelena; Radojković, Aleksandar

(Univerzitet u Beogradu, Tehnološko-metalurški fakultet, 2013)

TY  - CONF
AU  - Dapčevć, Aleksandra
AU  - Dejan, Poleti
AU  - Rogan, Jelena
AU  - Radojković, Aleksandar
PY  - 2013
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2890
AB  - The oxide ion conductors have widely been investigated because of their application in many
devices with high economical and ecological interests, such as solid oxide fuel cells (SOFC).
-Bi2O3
 polymorph possesses the highest known O2–
 ion conductivity, which is one to two
orders of magnitude higher than that of stabilized zirconia at corresponding temperatures [1].
At the moment, the application of this high-temperature polymorph as an electrolyte in SOFC
requires temperatures above 730 °C. However, the doping allows -Bi2O3
 stabilization to room
temperature and opens the possibility for construction of SOFC that will operate at
intermediate temperatures (ca. 350 °C) [2].
As it is found that some lanthanides are suitable dopants [3], the possibility to stabilize O2–
 ion
conductors related to the -Bi2O3
 polymorph in the Bi2O3–Tm2O3
 system was investigated. Two
starting mixtures with compositions (Bi1–xTmx
)2O3
 (x = 0.04 and 0.20) were homogenized in an
agate mortar, heat treated at 750 °C for 3 h and then slowly furnace cooled. The samples were
characterized by XRPD, DTA and SEI techniques.
Based on XRPD, the single-phase tetragonal β-Bi2O3
 was identified in the sample with x = 0.04.
Its unit cell parameters, a = 7.742(2) and c = 5.650(2) Å, well-correspond to those of undoped
β-Bi2O3
 [4]. On the other hand, the cubic -Bi2O3
 phase was obtained in the sample with
x = 0.20. Its unit cell parameter was greater than the value reported for Tm-doped -Bi2O3
sample with x = 0.25 [3] (5.5033(9) vs. 5.478 Å). Both values are smaller than reported for
undoped -Bi2O3
 [4]. This means that the unit cell parameter of cubic -Bi2O3
 decreases as
Tm-content increases and it is in accordance with Tm3+ and Bi3+ ionic radii [5].
For the sample with x = 0.04, cyclic DTA curves showed one reversible β-Bi2O3 ↔ -Bi2O3
transition with corresponding temperatures: on heating, 660 °C, and, on cooling, 600 °C.
Surprisingly, no phase transitions were observed in the sample with x = 0.20 which indicates
that the obtained -Bi2O3
 is stable within the whole investigated interval, i.e., from room
temperature to 1000 °C.
Electrochemical impedance of -Bi2O3
 phase was measured in the following temperature
range: 300 – 800 °C. At higher temperatures (600 – 800 °C) the conductivities are similar
(0.11 – 0.32 S cm
–1
), but with lowering temperature they rapidly decrease, and amount, for
example, 2.1·10–5
 S cm–1
at 300 °C. As a consequence, two activation energies are found:
0.45(4) eV (600 – 800 °C), and 1.33(2) eV (300 – 600 °C).
References:
[1] P. Shuk, H.-D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Solid State Ionics 89 (1996) 179
[2] E. D. Wachsman, K.T. Lee, Science 334 (2011) 935
[3] H. T. Cahen, T. G. M. Van Den Belt, J. H. W. De Wit, G. H. J. Broers, Solid State Ionics 1 (1980) 411
[4] H. A. Harwig, Z. anorg. allg. Chem. 444 (1978) 151
[5] R. D. Shannon, Acta Cryst. A 32 (1976) 751
PB  - Univerzitet u Beogradu, Tehnološko-metalurški fakultet
C3  - 8 th International Conference of the Chemical Societies of the South-East European Countries
T1  - Tm(III)-doped d-Bi2O3 for solid - oxide fuel cells
SP  - 188
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2890
ER  - 
@conference{
author = "Dapčevć, Aleksandra and Dejan, Poleti and Rogan, Jelena and Radojković, Aleksandar",
year = "2013",
abstract = "The oxide ion conductors have widely been investigated because of their application in many
devices with high economical and ecological interests, such as solid oxide fuel cells (SOFC).
-Bi2O3
 polymorph possesses the highest known O2–
 ion conductivity, which is one to two
orders of magnitude higher than that of stabilized zirconia at corresponding temperatures [1].
At the moment, the application of this high-temperature polymorph as an electrolyte in SOFC
requires temperatures above 730 °C. However, the doping allows -Bi2O3
 stabilization to room
temperature and opens the possibility for construction of SOFC that will operate at
intermediate temperatures (ca. 350 °C) [2].
As it is found that some lanthanides are suitable dopants [3], the possibility to stabilize O2–
 ion
conductors related to the -Bi2O3
 polymorph in the Bi2O3–Tm2O3
 system was investigated. Two
starting mixtures with compositions (Bi1–xTmx
)2O3
 (x = 0.04 and 0.20) were homogenized in an
agate mortar, heat treated at 750 °C for 3 h and then slowly furnace cooled. The samples were
characterized by XRPD, DTA and SEI techniques.
Based on XRPD, the single-phase tetragonal β-Bi2O3
 was identified in the sample with x = 0.04.
Its unit cell parameters, a = 7.742(2) and c = 5.650(2) Å, well-correspond to those of undoped
β-Bi2O3
 [4]. On the other hand, the cubic -Bi2O3
 phase was obtained in the sample with
x = 0.20. Its unit cell parameter was greater than the value reported for Tm-doped -Bi2O3
sample with x = 0.25 [3] (5.5033(9) vs. 5.478 Å). Both values are smaller than reported for
undoped -Bi2O3
 [4]. This means that the unit cell parameter of cubic -Bi2O3
 decreases as
Tm-content increases and it is in accordance with Tm3+ and Bi3+ ionic radii [5].
For the sample with x = 0.04, cyclic DTA curves showed one reversible β-Bi2O3 ↔ -Bi2O3
transition with corresponding temperatures: on heating, 660 °C, and, on cooling, 600 °C.
Surprisingly, no phase transitions were observed in the sample with x = 0.20 which indicates
that the obtained -Bi2O3
 is stable within the whole investigated interval, i.e., from room
temperature to 1000 °C.
Electrochemical impedance of -Bi2O3
 phase was measured in the following temperature
range: 300 – 800 °C. At higher temperatures (600 – 800 °C) the conductivities are similar
(0.11 – 0.32 S cm
–1
), but with lowering temperature they rapidly decrease, and amount, for
example, 2.1·10–5
 S cm–1
at 300 °C. As a consequence, two activation energies are found:
0.45(4) eV (600 – 800 °C), and 1.33(2) eV (300 – 600 °C).
References:
[1] P. Shuk, H.-D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Solid State Ionics 89 (1996) 179
[2] E. D. Wachsman, K.T. Lee, Science 334 (2011) 935
[3] H. T. Cahen, T. G. M. Van Den Belt, J. H. W. De Wit, G. H. J. Broers, Solid State Ionics 1 (1980) 411
[4] H. A. Harwig, Z. anorg. allg. Chem. 444 (1978) 151
[5] R. D. Shannon, Acta Cryst. A 32 (1976) 751",
publisher = "Univerzitet u Beogradu, Tehnološko-metalurški fakultet",
journal = "8 th International Conference of the Chemical Societies of the South-East European Countries",
title = "Tm(III)-doped d-Bi2O3 for solid - oxide fuel cells",
pages = "188",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2890"
}
Dapčevć, A., Dejan, P., Rogan, J.,& Radojković, A.. (2013). Tm(III)-doped d-Bi2O3 for solid - oxide fuel cells. in 8 th International Conference of the Chemical Societies of the South-East European Countries
Univerzitet u Beogradu, Tehnološko-metalurški fakultet., 188.
https://hdl.handle.net/21.15107/rcub_rimsi_2890
Dapčevć A, Dejan P, Rogan J, Radojković A. Tm(III)-doped d-Bi2O3 for solid - oxide fuel cells. in 8 th International Conference of the Chemical Societies of the South-East European Countries. 2013;:188.
https://hdl.handle.net/21.15107/rcub_rimsi_2890 .
Dapčevć, Aleksandra, Dejan, Poleti, Rogan, Jelena, Radojković, Aleksandar, "Tm(III)-doped d-Bi2O3 for solid - oxide fuel cells" in 8 th International Conference of the Chemical Societies of the South-East European Countries (2013):188,
https://hdl.handle.net/21.15107/rcub_rimsi_2890 .