MERCADELLI, ELISA

Link to this page

Authority KeyName Variants
e4f95726-a09f-446f-93dc-3df7d3f5cb97
  • MERCADELLI, ELISA (2)
Projects
No records found.

Author's Bibliography

Energy Harvesting Potential of Polymer Composites

Vijatović Petrović, Mirjana; Cordero, Francesco; MERCADELLI, ELISA; Brunengo, Elisabetta; Ilić, Nikola; Galassi, Carmen; Despotovic, Zeljko V.; Bobić, Jelena; Džunuzović, Adis; Stagnaro, Paola; Canu, Giovanna; Craciun, Floriana

(7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain, 2023)

TY  - CONF
AU  - Vijatović Petrović, Mirjana
AU  - Cordero, Francesco
AU  - MERCADELLI, ELISA
AU  - Brunengo, Elisabetta
AU  - Ilić, Nikola
AU  - Galassi, Carmen
AU  - Despotovic, Zeljko V.
AU  - Bobić, Jelena
AU  - Džunuzović, Adis
AU  - Stagnaro, Paola
AU  - Canu, Giovanna
AU  - Craciun, Floriana
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2423
AB  - Energy  is  available  all  around  us  in  different  forms  and  shapes  such  as  from  sun,  wind,  waves,  vibrations  etc. The  enormous  amount  of  mechanical  energy  released  in  everyday  life  by  human  walking,  transportation   movement,   sound   waves   and   other,    represent   renewable   and   safe   energy   source.   Piezoelectric  generators  exhibit  a  great  potential  for  powering  up  low-power  portable  devices  and  self-powered  electronic  systems  by  extraction  of  mechanical  energy.  Employment  of  lead-free  piezoelectric  materials will  be  a  breakthrough  of  a  completely  new  type  of  safe  and  harmless  production  of  energy  for  daily life. Recent challenge in electronics is also utilization of flexible electronics with the ability to bend into diverse shapes which expands the applications of modern electronic devices in different areas.Polymer PVDF/piezoelectric ceramics,  flexible  composite  films  were  prepared  by  hot  pressing  method. The  influence  of  hot  pressing  method  on  the  formation  of  electroactive  PVDF  phases  in  the  polymer was proven by FTIR analysis.  DSC analysis have shown the change of PVDF crystallinity degree in  the  flexible  films  with  addition  of  ceramics  filler  particles.  The  dielectric  permittivity value  increased  with the addition of filler in the polymer matrix while the relaxation processes were governed mostly by the PVDF matrix. Polarization of flexible films enhanced the formation of PVDF electroactive β- phase in the samples. Energy  harvesting  potential  was  studied  by measuring  of voltage  output  under  the  impulse  hammer load.
PB  - 7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain
C3  - 7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain
T1  - Energy Harvesting Potential of Polymer Composites
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2423
ER  - 
@conference{
author = "Vijatović Petrović, Mirjana and Cordero, Francesco and MERCADELLI, ELISA and Brunengo, Elisabetta and Ilić, Nikola and Galassi, Carmen and Despotovic, Zeljko V. and Bobić, Jelena and Džunuzović, Adis and Stagnaro, Paola and Canu, Giovanna and Craciun, Floriana",
year = "2023",
abstract = "Energy  is  available  all  around  us  in  different  forms  and  shapes  such  as  from  sun,  wind,  waves,  vibrations  etc. The  enormous  amount  of  mechanical  energy  released  in  everyday  life  by  human  walking,  transportation   movement,   sound   waves   and   other,    represent   renewable   and   safe   energy   source.   Piezoelectric  generators  exhibit  a  great  potential  for  powering  up  low-power  portable  devices  and  self-powered  electronic  systems  by  extraction  of  mechanical  energy.  Employment  of  lead-free  piezoelectric  materials will  be  a  breakthrough  of  a  completely  new  type  of  safe  and  harmless  production  of  energy  for  daily life. Recent challenge in electronics is also utilization of flexible electronics with the ability to bend into diverse shapes which expands the applications of modern electronic devices in different areas.Polymer PVDF/piezoelectric ceramics,  flexible  composite  films  were  prepared  by  hot  pressing  method. The  influence  of  hot  pressing  method  on  the  formation  of  electroactive  PVDF  phases  in  the  polymer was proven by FTIR analysis.  DSC analysis have shown the change of PVDF crystallinity degree in  the  flexible  films  with  addition  of  ceramics  filler  particles.  The  dielectric  permittivity value  increased  with the addition of filler in the polymer matrix while the relaxation processes were governed mostly by the PVDF matrix. Polarization of flexible films enhanced the formation of PVDF electroactive β- phase in the samples. Energy  harvesting  potential  was  studied  by measuring  of voltage  output  under  the  impulse  hammer load.",
publisher = "7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain",
journal = "7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain",
title = "Energy Harvesting Potential of Polymer Composites",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2423"
}
Vijatović Petrović, M., Cordero, F., MERCADELLI, E., Brunengo, E., Ilić, N., Galassi, C., Despotovic, Z. V., Bobić, J., Džunuzović, A., Stagnaro, P., Canu, G.,& Craciun, F.. (2023). Energy Harvesting Potential of Polymer Composites. in 7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain
7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain..
https://hdl.handle.net/21.15107/rcub_rimsi_2423
Vijatović Petrović M, Cordero F, MERCADELLI E, Brunengo E, Ilić N, Galassi C, Despotovic ZV, Bobić J, Džunuzović A, Stagnaro P, Canu G, Craciun F. Energy Harvesting Potential of Polymer Composites. in 7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain. 2023;.
https://hdl.handle.net/21.15107/rcub_rimsi_2423 .
Vijatović Petrović, Mirjana, Cordero, Francesco, MERCADELLI, ELISA, Brunengo, Elisabetta, Ilić, Nikola, Galassi, Carmen, Despotovic, Zeljko V., Bobić, Jelena, Džunuzović, Adis, Stagnaro, Paola, Canu, Giovanna, Craciun, Floriana, "Energy Harvesting Potential of Polymer Composites" in 7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain (2023),
https://hdl.handle.net/21.15107/rcub_rimsi_2423 .

Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology

Craciun, Floriana; Cordero, Francesco; MERCADELLI, ELISA; Ilić, Nikola; Galassi, Carmen; Baldisserri, Carlo; Bobić, Jelena; Stagnaro, Paola; Canu, Giovanna; Buscaglia, Maria Teresa; Džunuzović, Adis; Vijatović Petrović, Mirjana

(Elsevier Ltd, 2023)

TY  - JOUR
AU  - Craciun, Floriana
AU  - Cordero, Francesco
AU  - MERCADELLI, ELISA
AU  - Ilić, Nikola
AU  - Galassi, Carmen
AU  - Baldisserri, Carlo
AU  - Bobić, Jelena
AU  - Stagnaro, Paola
AU  - Canu, Giovanna
AU  - Buscaglia, Maria Teresa
AU  - Džunuzović, Adis
AU  - Vijatović Petrović, Mirjana
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2125
AB  - In the last years, ultrasound energy harvesting has emerged as the most promising technique for wireless power supply of implanted medical devices. These devices require flexible piezoelectric materials with high piezoelectric response in the ultrasonic range. Here we report on bio-compatible NBT-BT/PVDF flexible composites, with variable filler content up to 50 vol%, prepared by a properly designed and optimized process, which incorporates in a complex connectivity pattern fully sintered NBT-BT crystalline powders in a PVDF matrix. The dielectric constant of the flexible composites increased from 10 of pure PVDF polymer to 110 of composite films with 50 vol% NBT-BT content, while the high frequency piezoelectric d33 constant increased from 0.2 pC/N to 33 pC/N for the same samples. The composite with 50 vol% NBT-BT exhibits the figure of merit for the harvested ultrasound energy d33g33 ≅ 1.54 × 10−12 m3/J, which is comparable to the figure of merit for the NBT-BT piezoelectric ceramic (1.8 × 10−12 m3/J) and higher than other reported results for random composites. Based on these results, this study provides an easy method to fabricate random flexible piezoelectric composites with enhanced high frequency piezoelectric response and high energy density harvested from an ultrasound source.
PB  - Elsevier Ltd
T2  - Composites Part B: Engineering
T1  - Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology
SP  - 110835
VL  - 263
DO  - 10.1016/j.compositesb.2023.110835
ER  - 
@article{
author = "Craciun, Floriana and Cordero, Francesco and MERCADELLI, ELISA and Ilić, Nikola and Galassi, Carmen and Baldisserri, Carlo and Bobić, Jelena and Stagnaro, Paola and Canu, Giovanna and Buscaglia, Maria Teresa and Džunuzović, Adis and Vijatović Petrović, Mirjana",
year = "2023",
abstract = "In the last years, ultrasound energy harvesting has emerged as the most promising technique for wireless power supply of implanted medical devices. These devices require flexible piezoelectric materials with high piezoelectric response in the ultrasonic range. Here we report on bio-compatible NBT-BT/PVDF flexible composites, with variable filler content up to 50 vol%, prepared by a properly designed and optimized process, which incorporates in a complex connectivity pattern fully sintered NBT-BT crystalline powders in a PVDF matrix. The dielectric constant of the flexible composites increased from 10 of pure PVDF polymer to 110 of composite films with 50 vol% NBT-BT content, while the high frequency piezoelectric d33 constant increased from 0.2 pC/N to 33 pC/N for the same samples. The composite with 50 vol% NBT-BT exhibits the figure of merit for the harvested ultrasound energy d33g33 ≅ 1.54 × 10−12 m3/J, which is comparable to the figure of merit for the NBT-BT piezoelectric ceramic (1.8 × 10−12 m3/J) and higher than other reported results for random composites. Based on these results, this study provides an easy method to fabricate random flexible piezoelectric composites with enhanced high frequency piezoelectric response and high energy density harvested from an ultrasound source.",
publisher = "Elsevier Ltd",
journal = "Composites Part B: Engineering",
title = "Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology",
pages = "110835",
volume = "263",
doi = "10.1016/j.compositesb.2023.110835"
}
Craciun, F., Cordero, F., MERCADELLI, E., Ilić, N., Galassi, C., Baldisserri, C., Bobić, J., Stagnaro, P., Canu, G., Buscaglia, M. T., Džunuzović, A.,& Vijatović Petrović, M.. (2023). Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology. in Composites Part B: Engineering
Elsevier Ltd., 263, 110835.
https://doi.org/10.1016/j.compositesb.2023.110835
Craciun F, Cordero F, MERCADELLI E, Ilić N, Galassi C, Baldisserri C, Bobić J, Stagnaro P, Canu G, Buscaglia MT, Džunuzović A, Vijatović Petrović M. Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology. in Composites Part B: Engineering. 2023;263:110835.
doi:10.1016/j.compositesb.2023.110835 .
Craciun, Floriana, Cordero, Francesco, MERCADELLI, ELISA, Ilić, Nikola, Galassi, Carmen, Baldisserri, Carlo, Bobić, Jelena, Stagnaro, Paola, Canu, Giovanna, Buscaglia, Maria Teresa, Džunuzović, Adis, Vijatović Petrović, Mirjana, "Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology" in Composites Part B: Engineering, 263 (2023):110835,
https://doi.org/10.1016/j.compositesb.2023.110835 . .
1
8