Galassi, Carmen

Link to this page

Authority KeyName Variants
7ffdae44-76fc-4857-ae24-71358a7ed4ad
  • Galassi, Carmen (2)
Projects
No records found.

Author's Bibliography

ENHANCED PROPERTIES OF PVDF COMPOSITES BY ACTIVE PHASE SILANIZATION

Vijatović Petrović, Mirjana; Craciun, Floriana; Cordero, Francesco; MERCADELLI, ELISA; Ilić, Nikola; Despotovic, Zeljko V.; Bobić, Jelena; Džunuzović, Adis; Galassi, Carmen; Stagnaro, Paola; Canu, Giovanna; Buscaglia, Maria Teresa; Brunengo, Elisabetta

(The Serbian Society for Ceramic Materials, 2023)

TY  - CONF
AU  - Vijatović Petrović, Mirjana
AU  - Craciun, Floriana
AU  - Cordero, Francesco
AU  - MERCADELLI, ELISA
AU  - Ilić, Nikola
AU  - Despotovic, Zeljko V.
AU  - Bobić, Jelena
AU  - Džunuzović, Adis
AU  - Galassi, Carmen
AU  - Stagnaro, Paola
AU  - Canu, Giovanna
AU  - Buscaglia, Maria Teresa
AU  - Brunengo, Elisabetta
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2430
AB  - 0.94[(Bi0.5Na0.5)TiO3]-0.06BaTiO3/polyvinylidene fluoride flexible composite films were prepared by the hot-pressing method. Surface modification of active phase particles was performed using two coupling agents, namely, (3- aminopropyl)triethoxysilane (APTES) and dodecyl triethoxysilane (DDTES) to enable good adhesion of active phase particles with the polymer matrix. The highest amount of electroactive PVDF β- phase was formed in APTES-modified samples while in DDTES samples mainly γ- phase was formed. Dielectric permittivity values and dielectric losses decreased for silanized samples due to reduced tension at the interface between particles and polymer. Strong intermolecular interaction between the PVDF chains and the APTES-modified particles led to enhanced breakdown strength of these samples. After the polarization of films, energy harvesting potential was evaluated for all samples. The highest voltage output of ~ 15 V and power ~ 225 μW were obtained for a single APTES-modified harvester [1-2].
PB  - The Serbian Society for Ceramic Materials
C3  - 7th Conference of The Serbian Society for Ceramic Materials
T1  - ENHANCED PROPERTIES OF PVDF COMPOSITES BY ACTIVE PHASE SILANIZATION
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2430
ER  - 
@conference{
author = "Vijatović Petrović, Mirjana and Craciun, Floriana and Cordero, Francesco and MERCADELLI, ELISA and Ilić, Nikola and Despotovic, Zeljko V. and Bobić, Jelena and Džunuzović, Adis and Galassi, Carmen and Stagnaro, Paola and Canu, Giovanna and Buscaglia, Maria Teresa and Brunengo, Elisabetta",
year = "2023",
abstract = "0.94[(Bi0.5Na0.5)TiO3]-0.06BaTiO3/polyvinylidene fluoride flexible composite films were prepared by the hot-pressing method. Surface modification of active phase particles was performed using two coupling agents, namely, (3- aminopropyl)triethoxysilane (APTES) and dodecyl triethoxysilane (DDTES) to enable good adhesion of active phase particles with the polymer matrix. The highest amount of electroactive PVDF β- phase was formed in APTES-modified samples while in DDTES samples mainly γ- phase was formed. Dielectric permittivity values and dielectric losses decreased for silanized samples due to reduced tension at the interface between particles and polymer. Strong intermolecular interaction between the PVDF chains and the APTES-modified particles led to enhanced breakdown strength of these samples. After the polarization of films, energy harvesting potential was evaluated for all samples. The highest voltage output of ~ 15 V and power ~ 225 μW were obtained for a single APTES-modified harvester [1-2].",
publisher = "The Serbian Society for Ceramic Materials",
journal = "7th Conference of The Serbian Society for Ceramic Materials",
title = "ENHANCED PROPERTIES OF PVDF COMPOSITES BY ACTIVE PHASE SILANIZATION",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2430"
}
Vijatović Petrović, M., Craciun, F., Cordero, F., MERCADELLI, E., Ilić, N., Despotovic, Z. V., Bobić, J., Džunuzović, A., Galassi, C., Stagnaro, P., Canu, G., Buscaglia, M. T.,& Brunengo, E.. (2023). ENHANCED PROPERTIES OF PVDF COMPOSITES BY ACTIVE PHASE SILANIZATION. in 7th Conference of The Serbian Society for Ceramic Materials
The Serbian Society for Ceramic Materials..
https://hdl.handle.net/21.15107/rcub_rimsi_2430
Vijatović Petrović M, Craciun F, Cordero F, MERCADELLI E, Ilić N, Despotovic ZV, Bobić J, Džunuzović A, Galassi C, Stagnaro P, Canu G, Buscaglia MT, Brunengo E. ENHANCED PROPERTIES OF PVDF COMPOSITES BY ACTIVE PHASE SILANIZATION. in 7th Conference of The Serbian Society for Ceramic Materials. 2023;.
https://hdl.handle.net/21.15107/rcub_rimsi_2430 .
Vijatović Petrović, Mirjana, Craciun, Floriana, Cordero, Francesco, MERCADELLI, ELISA, Ilić, Nikola, Despotovic, Zeljko V., Bobić, Jelena, Džunuzović, Adis, Galassi, Carmen, Stagnaro, Paola, Canu, Giovanna, Buscaglia, Maria Teresa, Brunengo, Elisabetta, "ENHANCED PROPERTIES OF PVDF COMPOSITES BY ACTIVE PHASE SILANIZATION" in 7th Conference of The Serbian Society for Ceramic Materials (2023),
https://hdl.handle.net/21.15107/rcub_rimsi_2430 .

Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology

Craciun, Floriana; Cordero, Francesco; MERCADELLI, ELISA; Ilić, Nikola; Galassi, Carmen; Baldisserri, Carlo; Bobić, Jelena; Stagnaro, Paola; Canu, Giovanna; Buscaglia, Maria Teresa; Džunuzović, Adis; Vijatović Petrović, Mirjana

(Elsevier Ltd, 2023)

TY  - JOUR
AU  - Craciun, Floriana
AU  - Cordero, Francesco
AU  - MERCADELLI, ELISA
AU  - Ilić, Nikola
AU  - Galassi, Carmen
AU  - Baldisserri, Carlo
AU  - Bobić, Jelena
AU  - Stagnaro, Paola
AU  - Canu, Giovanna
AU  - Buscaglia, Maria Teresa
AU  - Džunuzović, Adis
AU  - Vijatović Petrović, Mirjana
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2125
AB  - In the last years, ultrasound energy harvesting has emerged as the most promising technique for wireless power supply of implanted medical devices. These devices require flexible piezoelectric materials with high piezoelectric response in the ultrasonic range. Here we report on bio-compatible NBT-BT/PVDF flexible composites, with variable filler content up to 50 vol%, prepared by a properly designed and optimized process, which incorporates in a complex connectivity pattern fully sintered NBT-BT crystalline powders in a PVDF matrix. The dielectric constant of the flexible composites increased from 10 of pure PVDF polymer to 110 of composite films with 50 vol% NBT-BT content, while the high frequency piezoelectric d33 constant increased from 0.2 pC/N to 33 pC/N for the same samples. The composite with 50 vol% NBT-BT exhibits the figure of merit for the harvested ultrasound energy d33g33 ≅ 1.54 × 10−12 m3/J, which is comparable to the figure of merit for the NBT-BT piezoelectric ceramic (1.8 × 10−12 m3/J) and higher than other reported results for random composites. Based on these results, this study provides an easy method to fabricate random flexible piezoelectric composites with enhanced high frequency piezoelectric response and high energy density harvested from an ultrasound source.
PB  - Elsevier Ltd
T2  - Composites Part B: Engineering
T1  - Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology
SP  - 110835
VL  - 263
DO  - 10.1016/j.compositesb.2023.110835
ER  - 
@article{
author = "Craciun, Floriana and Cordero, Francesco and MERCADELLI, ELISA and Ilić, Nikola and Galassi, Carmen and Baldisserri, Carlo and Bobić, Jelena and Stagnaro, Paola and Canu, Giovanna and Buscaglia, Maria Teresa and Džunuzović, Adis and Vijatović Petrović, Mirjana",
year = "2023",
abstract = "In the last years, ultrasound energy harvesting has emerged as the most promising technique for wireless power supply of implanted medical devices. These devices require flexible piezoelectric materials with high piezoelectric response in the ultrasonic range. Here we report on bio-compatible NBT-BT/PVDF flexible composites, with variable filler content up to 50 vol%, prepared by a properly designed and optimized process, which incorporates in a complex connectivity pattern fully sintered NBT-BT crystalline powders in a PVDF matrix. The dielectric constant of the flexible composites increased from 10 of pure PVDF polymer to 110 of composite films with 50 vol% NBT-BT content, while the high frequency piezoelectric d33 constant increased from 0.2 pC/N to 33 pC/N for the same samples. The composite with 50 vol% NBT-BT exhibits the figure of merit for the harvested ultrasound energy d33g33 ≅ 1.54 × 10−12 m3/J, which is comparable to the figure of merit for the NBT-BT piezoelectric ceramic (1.8 × 10−12 m3/J) and higher than other reported results for random composites. Based on these results, this study provides an easy method to fabricate random flexible piezoelectric composites with enhanced high frequency piezoelectric response and high energy density harvested from an ultrasound source.",
publisher = "Elsevier Ltd",
journal = "Composites Part B: Engineering",
title = "Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology",
pages = "110835",
volume = "263",
doi = "10.1016/j.compositesb.2023.110835"
}
Craciun, F., Cordero, F., MERCADELLI, E., Ilić, N., Galassi, C., Baldisserri, C., Bobić, J., Stagnaro, P., Canu, G., Buscaglia, M. T., Džunuzović, A.,& Vijatović Petrović, M.. (2023). Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology. in Composites Part B: Engineering
Elsevier Ltd., 263, 110835.
https://doi.org/10.1016/j.compositesb.2023.110835
Craciun F, Cordero F, MERCADELLI E, Ilić N, Galassi C, Baldisserri C, Bobić J, Stagnaro P, Canu G, Buscaglia MT, Džunuzović A, Vijatović Petrović M. Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology. in Composites Part B: Engineering. 2023;263:110835.
doi:10.1016/j.compositesb.2023.110835 .
Craciun, Floriana, Cordero, Francesco, MERCADELLI, ELISA, Ilić, Nikola, Galassi, Carmen, Baldisserri, Carlo, Bobić, Jelena, Stagnaro, Paola, Canu, Giovanna, Buscaglia, Maria Teresa, Džunuzović, Adis, Vijatović Petrović, Mirjana, "Flexible composite films with enhanced piezoelectric properties for energy harvesting and wireless ultrasound-powered technology" in Composites Part B: Engineering, 263 (2023):110835,
https://doi.org/10.1016/j.compositesb.2023.110835 . .
1
8