Despotovic, Zeljko V.

Link to this page

Authority KeyName Variants
2cf5d99c-5985-49f2-a52d-66832babf7b8
  • Despotovic, Zeljko V. (3)
Projects
No records found.

Author's Bibliography

Energy Harvesting Potential of Polymer Composites

Vijatović Petrović, Mirjana; Cordero, Francesco; MERCADELLI, ELISA; Brunengo, Elisabetta; Ilić, Nikola; Galassi, Carmen; Despotovic, Zeljko V.; Bobić, Jelena; Džunuzović, Adis; Stagnaro, Paola; Canu, Giovanna; Craciun, Floriana

(7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain, 2023)

TY  - CONF
AU  - Vijatović Petrović, Mirjana
AU  - Cordero, Francesco
AU  - MERCADELLI, ELISA
AU  - Brunengo, Elisabetta
AU  - Ilić, Nikola
AU  - Galassi, Carmen
AU  - Despotovic, Zeljko V.
AU  - Bobić, Jelena
AU  - Džunuzović, Adis
AU  - Stagnaro, Paola
AU  - Canu, Giovanna
AU  - Craciun, Floriana
PY  - 2023
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2423
AB  - Energy  is  available  all  around  us  in  different  forms  and  shapes  such  as  from  sun,  wind,  waves,  vibrations  etc. The  enormous  amount  of  mechanical  energy  released  in  everyday  life  by  human  walking,  transportation   movement,   sound   waves   and   other,    represent   renewable   and   safe   energy   source.   Piezoelectric  generators  exhibit  a  great  potential  for  powering  up  low-power  portable  devices  and  self-powered  electronic  systems  by  extraction  of  mechanical  energy.  Employment  of  lead-free  piezoelectric  materials will  be  a  breakthrough  of  a  completely  new  type  of  safe  and  harmless  production  of  energy  for  daily life. Recent challenge in electronics is also utilization of flexible electronics with the ability to bend into diverse shapes which expands the applications of modern electronic devices in different areas.Polymer PVDF/piezoelectric ceramics,  flexible  composite  films  were  prepared  by  hot  pressing  method. The  influence  of  hot  pressing  method  on  the  formation  of  electroactive  PVDF  phases  in  the  polymer was proven by FTIR analysis.  DSC analysis have shown the change of PVDF crystallinity degree in  the  flexible  films  with  addition  of  ceramics  filler  particles.  The  dielectric  permittivity value  increased  with the addition of filler in the polymer matrix while the relaxation processes were governed mostly by the PVDF matrix. Polarization of flexible films enhanced the formation of PVDF electroactive β- phase in the samples. Energy  harvesting  potential  was  studied  by measuring  of voltage  output  under  the  impulse  hammer load.
PB  - 7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain
C3  - 7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain
T1  - Energy Harvesting Potential of Polymer Composites
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2423
ER  - 
@conference{
author = "Vijatović Petrović, Mirjana and Cordero, Francesco and MERCADELLI, ELISA and Brunengo, Elisabetta and Ilić, Nikola and Galassi, Carmen and Despotovic, Zeljko V. and Bobić, Jelena and Džunuzović, Adis and Stagnaro, Paola and Canu, Giovanna and Craciun, Floriana",
year = "2023",
abstract = "Energy  is  available  all  around  us  in  different  forms  and  shapes  such  as  from  sun,  wind,  waves,  vibrations  etc. The  enormous  amount  of  mechanical  energy  released  in  everyday  life  by  human  walking,  transportation   movement,   sound   waves   and   other,    represent   renewable   and   safe   energy   source.   Piezoelectric  generators  exhibit  a  great  potential  for  powering  up  low-power  portable  devices  and  self-powered  electronic  systems  by  extraction  of  mechanical  energy.  Employment  of  lead-free  piezoelectric  materials will  be  a  breakthrough  of  a  completely  new  type  of  safe  and  harmless  production  of  energy  for  daily life. Recent challenge in electronics is also utilization of flexible electronics with the ability to bend into diverse shapes which expands the applications of modern electronic devices in different areas.Polymer PVDF/piezoelectric ceramics,  flexible  composite  films  were  prepared  by  hot  pressing  method. The  influence  of  hot  pressing  method  on  the  formation  of  electroactive  PVDF  phases  in  the  polymer was proven by FTIR analysis.  DSC analysis have shown the change of PVDF crystallinity degree in  the  flexible  films  with  addition  of  ceramics  filler  particles.  The  dielectric  permittivity value  increased  with the addition of filler in the polymer matrix while the relaxation processes were governed mostly by the PVDF matrix. Polarization of flexible films enhanced the formation of PVDF electroactive β- phase in the samples. Energy  harvesting  potential  was  studied  by measuring  of voltage  output  under  the  impulse  hammer load.",
publisher = "7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain",
journal = "7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain",
title = "Energy Harvesting Potential of Polymer Composites",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2423"
}
Vijatović Petrović, M., Cordero, F., MERCADELLI, E., Brunengo, E., Ilić, N., Galassi, C., Despotovic, Z. V., Bobić, J., Džunuzović, A., Stagnaro, P., Canu, G.,& Craciun, F.. (2023). Energy Harvesting Potential of Polymer Composites. in 7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain
7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain..
https://hdl.handle.net/21.15107/rcub_rimsi_2423
Vijatović Petrović M, Cordero F, MERCADELLI E, Brunengo E, Ilić N, Galassi C, Despotovic ZV, Bobić J, Džunuzović A, Stagnaro P, Canu G, Craciun F. Energy Harvesting Potential of Polymer Composites. in 7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain. 2023;.
https://hdl.handle.net/21.15107/rcub_rimsi_2423 .
Vijatović Petrović, Mirjana, Cordero, Francesco, MERCADELLI, ELISA, Brunengo, Elisabetta, Ilić, Nikola, Galassi, Carmen, Despotovic, Zeljko V., Bobić, Jelena, Džunuzović, Adis, Stagnaro, Paola, Canu, Giovanna, Craciun, Floriana, "Energy Harvesting Potential of Polymer Composites" in 7th World Congress on Materials science and Engineering, 5th World Congress on Lasers, Optics and Photonics, joint event, Valencia, Spain (2023),
https://hdl.handle.net/21.15107/rcub_rimsi_2423 .

LEAD BASED (PZT) AND LEAD FREE (BZT) COMPOSITES FLEXIBLE FILMS AS LOW-ENERGY PIEZOELECTRIC HARVESTERS

Bobić, Jelena; Ilić, Nikola; Despotovic, Zeljko V.; Džunuzović, Adis; Grigalaitis, Robertas; Stijepovic, Ivan; Vijatović Petrović, Mirjana

(The Serbian Society for Ceramic Materials, 2022)

TY  - CONF
AU  - Bobić, Jelena
AU  - Ilić, Nikola
AU  - Despotovic, Zeljko V.
AU  - Džunuzović, Adis
AU  - Grigalaitis, Robertas
AU  - Stijepovic, Ivan
AU  - Vijatović Petrović, Mirjana
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2447
AB  - Various alternative renewable sources such as solar, wind, thermal energy and
mechanical vibrations are available for the energy generations. For the last decades,
energy harvesters based on piezoelectricity from mechanical vibration are explored
extensively for its functionality in energy technologies [1,2]. Flexible piezoelectric
energy harvesters (FPEHs) and energy storage system were fabricated by employing
solid state synthesized lead-free BZT (BaZr0.2Ti0.8O3) and PZT (PbZr0.52Ti0.48O3)
nanopowders prepared by autocombustion method with polyvinylidene fluoride
(PVDF) in different volume percentage (xBZT/PZT-(1-x)PVDF, x=30, 40, 50).
Both flexible films with quite homogeneous distribution of piezo-active filler were
confirmed by XRD and SEM analysis. In addition, the remnant polarization (Pr) and
dielectric constant are also investigated to evaluate the breakdown strength in
flexible films. The improved dielectric loss tangent (< 0.02) and dielectric
permittivity of 120 at room temperature and frequency 1 MHz of BZT-PVDF (50-
50) in comparison with neat PVDF films is found beneficial for both energy
harvesting and storage. Calculations of storage energies obtained for the investigated
materials revealed an increasing trend with increasing amount of active phase (BZT
and PZT). The maximum storage energy of 0.11 J/cm3 and 0.13 J/cm3, and energy
efficiency (η) of 72% and 39% was obtained for BZT-PVDF (50-50) and PZTPVDF
(40-60) films, respectively. Test of the force impact showing similar output
voltage of around 4 V for both, BZT and PZT flexible films.
PB  - The Serbian Society for Ceramic Materials
C3  - 6th Conference of The Serbian Society for Ceramic Materials
T1  - LEAD BASED (PZT) AND LEAD FREE (BZT) COMPOSITES FLEXIBLE FILMS AS LOW-ENERGY PIEZOELECTRIC HARVESTERS
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2447
ER  - 
@conference{
author = "Bobić, Jelena and Ilić, Nikola and Despotovic, Zeljko V. and Džunuzović, Adis and Grigalaitis, Robertas and Stijepovic, Ivan and Vijatović Petrović, Mirjana",
year = "2022",
abstract = "Various alternative renewable sources such as solar, wind, thermal energy and
mechanical vibrations are available for the energy generations. For the last decades,
energy harvesters based on piezoelectricity from mechanical vibration are explored
extensively for its functionality in energy technologies [1,2]. Flexible piezoelectric
energy harvesters (FPEHs) and energy storage system were fabricated by employing
solid state synthesized lead-free BZT (BaZr0.2Ti0.8O3) and PZT (PbZr0.52Ti0.48O3)
nanopowders prepared by autocombustion method with polyvinylidene fluoride
(PVDF) in different volume percentage (xBZT/PZT-(1-x)PVDF, x=30, 40, 50).
Both flexible films with quite homogeneous distribution of piezo-active filler were
confirmed by XRD and SEM analysis. In addition, the remnant polarization (Pr) and
dielectric constant are also investigated to evaluate the breakdown strength in
flexible films. The improved dielectric loss tangent (< 0.02) and dielectric
permittivity of 120 at room temperature and frequency 1 MHz of BZT-PVDF (50-
50) in comparison with neat PVDF films is found beneficial for both energy
harvesting and storage. Calculations of storage energies obtained for the investigated
materials revealed an increasing trend with increasing amount of active phase (BZT
and PZT). The maximum storage energy of 0.11 J/cm3 and 0.13 J/cm3, and energy
efficiency (η) of 72% and 39% was obtained for BZT-PVDF (50-50) and PZTPVDF
(40-60) films, respectively. Test of the force impact showing similar output
voltage of around 4 V for both, BZT and PZT flexible films.",
publisher = "The Serbian Society for Ceramic Materials",
journal = "6th Conference of The Serbian Society for Ceramic Materials",
title = "LEAD BASED (PZT) AND LEAD FREE (BZT) COMPOSITES FLEXIBLE FILMS AS LOW-ENERGY PIEZOELECTRIC HARVESTERS",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2447"
}
Bobić, J., Ilić, N., Despotovic, Z. V., Džunuzović, A., Grigalaitis, R., Stijepovic, I.,& Vijatović Petrović, M.. (2022). LEAD BASED (PZT) AND LEAD FREE (BZT) COMPOSITES FLEXIBLE FILMS AS LOW-ENERGY PIEZOELECTRIC HARVESTERS. in 6th Conference of The Serbian Society for Ceramic Materials
The Serbian Society for Ceramic Materials..
https://hdl.handle.net/21.15107/rcub_rimsi_2447
Bobić J, Ilić N, Despotovic ZV, Džunuzović A, Grigalaitis R, Stijepovic I, Vijatović Petrović M. LEAD BASED (PZT) AND LEAD FREE (BZT) COMPOSITES FLEXIBLE FILMS AS LOW-ENERGY PIEZOELECTRIC HARVESTERS. in 6th Conference of The Serbian Society for Ceramic Materials. 2022;.
https://hdl.handle.net/21.15107/rcub_rimsi_2447 .
Bobić, Jelena, Ilić, Nikola, Despotovic, Zeljko V., Džunuzović, Adis, Grigalaitis, Robertas, Stijepovic, Ivan, Vijatović Petrović, Mirjana, "LEAD BASED (PZT) AND LEAD FREE (BZT) COMPOSITES FLEXIBLE FILMS AS LOW-ENERGY PIEZOELECTRIC HARVESTERS" in 6th Conference of The Serbian Society for Ceramic Materials (2022),
https://hdl.handle.net/21.15107/rcub_rimsi_2447 .

MECHANICAL ENERGY HARVESTING POTENTIAL OF BiFeO3-PVDF FLEXIBLE COMPOSITES

Ilić, Nikola; Vijatović Petrović, Mirjana; Despotovic, Zeljko V.; Bobić, Jelena; Džunuzović, Adis; Ferreira Teixeira, Guilhermina

(Faculty of Technology, University of Novi Sad, 2021)

TY  - CONF
AU  - Ilić, Nikola
AU  - Vijatović Petrović, Mirjana
AU  - Despotovic, Zeljko V.
AU  - Bobić, Jelena
AU  - Džunuzović, Adis
AU  - Ferreira Teixeira, Guilhermina
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/2457
AB  - Bismuth ferrite (BiFeO3) powders were synthesized by sol-gel methods and incorporated into flexible composites by hot pressing with polyvinylidene fluoride (α-PVDF). Several metal ions with various valances were used to dope BiFeO3 in order to examine their influence on electrical properties. XRD characterization confirmed that almost all of the dopants incorporated very well into the perovskite structure. Microstructural study showed that the composites are homogeneous with thickness of 50 to 140 μm. Dielectric, impedance and ferroelectric properties of composite samples showed that all of the dopants even those with smaller valence than the ions they substitute enhance the capability to handle the electric field. α-PVDF matrix also helped in preventing electrical breakdown comparing to BiFeO3 ceramics, which is usually susceptible to high leakage. Flexible composites were subjected to impact piezoelectric test with the idea to study their potential to collect mechanical energy from the surrounding vibrations.
PB  - Faculty of Technology, University of Novi Sad
C3  - 14th ECerS Conference for Young Scientists in Ceramics, CYSC-2021 Novi Sad, Serbia, October 20-23, 2021
T1  - MECHANICAL ENERGY HARVESTING POTENTIAL OF BiFeO3-PVDF FLEXIBLE COMPOSITES
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_2457
ER  - 
@conference{
author = "Ilić, Nikola and Vijatović Petrović, Mirjana and Despotovic, Zeljko V. and Bobić, Jelena and Džunuzović, Adis and Ferreira Teixeira, Guilhermina",
year = "2021",
abstract = "Bismuth ferrite (BiFeO3) powders were synthesized by sol-gel methods and incorporated into flexible composites by hot pressing with polyvinylidene fluoride (α-PVDF). Several metal ions with various valances were used to dope BiFeO3 in order to examine their influence on electrical properties. XRD characterization confirmed that almost all of the dopants incorporated very well into the perovskite structure. Microstructural study showed that the composites are homogeneous with thickness of 50 to 140 μm. Dielectric, impedance and ferroelectric properties of composite samples showed that all of the dopants even those with smaller valence than the ions they substitute enhance the capability to handle the electric field. α-PVDF matrix also helped in preventing electrical breakdown comparing to BiFeO3 ceramics, which is usually susceptible to high leakage. Flexible composites were subjected to impact piezoelectric test with the idea to study their potential to collect mechanical energy from the surrounding vibrations.",
publisher = "Faculty of Technology, University of Novi Sad",
journal = "14th ECerS Conference for Young Scientists in Ceramics, CYSC-2021 Novi Sad, Serbia, October 20-23, 2021",
title = "MECHANICAL ENERGY HARVESTING POTENTIAL OF BiFeO3-PVDF FLEXIBLE COMPOSITES",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_2457"
}
Ilić, N., Vijatović Petrović, M., Despotovic, Z. V., Bobić, J., Džunuzović, A.,& Ferreira Teixeira, G.. (2021). MECHANICAL ENERGY HARVESTING POTENTIAL OF BiFeO3-PVDF FLEXIBLE COMPOSITES. in 14th ECerS Conference for Young Scientists in Ceramics, CYSC-2021 Novi Sad, Serbia, October 20-23, 2021
Faculty of Technology, University of Novi Sad..
https://hdl.handle.net/21.15107/rcub_rimsi_2457
Ilić N, Vijatović Petrović M, Despotovic ZV, Bobić J, Džunuzović A, Ferreira Teixeira G. MECHANICAL ENERGY HARVESTING POTENTIAL OF BiFeO3-PVDF FLEXIBLE COMPOSITES. in 14th ECerS Conference for Young Scientists in Ceramics, CYSC-2021 Novi Sad, Serbia, October 20-23, 2021. 2021;.
https://hdl.handle.net/21.15107/rcub_rimsi_2457 .
Ilić, Nikola, Vijatović Petrović, Mirjana, Despotovic, Zeljko V., Bobić, Jelena, Džunuzović, Adis, Ferreira Teixeira, Guilhermina, "MECHANICAL ENERGY HARVESTING POTENTIAL OF BiFeO3-PVDF FLEXIBLE COMPOSITES" in 14th ECerS Conference for Young Scientists in Ceramics, CYSC-2021 Novi Sad, Serbia, October 20-23, 2021 (2021),
https://hdl.handle.net/21.15107/rcub_rimsi_2457 .