Krstić, Jugoslav B.

Link to this page

Authority KeyName Variants
orcid::0000-0003-0321-0698
  • Krstić, Jugoslav B. (5)
  • Krstić, Jugoslav (2)
  • Krstic, Jugoslav B. (2)
  • Krstic, J. (1)
  • Krstic, Jelena D (1)
  • Krstic, Jugoslav (1)
Projects
Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing Lithium-ion batteries and fuel cells - research and development
Directed synthesis, structure and properties of multifunctional materials BI-RS-18-19-026]
Physics of nanostructured oxide materials and strongly correlated systems Development of Methods of Monitoring and Removal of Biologically Actives Substances Aimed at Improving the Quality of the Environment
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200053 (University of Belgrade, Institute for Multidisciplinary Research)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200146 (University of Belgrade, Faculty of Physical Chemistry) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade)
Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes Nanostructured multifunctional materials and nanocomposites
Ministry for Education, Science and Technological Development of the Republic of Serbia SASA project [F-134]
Slovenian Research Agency, Grant Nos. J7-4636 Slovenian Research Agency, Grant Nos. P2-0118

Author's Bibliography

Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers

Ahmetović, Sanita; Vasiljević, Zorka Z; Krstić, Jugoslav B.; Finšgar, Matjaž; Solonenko, Dmytro; Bartolić, Dragana; Tadić, Nenad B.; Mišković, Goran; Cvjetićanin, Nikola; Nikolić, Maria Vesna

(Elsevier, 2024)

TY  - JOUR
AU  - Ahmetović, Sanita
AU  - Vasiljević, Zorka Z
AU  - Krstić, Jugoslav B.
AU  - Finšgar, Matjaž
AU  - Solonenko, Dmytro
AU  - Bartolić, Dragana
AU  - Tadić, Nenad B.
AU  - Mišković, Goran
AU  - Cvjetićanin, Nikola
AU  - Nikolić, Maria Vesna
PY  - 2024
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/3204
AB  - In this paper, we have systematically studied the structural, morphological, and optical properties of Ni-doped TiO2, synthesized via a simple, cost-effective electrospinning method followed by calcination at 500 C. The nanofibers with a core-shell structure were relatively homogeneous, smooth and randomly oriented, and there were no significant differences in fiber diameters due to Ni2+ content. Core loss mapping using electron energy loss spectroscopy confirmed an even distribution of titanium and relatively uniform nickel in the fibers. It was found that doping with 0.5 mol.% Ni2+ decreased the rutile content, while doping with 1 mol.% Ni2+ resulted in a pure anatase phase with a significantly increased specific surface area (36.6 m2/g). Further increase in Ni2+ content (3-10 mol.%) not only prolonged the response of TiO2 nanofibers to visible light, but also increased the specific surface area (49.5 m2/g), decreased crystallite size (7 nm), and increased rutile content in TiO2 (33 wt.%). Photoluminescence analysis revealed that doping TiO2 with different amounts of Ni2+ leads to a gradual decrease of emission spectra intensity and red shift in the maxima positions. The XPS results confirmed that as the Ni2+ content enlarged, the Ti2+ and Ti3+ content increased significantly, effectively promoting the formation of oxygen vacancies. Raman analysis showed that an increase in nickel content (3-5 mol.%) led to a decrease and shift in peak intensity due to Ti3+ formation and also the possible presence of NiTiO3 phases. HRTEM analysis showed that Ni was doped into the substitution sites of both the anatase and rutile TiO2 lattice but had a stronger influence on the distortion of the anatase phase. The photocatalytic activity of Ni-doped TiO2 nanofibers was explored by analyzing the degradation of an antibiotic, oxytetracycline, monitored in laboratory conditions under visible light irradiation. After 60 minutes of irradiation, the degradation  of OTC with 1Ni-TiO2 reached 76.4% and with 10Ni-TiO2 70.5%.
PB  - Elsevier
T2  - Surfaces and Interfaces
T1  - Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers
SP  - 104434
VL  - 49
DO  - 10.1016/j.surfin.2024.104434
ER  - 
@article{
author = "Ahmetović, Sanita and Vasiljević, Zorka Z and Krstić, Jugoslav B. and Finšgar, Matjaž and Solonenko, Dmytro and Bartolić, Dragana and Tadić, Nenad B. and Mišković, Goran and Cvjetićanin, Nikola and Nikolić, Maria Vesna",
year = "2024",
abstract = "In this paper, we have systematically studied the structural, morphological, and optical properties of Ni-doped TiO2, synthesized via a simple, cost-effective electrospinning method followed by calcination at 500 C. The nanofibers with a core-shell structure were relatively homogeneous, smooth and randomly oriented, and there were no significant differences in fiber diameters due to Ni2+ content. Core loss mapping using electron energy loss spectroscopy confirmed an even distribution of titanium and relatively uniform nickel in the fibers. It was found that doping with 0.5 mol.% Ni2+ decreased the rutile content, while doping with 1 mol.% Ni2+ resulted in a pure anatase phase with a significantly increased specific surface area (36.6 m2/g). Further increase in Ni2+ content (3-10 mol.%) not only prolonged the response of TiO2 nanofibers to visible light, but also increased the specific surface area (49.5 m2/g), decreased crystallite size (7 nm), and increased rutile content in TiO2 (33 wt.%). Photoluminescence analysis revealed that doping TiO2 with different amounts of Ni2+ leads to a gradual decrease of emission spectra intensity and red shift in the maxima positions. The XPS results confirmed that as the Ni2+ content enlarged, the Ti2+ and Ti3+ content increased significantly, effectively promoting the formation of oxygen vacancies. Raman analysis showed that an increase in nickel content (3-5 mol.%) led to a decrease and shift in peak intensity due to Ti3+ formation and also the possible presence of NiTiO3 phases. HRTEM analysis showed that Ni was doped into the substitution sites of both the anatase and rutile TiO2 lattice but had a stronger influence on the distortion of the anatase phase. The photocatalytic activity of Ni-doped TiO2 nanofibers was explored by analyzing the degradation of an antibiotic, oxytetracycline, monitored in laboratory conditions under visible light irradiation. After 60 minutes of irradiation, the degradation  of OTC with 1Ni-TiO2 reached 76.4% and with 10Ni-TiO2 70.5%.",
publisher = "Elsevier",
journal = "Surfaces and Interfaces",
title = "Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers",
pages = "104434",
volume = "49",
doi = "10.1016/j.surfin.2024.104434"
}
Ahmetović, S., Vasiljević, Z. Z., Krstić, J. B., Finšgar, M., Solonenko, D., Bartolić, D., Tadić, N. B., Mišković, G., Cvjetićanin, N.,& Nikolić, M. V.. (2024). Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers. in Surfaces and Interfaces
Elsevier., 49, 104434.
https://doi.org/10.1016/j.surfin.2024.104434
Ahmetović S, Vasiljević ZZ, Krstić JB, Finšgar M, Solonenko D, Bartolić D, Tadić NB, Mišković G, Cvjetićanin N, Nikolić MV. Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers. in Surfaces and Interfaces. 2024;49:104434.
doi:10.1016/j.surfin.2024.104434 .
Ahmetović, Sanita, Vasiljević, Zorka Z, Krstić, Jugoslav B., Finšgar, Matjaž, Solonenko, Dmytro, Bartolić, Dragana, Tadić, Nenad B., Mišković, Goran, Cvjetićanin, Nikola, Nikolić, Maria Vesna, "Looking Into How Nickel Doping Affects the Structure, Morphology, and Optical Properties of TiO2 Nanofibers" in Surfaces and Interfaces, 49 (2024):104434,
https://doi.org/10.1016/j.surfin.2024.104434 . .

Synthesis, structure and electrochemical performance of NiMn2O4

Dojčinović, Milena; Vasiljević, Zorka Z; Tadić, Nenad B.; Krstić, Jugoslav B.; Marković, Smilja; Spreitzer, Matjaž; Kovač, Janez; Nikolić, Maria Vesna

(Novi Sad : Faculty of Technology, 2021)

TY  - CONF
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Z
AU  - Tadić, Nenad B.
AU  - Krstić, Jugoslav B.
AU  - Marković, Smilja
AU  - Spreitzer, Matjaž
AU  - Kovač, Janez
AU  - Nikolić, Maria Vesna
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12397
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1630
AB  - NiMn2O4, with a cubic spinel structure and numerous and various applications in modern technology, were synthesized with two synthetic routes: sol-gel combustion method with glycine as fuel and electrospinning method with polyvinylpyrrolidone (PVP). Both amorphous powders from sol-gel synthesis and as-spun fibers from electrospinning synthesis were calcined, electrospun fibers at 400 °C and the sol-gel synthesized powders at 800 °C. Electrospun fibers were previously characterized with DTA-TGA to investigate the influence of thermal process on a polymer fiber.The obtained powders were characterized accordingly. Structural analysis was done via X-ray diffraction (XRD) and results show spinel structure with no impurity. The texture and morphology was investigated via N2 physisorption and transmission electron microscopy (TEM), respectively. Chemical states of elements were investigated by X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the synthesized materials as supercapacitors was tested via cyclic voltammetry (CV), electric impedance spectroscopy (EIS), and chronopotentiometry (CP) to aquire galvanostatic charge-discharge (GCD) curves. Experiments were done in 6 M KOH solution with nickel foam as a working electrode. The results show good electrochemical capacity circa 200 F/g, with the potential for further structural improvement of the materials.
PB  - Novi Sad : Faculty of Technology
C3  - Programme and book of abstracts / 14th ECerS Conference for Young Scientists in Ceramics (CYSC-2021), October 20-23, 2021, Novi Sad
T1  - Synthesis, structure and electrochemical performance of NiMn2O4
EP  - 81
SP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_dais_12397
ER  - 
@conference{
author = "Dojčinović, Milena and Vasiljević, Zorka Z and Tadić, Nenad B. and Krstić, Jugoslav B. and Marković, Smilja and Spreitzer, Matjaž and Kovač, Janez and Nikolić, Maria Vesna",
year = "2021",
abstract = "NiMn2O4, with a cubic spinel structure and numerous and various applications in modern technology, were synthesized with two synthetic routes: sol-gel combustion method with glycine as fuel and electrospinning method with polyvinylpyrrolidone (PVP). Both amorphous powders from sol-gel synthesis and as-spun fibers from electrospinning synthesis were calcined, electrospun fibers at 400 °C and the sol-gel synthesized powders at 800 °C. Electrospun fibers were previously characterized with DTA-TGA to investigate the influence of thermal process on a polymer fiber.The obtained powders were characterized accordingly. Structural analysis was done via X-ray diffraction (XRD) and results show spinel structure with no impurity. The texture and morphology was investigated via N2 physisorption and transmission electron microscopy (TEM), respectively. Chemical states of elements were investigated by X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the synthesized materials as supercapacitors was tested via cyclic voltammetry (CV), electric impedance spectroscopy (EIS), and chronopotentiometry (CP) to aquire galvanostatic charge-discharge (GCD) curves. Experiments were done in 6 M KOH solution with nickel foam as a working electrode. The results show good electrochemical capacity circa 200 F/g, with the potential for further structural improvement of the materials.",
publisher = "Novi Sad : Faculty of Technology",
journal = "Programme and book of abstracts / 14th ECerS Conference for Young Scientists in Ceramics (CYSC-2021), October 20-23, 2021, Novi Sad",
title = "Synthesis, structure and electrochemical performance of NiMn2O4",
pages = "81-81",
url = "https://hdl.handle.net/21.15107/rcub_dais_12397"
}
Dojčinović, M., Vasiljević, Z. Z., Tadić, N. B., Krstić, J. B., Marković, S., Spreitzer, M., Kovač, J.,& Nikolić, M. V.. (2021). Synthesis, structure and electrochemical performance of NiMn2O4. in Programme and book of abstracts / 14th ECerS Conference for Young Scientists in Ceramics (CYSC-2021), October 20-23, 2021, Novi Sad
Novi Sad : Faculty of Technology., 81-81.
https://hdl.handle.net/21.15107/rcub_dais_12397
Dojčinović M, Vasiljević ZZ, Tadić NB, Krstić JB, Marković S, Spreitzer M, Kovač J, Nikolić MV. Synthesis, structure and electrochemical performance of NiMn2O4. in Programme and book of abstracts / 14th ECerS Conference for Young Scientists in Ceramics (CYSC-2021), October 20-23, 2021, Novi Sad. 2021;:81-81.
https://hdl.handle.net/21.15107/rcub_dais_12397 .
Dojčinović, Milena, Vasiljević, Zorka Z, Tadić, Nenad B., Krstić, Jugoslav B., Marković, Smilja, Spreitzer, Matjaž, Kovač, Janez, Nikolić, Maria Vesna, "Synthesis, structure and electrochemical performance of NiMn2O4" in Programme and book of abstracts / 14th ECerS Conference for Young Scientists in Ceramics (CYSC-2021), October 20-23, 2021, Novi Sad (2021):81-81,
https://hdl.handle.net/21.15107/rcub_dais_12397 .

Synthesis and antibacterial activity of iron manganite (FeMnO3) particles against the environmental bacterium Bacillus subtilis

Vasiljević, Zorka Z; Dojčinović, Milena; Krstic, Jugoslav B.; Ribić, Vesna; Tadić, Nenad B.; Ognjanović, Milos; Auger, Sandrine; Vidic, Jasmina; Nikolić, Maria Vesna

(Royal Soc Chemistry, Cambridge, 2020)

TY  - JOUR
AU  - Vasiljević, Zorka Z
AU  - Dojčinović, Milena
AU  - Krstic, Jugoslav B.
AU  - Ribić, Vesna
AU  - Tadić, Nenad B.
AU  - Ognjanović, Milos
AU  - Auger, Sandrine
AU  - Vidic, Jasmina
AU  - Nikolić, Maria Vesna
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1360
AB  - Nanocrystalline iron manganite powder was synthesized using the sol-gel combustion process, with glycine as fuel. It was further calcined at 900 degrees C for 8 h, resulting in the formation of a loose cubic FeMnO3 powder with a small specific surface area, net-like structure and plate-like particles as confirmed by XRD, N-2 physisorption, FESEM and TEM analyses. The metal ion release was studied by ICP-OES and showed that less than 10 ppb of Fe or Mn ions were released by leaching in water, but 0.36 ppm Fe and 3.69 ppm Mn was found in LB (Luria-Bertani) bacterial medium. The generation of reactive oxygen species (ROS) was monitored in distilled water and bacterial medium and showed that FeMnO3 particles do not generate O-2 & x2d9;(-) ions with or without UV irradiation, but synthesize H2O2 and show an antioxidative effect. Besides the higher stability of FeMnO3 particles in aqueous solution they showed an inhibitory effect on Bacillus subtilis growth in LB medium even at low concentrations (0.01 mg ml(-1)), but not in BHI medium even at 1 mg ml(-1). This study points out that the mechanism of antibacterial action of engineered metal oxides needs continued investigation and specific experimental controls.
PB  - Royal Soc Chemistry, Cambridge
T2  - RSC Advances
T1  - Synthesis and antibacterial activity of iron manganite (FeMnO3) particles against the environmental bacterium Bacillus subtilis
EP  - 13888
IS  - 23
SP  - 13879
VL  - 10
DO  - 10.1039/d0ra01809k
ER  - 
@article{
author = "Vasiljević, Zorka Z and Dojčinović, Milena and Krstic, Jugoslav B. and Ribić, Vesna and Tadić, Nenad B. and Ognjanović, Milos and Auger, Sandrine and Vidic, Jasmina and Nikolić, Maria Vesna",
year = "2020",
abstract = "Nanocrystalline iron manganite powder was synthesized using the sol-gel combustion process, with glycine as fuel. It was further calcined at 900 degrees C for 8 h, resulting in the formation of a loose cubic FeMnO3 powder with a small specific surface area, net-like structure and plate-like particles as confirmed by XRD, N-2 physisorption, FESEM and TEM analyses. The metal ion release was studied by ICP-OES and showed that less than 10 ppb of Fe or Mn ions were released by leaching in water, but 0.36 ppm Fe and 3.69 ppm Mn was found in LB (Luria-Bertani) bacterial medium. The generation of reactive oxygen species (ROS) was monitored in distilled water and bacterial medium and showed that FeMnO3 particles do not generate O-2 & x2d9;(-) ions with or without UV irradiation, but synthesize H2O2 and show an antioxidative effect. Besides the higher stability of FeMnO3 particles in aqueous solution they showed an inhibitory effect on Bacillus subtilis growth in LB medium even at low concentrations (0.01 mg ml(-1)), but not in BHI medium even at 1 mg ml(-1). This study points out that the mechanism of antibacterial action of engineered metal oxides needs continued investigation and specific experimental controls.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "RSC Advances",
title = "Synthesis and antibacterial activity of iron manganite (FeMnO3) particles against the environmental bacterium Bacillus subtilis",
pages = "13888-13879",
number = "23",
volume = "10",
doi = "10.1039/d0ra01809k"
}
Vasiljević, Z. Z., Dojčinović, M., Krstic, J. B., Ribić, V., Tadić, N. B., Ognjanović, M., Auger, S., Vidic, J.,& Nikolić, M. V.. (2020). Synthesis and antibacterial activity of iron manganite (FeMnO3) particles against the environmental bacterium Bacillus subtilis. in RSC Advances
Royal Soc Chemistry, Cambridge., 10(23), 13879-13888.
https://doi.org/10.1039/d0ra01809k
Vasiljević ZZ, Dojčinović M, Krstic JB, Ribić V, Tadić NB, Ognjanović M, Auger S, Vidic J, Nikolić MV. Synthesis and antibacterial activity of iron manganite (FeMnO3) particles against the environmental bacterium Bacillus subtilis. in RSC Advances. 2020;10(23):13879-13888.
doi:10.1039/d0ra01809k .
Vasiljević, Zorka Z, Dojčinović, Milena, Krstic, Jugoslav B., Ribić, Vesna, Tadić, Nenad B., Ognjanović, Milos, Auger, Sandrine, Vidic, Jasmina, Nikolić, Maria Vesna, "Synthesis and antibacterial activity of iron manganite (FeMnO3) particles against the environmental bacterium Bacillus subtilis" in RSC Advances, 10, no. 23 (2020):13879-13888,
https://doi.org/10.1039/d0ra01809k . .
18
11
18

Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing

Nikolić, Maria Vesna; Krstić, Jugoslav B.; Labus, Nebojša J.; Luković, Miloljub; Dojčinović, Milena; Radovanović, Milan; Tadić, Nenad B.

(Elsevier, Amsterdam, 2020)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Krstić, Jugoslav B.
AU  - Labus, Nebojša J.
AU  - Luković, Miloljub
AU  - Dojčinović, Milena
AU  - Radovanović, Milan
AU  - Tadić, Nenad B.
PY  - 2020
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1349
AB  - Iron manganite (FeMnO3) powder with a cubic (bixbyite, Ia (3) over bar) crystal structure was obtained by a solid state reaction. Thick film paste (powder + organic vehicles) was screen printed on alumina substrate with test interdigitated PdAg electrodes. Significant porosity (60.6%) composed of macropores (larger than 100 nm) was determined by Hg porosimetry, changing only slightly from the first extrusion run indicating a stable pore system. Hg porosimetry evaluation of thick film samples enabled estimation of true textural parameters of the thick film compared to powder. Impedance response of the thick film sensor was monitored in a humidity chamber in the relative humidity (RH) range 30-90%, at room temperature (25 degrees C) and frequency range from 42 Hz to 1 MHz. At 100 Hz the impedance reduced from 10.41 M Omega for RH 30% to 0.68 M Omega for RH 90%. Analysis of complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. The sensor response and recovery was fast (several seconds) and a relatively low hysteresis value of 2.8% was obtained.
PB  - Elsevier, Amsterdam
T2  - Materials Science and Engineering B-Advanced Functional Solid-State Materials
T1  - Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing
VL  - 257
DO  - 10.1016/j.mseb.2020.114547
ER  - 
@article{
author = "Nikolić, Maria Vesna and Krstić, Jugoslav B. and Labus, Nebojša J. and Luković, Miloljub and Dojčinović, Milena and Radovanović, Milan and Tadić, Nenad B.",
year = "2020",
abstract = "Iron manganite (FeMnO3) powder with a cubic (bixbyite, Ia (3) over bar) crystal structure was obtained by a solid state reaction. Thick film paste (powder + organic vehicles) was screen printed on alumina substrate with test interdigitated PdAg electrodes. Significant porosity (60.6%) composed of macropores (larger than 100 nm) was determined by Hg porosimetry, changing only slightly from the first extrusion run indicating a stable pore system. Hg porosimetry evaluation of thick film samples enabled estimation of true textural parameters of the thick film compared to powder. Impedance response of the thick film sensor was monitored in a humidity chamber in the relative humidity (RH) range 30-90%, at room temperature (25 degrees C) and frequency range from 42 Hz to 1 MHz. At 100 Hz the impedance reduced from 10.41 M Omega for RH 30% to 0.68 M Omega for RH 90%. Analysis of complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. The sensor response and recovery was fast (several seconds) and a relatively low hysteresis value of 2.8% was obtained.",
publisher = "Elsevier, Amsterdam",
journal = "Materials Science and Engineering B-Advanced Functional Solid-State Materials",
title = "Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing",
volume = "257",
doi = "10.1016/j.mseb.2020.114547"
}
Nikolić, M. V., Krstić, J. B., Labus, N. J., Luković, M., Dojčinović, M., Radovanović, M.,& Tadić, N. B.. (2020). Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing. in Materials Science and Engineering B-Advanced Functional Solid-State Materials
Elsevier, Amsterdam., 257.
https://doi.org/10.1016/j.mseb.2020.114547
Nikolić MV, Krstić JB, Labus NJ, Luković M, Dojčinović M, Radovanović M, Tadić NB. Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing. in Materials Science and Engineering B-Advanced Functional Solid-State Materials. 2020;257.
doi:10.1016/j.mseb.2020.114547 .
Nikolić, Maria Vesna, Krstić, Jugoslav B., Labus, Nebojša J., Luković, Miloljub, Dojčinović, Milena, Radovanović, Milan, Tadić, Nenad B., "Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing" in Materials Science and Engineering B-Advanced Functional Solid-State Materials, 257 (2020),
https://doi.org/10.1016/j.mseb.2020.114547 . .
8
3
7

Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing

Nikolić, Maria Vesna; Vasiljević, Zorka Z; Luković, Miloljub; Pavlović, Vera P.; Krstic, Jugoslav B.; Vujančević, Jelena; Tadić, Nenad B.; Vlahović, Branislav; Pavlović, Vladimir B

(Wiley, Hoboken, 2019)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Z
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Krstic, Jugoslav B.
AU  - Vujančević, Jelena
AU  - Tadić, Nenad B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1261
AB  - Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy and transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the formation of nanocrystalline zinc-ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30%-90% in the frequency range 42 Hz-1 MHz at room temperature (25 degrees C) and 50 degrees C. At 42 Hz at both analyzed temperatures the impedance reduced 46 times in the humidity range 30%-90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.
PB  - Wiley, Hoboken
T2  - International Journal of Applied Ceramic Technology
T1  - Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing
EP  - 993
IS  - 3
SP  - 981
VL  - 16
DO  - 10.1111/ijac.13190
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Z and Luković, Miloljub and Pavlović, Vera P. and Krstic, Jugoslav B. and Vujančević, Jelena and Tadić, Nenad B. and Vlahović, Branislav and Pavlović, Vladimir B",
year = "2019",
abstract = "Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy and transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the formation of nanocrystalline zinc-ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30%-90% in the frequency range 42 Hz-1 MHz at room temperature (25 degrees C) and 50 degrees C. At 42 Hz at both analyzed temperatures the impedance reduced 46 times in the humidity range 30%-90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.",
publisher = "Wiley, Hoboken",
journal = "International Journal of Applied Ceramic Technology",
title = "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing",
pages = "993-981",
number = "3",
volume = "16",
doi = "10.1111/ijac.13190"
}
Nikolić, M. V., Vasiljević, Z. Z., Luković, M., Pavlović, V. P., Krstic, J. B., Vujančević, J., Tadić, N. B., Vlahović, B.,& Pavlović, V. B.. (2019). Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology
Wiley, Hoboken., 16(3), 981-993.
https://doi.org/10.1111/ijac.13190
Nikolić MV, Vasiljević ZZ, Luković M, Pavlović VP, Krstic JB, Vujančević J, Tadić NB, Vlahović B, Pavlović VB. Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology. 2019;16(3):981-993.
doi:10.1111/ijac.13190 .
Nikolić, Maria Vesna, Vasiljević, Zorka Z, Luković, Miloljub, Pavlović, Vera P., Krstic, Jugoslav B., Vujančević, Jelena, Tadić, Nenad B., Vlahović, Branislav, Pavlović, Vladimir B, "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing" in International Journal of Applied Ceramic Technology, 16, no. 3 (2019):981-993,
https://doi.org/10.1111/ijac.13190 . .
37
15
37

From titania to titanates: Phase and morphological transition in less alkaline medium under mild conditions

Simović, Bojana; Dapčević, Aleksandra; Zdravković, Jelena; Tasić, Nikola; Kovac, Sabina; Krstic, Jugoslav; Branković, Goran

(Elsevier Science Sa, Lausanne, 2019)

TY  - JOUR
AU  - Simović, Bojana
AU  - Dapčević, Aleksandra
AU  - Zdravković, Jelena
AU  - Tasić, Nikola
AU  - Kovac, Sabina
AU  - Krstic, Jugoslav
AU  - Branković, Goran
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1283
AB  - In this work, nine products were prepared by modifying the experimental conditions (6, 12 and 18 hat 110, 135 and 160 degrees C) of hydrothermal treatment of starting nanoanatase in significantly less concentrated alkaline medium than usual in order to obtain a pure titanate phase. The nanocrystalline samples were characterized by XRPD, FESEM, HRTEM/SAED, EDS, TG, FT-IR, UV-Vis and BET analyses. The results revealed that the structure, texture, morphology and band gap energy of samples strongly depend on conditions of hydrothermal treatment. The intensification of hydrothermal treatment significantly increases the solubility of TiO2 promoting the changes in morphology from nearly spherical titania nanoparticles to elongated titanate nanosheets. The single titanate phase was obtained after energetically the most intensive treatment, i.e. 18 hat 160 degrees C. The step-by-step optimization was thus necessary to finally distinguish the titanates from titania in terms of structural and spectral properties and to finally allow the clarification of long-standing confusion between titania and titanates. The obtained single titanate phase was furtherly used to fabricate a humidity sensor, which showed remarkably rapid response and quick recovery time.
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Alloys and Compounds
T1  - From titania to titanates: Phase and morphological transition in less alkaline medium under mild conditions
EP  - 819
SP  - 810
VL  - 781
DO  - 10.1016/j.jallcom.2018.12.039
ER  - 
@article{
author = "Simović, Bojana and Dapčević, Aleksandra and Zdravković, Jelena and Tasić, Nikola and Kovac, Sabina and Krstic, Jugoslav and Branković, Goran",
year = "2019",
abstract = "In this work, nine products were prepared by modifying the experimental conditions (6, 12 and 18 hat 110, 135 and 160 degrees C) of hydrothermal treatment of starting nanoanatase in significantly less concentrated alkaline medium than usual in order to obtain a pure titanate phase. The nanocrystalline samples were characterized by XRPD, FESEM, HRTEM/SAED, EDS, TG, FT-IR, UV-Vis and BET analyses. The results revealed that the structure, texture, morphology and band gap energy of samples strongly depend on conditions of hydrothermal treatment. The intensification of hydrothermal treatment significantly increases the solubility of TiO2 promoting the changes in morphology from nearly spherical titania nanoparticles to elongated titanate nanosheets. The single titanate phase was obtained after energetically the most intensive treatment, i.e. 18 hat 160 degrees C. The step-by-step optimization was thus necessary to finally distinguish the titanates from titania in terms of structural and spectral properties and to finally allow the clarification of long-standing confusion between titania and titanates. The obtained single titanate phase was furtherly used to fabricate a humidity sensor, which showed remarkably rapid response and quick recovery time.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Alloys and Compounds",
title = "From titania to titanates: Phase and morphological transition in less alkaline medium under mild conditions",
pages = "819-810",
volume = "781",
doi = "10.1016/j.jallcom.2018.12.039"
}
Simović, B., Dapčević, A., Zdravković, J., Tasić, N., Kovac, S., Krstic, J.,& Branković, G.. (2019). From titania to titanates: Phase and morphological transition in less alkaline medium under mild conditions. in Journal of Alloys and Compounds
Elsevier Science Sa, Lausanne., 781, 810-819.
https://doi.org/10.1016/j.jallcom.2018.12.039
Simović B, Dapčević A, Zdravković J, Tasić N, Kovac S, Krstic J, Branković G. From titania to titanates: Phase and morphological transition in less alkaline medium under mild conditions. in Journal of Alloys and Compounds. 2019;781:810-819.
doi:10.1016/j.jallcom.2018.12.039 .
Simović, Bojana, Dapčević, Aleksandra, Zdravković, Jelena, Tasić, Nikola, Kovac, Sabina, Krstic, Jugoslav, Branković, Goran, "From titania to titanates: Phase and morphological transition in less alkaline medium under mild conditions" in Journal of Alloys and Compounds, 781 (2019):810-819,
https://doi.org/10.1016/j.jallcom.2018.12.039 . .
6
3
6

Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films

Nikolić, Maria Vesna; Vasiljević, Zorka Z; Luković, Miloljub; Pavlović, Vera P.; Vujančević, Jelena; Radovanović, Milan; Krstić, Jugoslav B.; Vlahović, Branislav; Pavlović, Vladimir B

(Elsevier, 2018)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Z
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Vujančević, Jelena
AU  - Radovanović, Milan
AU  - Krstić, Jugoslav B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1553
AB  - Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (α-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 °C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz–1 MHz with humidity was analyzed at room temperature (25 °C) and 50 °C in the relative humidity range 30–90% and 40–90%, respectively. At 42 Hz, and room temperature the impedance reduced ∼28 times, while at 50 °C it reduced ∼147 times in the relative humidity range 40–90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 °C and 2.64% at 50 °C) showing that this is a promising material for application in humidity sensing.
PB  - Elsevier
T2  - Sensors and Actuators B: Chemical
T1  - Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films
EP  - 664
SP  - 654
VL  - 277
DO  - 10.1016/j.snb.2018.09.063
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Z and Luković, Miloljub and Pavlović, Vera P. and Vujančević, Jelena and Radovanović, Milan and Krstić, Jugoslav B. and Vlahović, Branislav and Pavlović, Vladimir B",
year = "2018",
abstract = "Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (α-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 °C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz–1 MHz with humidity was analyzed at room temperature (25 °C) and 50 °C in the relative humidity range 30–90% and 40–90%, respectively. At 42 Hz, and room temperature the impedance reduced ∼28 times, while at 50 °C it reduced ∼147 times in the relative humidity range 40–90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 °C and 2.64% at 50 °C) showing that this is a promising material for application in humidity sensing.",
publisher = "Elsevier",
journal = "Sensors and Actuators B: Chemical",
title = "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films",
pages = "664-654",
volume = "277",
doi = "10.1016/j.snb.2018.09.063"
}
Nikolić, M. V., Vasiljević, Z. Z., Luković, M., Pavlović, V. P., Vujančević, J., Radovanović, M., Krstić, J. B., Vlahović, B.,& Pavlović, V. B.. (2018). Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. in Sensors and Actuators B: Chemical
Elsevier., 277, 654-664.
https://doi.org/10.1016/j.snb.2018.09.063
Nikolić MV, Vasiljević ZZ, Luković M, Pavlović VP, Vujančević J, Radovanović M, Krstić JB, Vlahović B, Pavlović VB. Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. in Sensors and Actuators B: Chemical. 2018;277:654-664.
doi:10.1016/j.snb.2018.09.063 .
Nikolić, Maria Vesna, Vasiljević, Zorka Z, Luković, Miloljub, Pavlović, Vera P., Vujančević, Jelena, Radovanović, Milan, Krstić, Jugoslav B., Vlahović, Branislav, Pavlović, Vladimir B, "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films" in Sensors and Actuators B: Chemical, 277 (2018):654-664,
https://doi.org/10.1016/j.snb.2018.09.063 . .
40
22
38

Polyvinyl alcohol PVA with poly ethylene Glycol PEG added as a binder for the powder compaction

Labus, Nebojša J.; Marković, Smilja; Nikolić, Maria Vesna; Krstić, Jugoslav; Pavlović, Vladimir B

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Labus, Nebojša J.
AU  - Marković, Smilja
AU  - Nikolić, Maria Vesna
AU  - Krstić, Jugoslav
AU  - Pavlović, Vladimir B
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4099
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1638
AB  - During the compaction of the powder mixture of ZnO and Mn2O3 (MnCO3) and Fe2O3 compacts were find fragile for further handling. Poly vinyl alcohol PVA was used as a binder in an unusual 20% PVA content. We made as well 2% PVA with 0.6% Poly ethylene glycol PEG and 20% PVA with 6 % PEG. Binder was wrapped over the powder by suspension forming in the polymer water solution and drying afterwards until all water content evaporates. On the these obtained powders employed characterization techniques were: Fourier transformed Infra red FTIR spectra with ATR attenuated total reflection technique as well as differential thermal analysis DTA on the device with low temperature sensitivity and TEM transmition electron microscopy. All binder concentrations gave compacts with good mechanical properties, that can be handled with ease but with adding, a PEG as plasticizer the operating of the anvil and piston were extremely difficult due to friction.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Polyvinyl alcohol PVA with poly ethylene Glycol PEG added as a binder for the powder compaction
EP  - 83
SP  - 83
UR  - https://hdl.handle.net/21.15107/rcub_dais_4099
ER  - 
@conference{
author = "Labus, Nebojša J. and Marković, Smilja and Nikolić, Maria Vesna and Krstić, Jugoslav and Pavlović, Vladimir B",
year = "2018",
abstract = "During the compaction of the powder mixture of ZnO and Mn2O3 (MnCO3) and Fe2O3 compacts were find fragile for further handling. Poly vinyl alcohol PVA was used as a binder in an unusual 20% PVA content. We made as well 2% PVA with 0.6% Poly ethylene glycol PEG and 20% PVA with 6 % PEG. Binder was wrapped over the powder by suspension forming in the polymer water solution and drying afterwards until all water content evaporates. On the these obtained powders employed characterization techniques were: Fourier transformed Infra red FTIR spectra with ATR attenuated total reflection technique as well as differential thermal analysis DTA on the device with low temperature sensitivity and TEM transmition electron microscopy. All binder concentrations gave compacts with good mechanical properties, that can be handled with ease but with adding, a PEG as plasticizer the operating of the anvil and piston were extremely difficult due to friction.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Polyvinyl alcohol PVA with poly ethylene Glycol PEG added as a binder for the powder compaction",
pages = "83-83",
url = "https://hdl.handle.net/21.15107/rcub_dais_4099"
}
Labus, N. J., Marković, S., Nikolić, M. V., Krstić, J.,& Pavlović, V. B.. (2018). Polyvinyl alcohol PVA with poly ethylene Glycol PEG added as a binder for the powder compaction. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 83-83.
https://hdl.handle.net/21.15107/rcub_dais_4099
Labus NJ, Marković S, Nikolić MV, Krstić J, Pavlović VB. Polyvinyl alcohol PVA with poly ethylene Glycol PEG added as a binder for the powder compaction. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:83-83.
https://hdl.handle.net/21.15107/rcub_dais_4099 .
Labus, Nebojša J., Marković, Smilja, Nikolić, Maria Vesna, Krstić, Jugoslav, Pavlović, Vladimir B, "Polyvinyl alcohol PVA with poly ethylene Glycol PEG added as a binder for the powder compaction" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):83-83,
https://hdl.handle.net/21.15107/rcub_dais_4099 .

Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films

Nikolić, Maria Vesna; Vasiljević, Zorka Z; Luković, Miloljub; Pavlović, Vera P.; Vujančević, Jelena; Radovanović, Milan; Krstić, Jugoslav B.; Vlahović, Branislav; Pavlović, Vladimir B

(Elsevier Science Sa, Lausanne, 2018)

TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka Z
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Vujančević, Jelena
AU  - Radovanović, Milan
AU  - Krstić, Jugoslav B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1112
AB  - Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (alpha-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 degrees C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz-1 MHz with humidity was analyzed at room temperature (25 degrees C) and 50 degrees C in the relative humidity range 30-90% and 40-90%, respectively. At 42 Hz, and room temperature the impedance reduced similar to 28 times, while at 50 degrees C it reduced similar to 147 times in the relative humidity range 40-90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 degrees C and 2.64% at 50 degrees C) showing that this is a promising material for application in humidity sensing.
PB  - Elsevier Science Sa, Lausanne
T2  - Sensors and Actuators B-Chemical
T1  - Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films
EP  - 664
SP  - 654
VL  - 277
DO  - 10.1016/j.snb.2018.09.063
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka Z and Luković, Miloljub and Pavlović, Vera P. and Vujančević, Jelena and Radovanović, Milan and Krstić, Jugoslav B. and Vlahović, Branislav and Pavlović, Vladimir B",
year = "2018",
abstract = "Pseudobrookite based nanopowder was obtained by solid state synthesis of starting hematite and anatase nanopowders in the weight ratio 55:45. Structural and morphological properties were analyzed using X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) confirming the formation of nanocrystalline pseudobrookite. The obtained powder was mixed with a binder (ethyl cellulose), dispersant (alpha-terpinol) and adhesion agents (acetic acid and distilled water) to obtain a thick film paste. It was screen printed on alumina substrate with interdigitated PdAg electrodes and fired at 600 degrees C for 30 min. Formation of a porous nanocrystalline thick film structure was shown using Scanning electron microscopy (SEM), while Hall measurements enabled determination of carrier mobility. Change of impedance response in the frequency range 42 Hz-1 MHz with humidity was analyzed at room temperature (25 degrees C) and 50 degrees C in the relative humidity range 30-90% and 40-90%, respectively. At 42 Hz, and room temperature the impedance reduced similar to 28 times, while at 50 degrees C it reduced similar to 147 times in the relative humidity range 40-90%. The sensor showed rapid response (16 s) and relatively low hysteresis (8.39% at 25 degrees C and 2.64% at 50 degrees C) showing that this is a promising material for application in humidity sensing.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Sensors and Actuators B-Chemical",
title = "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films",
pages = "664-654",
volume = "277",
doi = "10.1016/j.snb.2018.09.063"
}
Nikolić, M. V., Vasiljević, Z. Z., Luković, M., Pavlović, V. P., Vujančević, J., Radovanović, M., Krstić, J. B., Vlahović, B.,& Pavlović, V. B.. (2018). Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. in Sensors and Actuators B-Chemical
Elsevier Science Sa, Lausanne., 277, 654-664.
https://doi.org/10.1016/j.snb.2018.09.063
Nikolić MV, Vasiljević ZZ, Luković M, Pavlović VP, Vujančević J, Radovanović M, Krstić JB, Vlahović B, Pavlović VB. Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. in Sensors and Actuators B-Chemical. 2018;277:654-664.
doi:10.1016/j.snb.2018.09.063 .
Nikolić, Maria Vesna, Vasiljević, Zorka Z, Luković, Miloljub, Pavlović, Vera P., Vujančević, Jelena, Radovanović, Milan, Krstić, Jugoslav B., Vlahović, Branislav, Pavlović, Vladimir B, "Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films" in Sensors and Actuators B-Chemical, 277 (2018):654-664,
https://doi.org/10.1016/j.snb.2018.09.063 . .
40
22
38

Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route

Tomic, N.; Grujic-Brojcin, M.; Fincur, N.; Abramović, B.; Simović, Bojana; Krstic, J.; Matović, Branko; Šćepanović, Maja

(Elsevier Science Sa, Lausanne, 2015)

TY  - JOUR
AU  - Tomic, N.
AU  - Grujic-Brojcin, M.
AU  - Fincur, N.
AU  - Abramović, B.
AU  - Simović, Bojana
AU  - Krstic, J.
AU  - Matović, Branko
AU  - Šćepanović, Maja
PY  - 2015
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/842
AB  - Two series of nanocrystalline brookite-type powders have been synthesized by using combined sal gel hydrothermal method with titanium tetrachloride (TiCI4) as a precursor and hydrothermal temperature and reaction time varied in the range of 120-200 degrees C and 12-48 h, respectively. The effects of chosen synthesis parameters on structural, morphological and optical properties of synthesized powders have been investigated by the XRPD, SEM, EDS and BET measurements, as well Raman spectroscopy and spectroscopic ellipsometry. The XRPD results have shown that pure brookite phase, with mean crystallite size of -33 nm, has been obtained only in the sample synthesized at 200 degrees C, after 24 h of hydrothermal process. In all other samples anatase phase also appears, whereas rutile and sodium titanate phases have been noticed in the samples synthesized at lower temperatures. The presence of different titania phases has also been confirmed and analyzed by Raman scattering measurements. The SEM measurements have shown spindle-like particles in brookite-rich samples synthesized at 200 degrees C, whereas BET measurements have detected mesoporous structure in these samples. The properties of synthesized powders have been correlated to their photocatalytic efficiency, tested in degradation of alprazolam, one of the 5th generation benzodiazepines. The sample consisted of pure brookite has shown the highest efficiency in the photodegradation of alprazolam, practically equal to the activity of Degussa P25.
PB  - Elsevier Science Sa, Lausanne
T2  - Materials Chemistry and Physics
T1  - Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route
EP  - 528
SP  - 518
VL  - 163
DO  - 10.1016/j.matchemphys.2015.08.008
ER  - 
@article{
author = "Tomic, N. and Grujic-Brojcin, M. and Fincur, N. and Abramović, B. and Simović, Bojana and Krstic, J. and Matović, Branko and Šćepanović, Maja",
year = "2015",
abstract = "Two series of nanocrystalline brookite-type powders have been synthesized by using combined sal gel hydrothermal method with titanium tetrachloride (TiCI4) as a precursor and hydrothermal temperature and reaction time varied in the range of 120-200 degrees C and 12-48 h, respectively. The effects of chosen synthesis parameters on structural, morphological and optical properties of synthesized powders have been investigated by the XRPD, SEM, EDS and BET measurements, as well Raman spectroscopy and spectroscopic ellipsometry. The XRPD results have shown that pure brookite phase, with mean crystallite size of -33 nm, has been obtained only in the sample synthesized at 200 degrees C, after 24 h of hydrothermal process. In all other samples anatase phase also appears, whereas rutile and sodium titanate phases have been noticed in the samples synthesized at lower temperatures. The presence of different titania phases has also been confirmed and analyzed by Raman scattering measurements. The SEM measurements have shown spindle-like particles in brookite-rich samples synthesized at 200 degrees C, whereas BET measurements have detected mesoporous structure in these samples. The properties of synthesized powders have been correlated to their photocatalytic efficiency, tested in degradation of alprazolam, one of the 5th generation benzodiazepines. The sample consisted of pure brookite has shown the highest efficiency in the photodegradation of alprazolam, practically equal to the activity of Degussa P25.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Materials Chemistry and Physics",
title = "Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route",
pages = "528-518",
volume = "163",
doi = "10.1016/j.matchemphys.2015.08.008"
}
Tomic, N., Grujic-Brojcin, M., Fincur, N., Abramović, B., Simović, B., Krstic, J., Matović, B.,& Šćepanović, M.. (2015). Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route. in Materials Chemistry and Physics
Elsevier Science Sa, Lausanne., 163, 518-528.
https://doi.org/10.1016/j.matchemphys.2015.08.008
Tomic N, Grujic-Brojcin M, Fincur N, Abramović B, Simović B, Krstic J, Matović B, Šćepanović M. Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route. in Materials Chemistry and Physics. 2015;163:518-528.
doi:10.1016/j.matchemphys.2015.08.008 .
Tomic, N., Grujic-Brojcin, M., Fincur, N., Abramović, B., Simović, Bojana, Krstic, J., Matović, Branko, Šćepanović, Maja, "Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route" in Materials Chemistry and Physics, 163 (2015):518-528,
https://doi.org/10.1016/j.matchemphys.2015.08.008 . .
35
30
37

Density of the ZnTiO3 nanopowder as a loose powder and as a compact obtained by different methods

Labus, Nebojša J.; Krstić, Jugoslav; Peleš, Adriana; Živojinović, Jelena; Nikolić, Maria Vesna

(Belgrade : Serbian Ceramic Society, 2013)

TY  - CONF
AU  - Labus, Nebojša J.
AU  - Krstić, Jugoslav
AU  - Peleš, Adriana
AU  - Živojinović, Jelena
AU  - Nikolić, Maria Vesna
PY  - 2013
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1639
AB  - Nanopowder density, as well as compact density, is due to powder particle size, different in their values, compared to micron powders. Also, the technique used for density determination induces large mutual value discrepancies. Scanning electron micrographs of as received powder are presented as an illustration of the shape and size of powder particles and agglomerates. The density of the loose powder pretreated differently was determined using mercury porosimetry and He pycnometry. The methods used for determining the apparent density of the compacts were pycnometry with water as the wetting liquid, mercury porosimetry and also a new approach using a combination of mercury pycnometry along with nitrogen adsorption. Bulk densities of compacts were determined by dimension measurement and mercury pycnometry. Conclusions about nanopowder usage as a charge for dry compaction as well as the most appropriate way for the determination of compact and powder densities are shown.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
T1  - Density of the ZnTiO3 nanopowder as a loose powder and as a compact obtained by different methods
EP  - 18
SP  - 18
UR  - https://hdl.handle.net/21.15107/rcub_dais_411
ER  - 
@conference{
author = "Labus, Nebojša J. and Krstić, Jugoslav and Peleš, Adriana and Živojinović, Jelena and Nikolić, Maria Vesna",
year = "2013",
abstract = "Nanopowder density, as well as compact density, is due to powder particle size, different in their values, compared to micron powders. Also, the technique used for density determination induces large mutual value discrepancies. Scanning electron micrographs of as received powder are presented as an illustration of the shape and size of powder particles and agglomerates. The density of the loose powder pretreated differently was determined using mercury porosimetry and He pycnometry. The methods used for determining the apparent density of the compacts were pycnometry with water as the wetting liquid, mercury porosimetry and also a new approach using a combination of mercury pycnometry along with nitrogen adsorption. Bulk densities of compacts were determined by dimension measurement and mercury pycnometry. Conclusions about nanopowder usage as a charge for dry compaction as well as the most appropriate way for the determination of compact and powder densities are shown.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade",
title = "Density of the ZnTiO3 nanopowder as a loose powder and as a compact obtained by different methods",
pages = "18-18",
url = "https://hdl.handle.net/21.15107/rcub_dais_411"
}
Labus, N. J., Krstić, J., Peleš, A., Živojinović, J.,& Nikolić, M. V.. (2013). Density of the ZnTiO3 nanopowder as a loose powder and as a compact obtained by different methods. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
Belgrade : Serbian Ceramic Society., 18-18.
https://hdl.handle.net/21.15107/rcub_dais_411
Labus NJ, Krstić J, Peleš A, Živojinović J, Nikolić MV. Density of the ZnTiO3 nanopowder as a loose powder and as a compact obtained by different methods. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade. 2013;:18-18.
https://hdl.handle.net/21.15107/rcub_dais_411 .
Labus, Nebojša J., Krstić, Jugoslav, Peleš, Adriana, Živojinović, Jelena, Nikolić, Maria Vesna, "Density of the ZnTiO3 nanopowder as a loose powder and as a compact obtained by different methods" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade (2013):18-18,
https://hdl.handle.net/21.15107/rcub_dais_411 .

ZnTiO3 Ceramic Nanopowder Microstructure Changes During Compaction

Labus, Nebojša J.; Krstic, Jelena D; Marković, Smilja; Vasiljević-Radović, Dana; Nikolić, Maria Vesna; Pavlović, Vera P.

(Međunarodni Institut za nauku o sinterovanju, Beograd, 2013)

TY  - JOUR
AU  - Labus, Nebojša J.
AU  - Krstic, Jelena D
AU  - Marković, Smilja
AU  - Vasiljević-Radović, Dana
AU  - Nikolić, Maria Vesna
AU  - Pavlović, Vera P.
PY  - 2013
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/667
AB  - ZnTiO3 nanopowder as a constitutive component in compact production was primarily characterised. Scanning electron micrographs of as received powder were recorded. Mercury porosimetry and nitrogen adsorption were also performed on loose powder. Particle size distribution in a water powder suspension was determined with a laser particle size analyser. Compaction was performed on different pressures in a range from 100 to 400 MPa using the uniaxial double sided compaction technique without binder and lubricant. Micrographs of compacted specimens were obtained using scanning electron microscopy and atomic force microscopy. Pore size distribution was also determined by mercury porosimetry and nitrogen adsorption. Results revealed that with increasing pressure during compaction interagglomerate pores diminish in size until they reach some critical diameter related to the intra-agglomerate pore size.
PB  - Međunarodni Institut za nauku o sinterovanju, Beograd
T2  - Science of Sintering
T1  - ZnTiO3 Ceramic Nanopowder Microstructure Changes During Compaction
EP  - 221
IS  - 2
SP  - 209
VL  - 45
DO  - 10.2298/SOS1302209L
ER  - 
@article{
author = "Labus, Nebojša J. and Krstic, Jelena D and Marković, Smilja and Vasiljević-Radović, Dana and Nikolić, Maria Vesna and Pavlović, Vera P.",
year = "2013",
abstract = "ZnTiO3 nanopowder as a constitutive component in compact production was primarily characterised. Scanning electron micrographs of as received powder were recorded. Mercury porosimetry and nitrogen adsorption were also performed on loose powder. Particle size distribution in a water powder suspension was determined with a laser particle size analyser. Compaction was performed on different pressures in a range from 100 to 400 MPa using the uniaxial double sided compaction technique without binder and lubricant. Micrographs of compacted specimens were obtained using scanning electron microscopy and atomic force microscopy. Pore size distribution was also determined by mercury porosimetry and nitrogen adsorption. Results revealed that with increasing pressure during compaction interagglomerate pores diminish in size until they reach some critical diameter related to the intra-agglomerate pore size.",
publisher = "Međunarodni Institut za nauku o sinterovanju, Beograd",
journal = "Science of Sintering",
title = "ZnTiO3 Ceramic Nanopowder Microstructure Changes During Compaction",
pages = "221-209",
number = "2",
volume = "45",
doi = "10.2298/SOS1302209L"
}
Labus, N. J., Krstic, J. D., Marković, S., Vasiljević-Radović, D., Nikolić, M. V.,& Pavlović, V. P.. (2013). ZnTiO3 Ceramic Nanopowder Microstructure Changes During Compaction. in Science of Sintering
Međunarodni Institut za nauku o sinterovanju, Beograd., 45(2), 209-221.
https://doi.org/10.2298/SOS1302209L
Labus NJ, Krstic JD, Marković S, Vasiljević-Radović D, Nikolić MV, Pavlović VP. ZnTiO3 Ceramic Nanopowder Microstructure Changes During Compaction. in Science of Sintering. 2013;45(2):209-221.
doi:10.2298/SOS1302209L .
Labus, Nebojša J., Krstic, Jelena D, Marković, Smilja, Vasiljević-Radović, Dana, Nikolić, Maria Vesna, Pavlović, Vera P., "ZnTiO3 Ceramic Nanopowder Microstructure Changes During Compaction" in Science of Sintering, 45, no. 2 (2013):209-221,
https://doi.org/10.2298/SOS1302209L . .
1
4
5