Popović, Nikolina

Link to this page

Authority KeyName Variants
9fe01c04-9bbd-4f33-b975-11d774eeb8ad
  • Popović, Nikolina (4)
Projects

Author's Bibliography

Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls

Ilic-Durdic, Karla; Ostafe, Raluca; Prodanović, Olivera; Durdevic-Delmas, Aleksandra; Popović, Nikolina; Fischer, Rainer; Schillberg, Stefan; Prodanović, Radivoje

(Higher Education Press, Beijing, 2021)

TY  - JOUR
AU  - Ilic-Durdic, Karla
AU  - Ostafe, Raluca
AU  - Prodanović, Olivera
AU  - Durdevic-Delmas, Aleksandra
AU  - Popović, Nikolina
AU  - Fischer, Rainer
AU  - Schillberg, Stefan
AU  - Prodanović, Radivoje
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1488
AB  - The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods. Lignin peroxidase (LiP) fromPhanerochaete chrysosporiumis a heme-containing lignin-degrading oxidoreductase that catalyzes the peroxide-dependent oxidation of diverse molecules, including industrial dyes. This enzyme is therefore ideal as a starting point for protein engineering. Accordingly, we subjected two positions (165 and 264) in the environment of the catalytic Trp171 residue to saturation mutagenesis, and the resulting library of 10(4) independent clones was expressed on the surface of yeast cells. This yeast display library was used for the selection of variants with the ability to break down structurally-distinct azo dyes more efficiently. We identified mutants with up to 10-fold greater affinity than wild-type LiP for three diverse azo dyes (Evans blue, amido black 10B and Guinea green) and up to 13-fold higher catalytic activity. Additionally, cell wall fragments displaying mutant LiP enzymes were prepared by toluene-induced cell lysis, achieving significant increases in both enzyme activity and stability compared to a whole-cell biocatalyst. LiP-coated cell wall fragments retained their initial dye degradation activity after 10 reaction cycles each lasting 8 h. The best-performing mutants removed up to 2.5-fold more of each dye than the wild-type LiP in multiple reaction cycles.
PB  - Higher Education Press, Beijing
T2  - Frontiers of Environmental Science & Engineering
T1  - Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls
IS  - 2
VL  - 15
DO  - 10.1007/s11783-020-1311-4
ER  - 
@article{
author = "Ilic-Durdic, Karla and Ostafe, Raluca and Prodanović, Olivera and Durdevic-Delmas, Aleksandra and Popović, Nikolina and Fischer, Rainer and Schillberg, Stefan and Prodanović, Radivoje",
year = "2021",
abstract = "The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods. Lignin peroxidase (LiP) fromPhanerochaete chrysosporiumis a heme-containing lignin-degrading oxidoreductase that catalyzes the peroxide-dependent oxidation of diverse molecules, including industrial dyes. This enzyme is therefore ideal as a starting point for protein engineering. Accordingly, we subjected two positions (165 and 264) in the environment of the catalytic Trp171 residue to saturation mutagenesis, and the resulting library of 10(4) independent clones was expressed on the surface of yeast cells. This yeast display library was used for the selection of variants with the ability to break down structurally-distinct azo dyes more efficiently. We identified mutants with up to 10-fold greater affinity than wild-type LiP for three diverse azo dyes (Evans blue, amido black 10B and Guinea green) and up to 13-fold higher catalytic activity. Additionally, cell wall fragments displaying mutant LiP enzymes were prepared by toluene-induced cell lysis, achieving significant increases in both enzyme activity and stability compared to a whole-cell biocatalyst. LiP-coated cell wall fragments retained their initial dye degradation activity after 10 reaction cycles each lasting 8 h. The best-performing mutants removed up to 2.5-fold more of each dye than the wild-type LiP in multiple reaction cycles.",
publisher = "Higher Education Press, Beijing",
journal = "Frontiers of Environmental Science & Engineering",
title = "Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls",
number = "2",
volume = "15",
doi = "10.1007/s11783-020-1311-4"
}
Ilic-Durdic, K., Ostafe, R., Prodanović, O., Durdevic-Delmas, A., Popović, N., Fischer, R., Schillberg, S.,& Prodanović, R.. (2021). Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. in Frontiers of Environmental Science & Engineering
Higher Education Press, Beijing., 15(2).
https://doi.org/10.1007/s11783-020-1311-4
Ilic-Durdic K, Ostafe R, Prodanović O, Durdevic-Delmas A, Popović N, Fischer R, Schillberg S, Prodanović R. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. in Frontiers of Environmental Science & Engineering. 2021;15(2).
doi:10.1007/s11783-020-1311-4 .
Ilic-Durdic, Karla, Ostafe, Raluca, Prodanović, Olivera, Durdevic-Delmas, Aleksandra, Popović, Nikolina, Fischer, Rainer, Schillberg, Stefan, Prodanović, Radivoje, "Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls" in Frontiers of Environmental Science & Engineering, 15, no. 2 (2021),
https://doi.org/10.1007/s11783-020-1311-4 . .
23
6
19

OPTIMIZATION OF HORSERADISH PEROXIDASE ENCAPSULATION WITHIN TYRAMINE-ALGINATE FOR PHENOL REMOVAL

Pantić, Nevena; Popović, Nikolina; Prokopijević, Miloš; Spasojević, Dragica; Prodanović, Radivoje; Đikanović, Daniela; Prodanović, Olivera

(University of Belgrade, Technical Faculty in Bor, 2019)

TY  - CONF
AU  - Pantić, Nevena
AU  - Popović, Nikolina
AU  - Prokopijević, Miloš
AU  - Spasojević, Dragica
AU  - Prodanović, Radivoje
AU  - Đikanović, Daniela
AU  - Prodanović, Olivera
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1656
AB  - Phenolic compounds are one of the most common pollutants in aqueous systems, so their removal
from water is of major interest. Among biocatalysts used for phenol removal, horseradish peroxidase
is the most investigated for this purpose. Enzyme inactivation is a major problem which could be
successfully overcome by immobilization of the enzyme onto different polymers. Tyramine-alginate
micro-beads were tested for the immobilization of horseradish peroxidase. Different concentrations of
tyramine-alginate were used and their influence on specific activity of the enzyme was tested.
Increasing concentration of oxidized alginate results in increase of specific activity. Immobilized HRP
was tested for phenol removal in a batch reactor. Presented results were obtained with HRP
immobilized within 10 mol% tyramine-alginate micro-beads. These biocatalysts can be used up to
three cycles.
PB  - University of Belgrade, Technical Faculty in Bor
C3  - 27th International Conference Ecological Truth and Environmental Research
T1  - OPTIMIZATION OF HORSERADISH PEROXIDASE ENCAPSULATION WITHIN TYRAMINE-ALGINATE FOR PHENOL REMOVAL
SP  - 220-223
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_1656
ER  - 
@conference{
author = "Pantić, Nevena and Popović, Nikolina and Prokopijević, Miloš and Spasojević, Dragica and Prodanović, Radivoje and Đikanović, Daniela and Prodanović, Olivera",
year = "2019",
abstract = "Phenolic compounds are one of the most common pollutants in aqueous systems, so their removal
from water is of major interest. Among biocatalysts used for phenol removal, horseradish peroxidase
is the most investigated for this purpose. Enzyme inactivation is a major problem which could be
successfully overcome by immobilization of the enzyme onto different polymers. Tyramine-alginate
micro-beads were tested for the immobilization of horseradish peroxidase. Different concentrations of
tyramine-alginate were used and their influence on specific activity of the enzyme was tested.
Increasing concentration of oxidized alginate results in increase of specific activity. Immobilized HRP
was tested for phenol removal in a batch reactor. Presented results were obtained with HRP
immobilized within 10 mol% tyramine-alginate micro-beads. These biocatalysts can be used up to
three cycles.",
publisher = "University of Belgrade, Technical Faculty in Bor",
journal = "27th International Conference Ecological Truth and Environmental Research",
title = "OPTIMIZATION OF HORSERADISH PEROXIDASE ENCAPSULATION WITHIN TYRAMINE-ALGINATE FOR PHENOL REMOVAL",
pages = "220-223",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_1656"
}
Pantić, N., Popović, N., Prokopijević, M., Spasojević, D., Prodanović, R., Đikanović, D.,& Prodanović, O.. (2019). OPTIMIZATION OF HORSERADISH PEROXIDASE ENCAPSULATION WITHIN TYRAMINE-ALGINATE FOR PHENOL REMOVAL. in 27th International Conference Ecological Truth and Environmental Research
University of Belgrade, Technical Faculty in Bor., 220-223.
https://hdl.handle.net/21.15107/rcub_rimsi_1656
Pantić N, Popović N, Prokopijević M, Spasojević D, Prodanović R, Đikanović D, Prodanović O. OPTIMIZATION OF HORSERADISH PEROXIDASE ENCAPSULATION WITHIN TYRAMINE-ALGINATE FOR PHENOL REMOVAL. in 27th International Conference Ecological Truth and Environmental Research. 2019;:220-223.
https://hdl.handle.net/21.15107/rcub_rimsi_1656 .
Pantić, Nevena, Popović, Nikolina, Prokopijević, Miloš, Spasojević, Dragica, Prodanović, Radivoje, Đikanović, Daniela, Prodanović, Olivera, "OPTIMIZATION OF HORSERADISH PEROXIDASE ENCAPSULATION WITHIN TYRAMINE-ALGINATE FOR PHENOL REMOVAL" in 27th International Conference Ecological Truth and Environmental Research (2019):220-223,
https://hdl.handle.net/21.15107/rcub_rimsi_1656 .

The enzyme immobilization: Carriers and immobilization methods

Spasojević, Milica; Prodanović, Olivera; Pantić, Nevena; Popović, Nikolina; Balaž, Ana Marija; Prodanović, Radivoje

(Faculty of Technology Zvornik, 2019)

TY  - JOUR
AU  - Spasojević, Milica
AU  - Prodanović, Olivera
AU  - Pantić, Nevena
AU  - Popović, Nikolina
AU  - Balaž, Ana Marija
AU  - Prodanović, Radivoje
PY  - 2019
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1757
AB  - Strategies based on the enzyme application are increasingly replacing the conventional chemical procedures because of their efficiency, quicker performance and environmental protection. However, natural enzymes can rarely be used in industry since their beneficial features cannot endure the industrial conditions. Additional drawbacks of natural enzymes are their inhibition by reaction products and difficulty to be removed from the reaction mixture. The most promising technique to substantially improve the enzyme properties, such as activity, pH, thermal and organic-solvent stability, reusability and storage stability, in non-natural environments is by the enzyme immobilization. In this review different techniques used to immobilize enzymes to inert carriers were summarized. Different materials of both the organic and inorganic origin were used as carriers for the enzyme immobilization. A class of new materials where the enzyme performance was enhanced by combining different classical materials and shaping in specific forms was also summarized.
PB  - Faculty of Technology Zvornik
T2  - Journal of Engineering & Processing Management
T1  - The enzyme immobilization: Carriers and immobilization methods
EP  - 105
IS  - 2
SP  - 89
VL  - 11
DO  - 10.7251/jepm1902089s
ER  - 
@article{
author = "Spasojević, Milica and Prodanović, Olivera and Pantić, Nevena and Popović, Nikolina and Balaž, Ana Marija and Prodanović, Radivoje",
year = "2019",
abstract = "Strategies based on the enzyme application are increasingly replacing the conventional chemical procedures because of their efficiency, quicker performance and environmental protection. However, natural enzymes can rarely be used in industry since their beneficial features cannot endure the industrial conditions. Additional drawbacks of natural enzymes are their inhibition by reaction products and difficulty to be removed from the reaction mixture. The most promising technique to substantially improve the enzyme properties, such as activity, pH, thermal and organic-solvent stability, reusability and storage stability, in non-natural environments is by the enzyme immobilization. In this review different techniques used to immobilize enzymes to inert carriers were summarized. Different materials of both the organic and inorganic origin were used as carriers for the enzyme immobilization. A class of new materials where the enzyme performance was enhanced by combining different classical materials and shaping in specific forms was also summarized.",
publisher = "Faculty of Technology Zvornik",
journal = "Journal of Engineering & Processing Management",
title = "The enzyme immobilization: Carriers and immobilization methods",
pages = "105-89",
number = "2",
volume = "11",
doi = "10.7251/jepm1902089s"
}
Spasojević, M., Prodanović, O., Pantić, N., Popović, N., Balaž, A. M.,& Prodanović, R.. (2019). The enzyme immobilization: Carriers and immobilization methods. in Journal of Engineering & Processing Management
Faculty of Technology Zvornik., 11(2), 89-105.
https://doi.org/10.7251/jepm1902089s
Spasojević M, Prodanović O, Pantić N, Popović N, Balaž AM, Prodanović R. The enzyme immobilization: Carriers and immobilization methods. in Journal of Engineering & Processing Management. 2019;11(2):89-105.
doi:10.7251/jepm1902089s .
Spasojević, Milica, Prodanović, Olivera, Pantić, Nevena, Popović, Nikolina, Balaž, Ana Marija, Prodanović, Radivoje, "The enzyme immobilization: Carriers and immobilization methods" in Journal of Engineering & Processing Management, 11, no. 2 (2019):89-105,
https://doi.org/10.7251/jepm1902089s . .
13

Optimization of reaction conditions for phenol removal in batch reactor with horseradish peroxidase immobilized within tyramine-alginate micro-beads

Pantić, Nevena; Popović, Nikolina; Prokopijević, Miloš; Spasojević, Dragica; Prodanović, Radivoje; Radotić, Ksenija; Prodanović, Olivera

(Serbian Plant Physiology Society, 2018)

TY  - CONF
AU  - Pantić, Nevena
AU  - Popović, Nikolina
AU  - Prokopijević, Miloš
AU  - Spasojević, Dragica
AU  - Prodanović, Radivoje
AU  - Radotić, Ksenija
AU  - Prodanović, Olivera
PY  - 2018
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1764
AB  - Removal of phenolic compounds from wastewaters was previously studied using different enzymatic approaches. In the presence of hydrogen peroxide, peroxidases are able to oxidize phenol-like compounds and form non-soluble polymers that could be easily removed from aqueous
phase. Horseradish peroxidase (HRP) is the most investigated peroxidase used for phenol removal from waste effluents, but it can be easily inactivated during this process by excess of hydrogen peroxide. In order to increase operational stability of the enzyme, immobilization on different materials and various peroxide delivery systems were tested. In our previous work, we studied bioinspired hydrogels based on natural cell wall polymers and enzymes, for efficient removal of phenols from water. In this work, tyramine-alginate hydrogels that we have previously developed were used for horseradish peroxidase encapsulation within micro-beads obtained in a coupled emulsion polymerization reaction. The aim of this research was to study the influence of tyramine-alginate concentration and hydrogen peroxide delivery system on operational stability and efficiency of phenol removal by immobilized peroxidase. The best result of 96% phenol removal from water solution was achieved by peroxidase immobilized within 20% (w/v) tyramine-alginate micro-beads using delivery system for hydrogen peroxide composed of 0.187 U mL-1 of glucose oxidase and 4 mmol L-1 of glucose. The reusability studies showed that these biocatalysts can be used up to five cycles with slight decrease in their catalytic performance.
PB  - Serbian Plant Physiology Society
PB  - Institute for Biological Research “Siniša Stanković”, University of Belgrade
PB  - Faculty of Biology, University of Belgrade
C3  - 3rd International Conference on Plant Biology (22nd SPPS Meeting)
T1  - Optimization of reaction conditions for phenol removal in batch reactor with horseradish peroxidase immobilized within tyramine-alginate micro-beads
SP  - 157
UR  - https://hdl.handle.net/21.15107/rcub_rimsi_1764
ER  - 
@conference{
author = "Pantić, Nevena and Popović, Nikolina and Prokopijević, Miloš and Spasojević, Dragica and Prodanović, Radivoje and Radotić, Ksenija and Prodanović, Olivera",
year = "2018",
abstract = "Removal of phenolic compounds from wastewaters was previously studied using different enzymatic approaches. In the presence of hydrogen peroxide, peroxidases are able to oxidize phenol-like compounds and form non-soluble polymers that could be easily removed from aqueous
phase. Horseradish peroxidase (HRP) is the most investigated peroxidase used for phenol removal from waste effluents, but it can be easily inactivated during this process by excess of hydrogen peroxide. In order to increase operational stability of the enzyme, immobilization on different materials and various peroxide delivery systems were tested. In our previous work, we studied bioinspired hydrogels based on natural cell wall polymers and enzymes, for efficient removal of phenols from water. In this work, tyramine-alginate hydrogels that we have previously developed were used for horseradish peroxidase encapsulation within micro-beads obtained in a coupled emulsion polymerization reaction. The aim of this research was to study the influence of tyramine-alginate concentration and hydrogen peroxide delivery system on operational stability and efficiency of phenol removal by immobilized peroxidase. The best result of 96% phenol removal from water solution was achieved by peroxidase immobilized within 20% (w/v) tyramine-alginate micro-beads using delivery system for hydrogen peroxide composed of 0.187 U mL-1 of glucose oxidase and 4 mmol L-1 of glucose. The reusability studies showed that these biocatalysts can be used up to five cycles with slight decrease in their catalytic performance.",
publisher = "Serbian Plant Physiology Society, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Faculty of Biology, University of Belgrade",
journal = "3rd International Conference on Plant Biology (22nd SPPS Meeting)",
title = "Optimization of reaction conditions for phenol removal in batch reactor with horseradish peroxidase immobilized within tyramine-alginate micro-beads",
pages = "157",
url = "https://hdl.handle.net/21.15107/rcub_rimsi_1764"
}
Pantić, N., Popović, N., Prokopijević, M., Spasojević, D., Prodanović, R., Radotić, K.,& Prodanović, O.. (2018). Optimization of reaction conditions for phenol removal in batch reactor with horseradish peroxidase immobilized within tyramine-alginate micro-beads. in 3rd International Conference on Plant Biology (22nd SPPS Meeting)
Serbian Plant Physiology Society., 157.
https://hdl.handle.net/21.15107/rcub_rimsi_1764
Pantić N, Popović N, Prokopijević M, Spasojević D, Prodanović R, Radotić K, Prodanović O. Optimization of reaction conditions for phenol removal in batch reactor with horseradish peroxidase immobilized within tyramine-alginate micro-beads. in 3rd International Conference on Plant Biology (22nd SPPS Meeting). 2018;:157.
https://hdl.handle.net/21.15107/rcub_rimsi_1764 .
Pantić, Nevena, Popović, Nikolina, Prokopijević, Miloš, Spasojević, Dragica, Prodanović, Radivoje, Radotić, Ksenija, Prodanović, Olivera, "Optimization of reaction conditions for phenol removal in batch reactor with horseradish peroxidase immobilized within tyramine-alginate micro-beads" in 3rd International Conference on Plant Biology (22nd SPPS Meeting) (2018):157,
https://hdl.handle.net/21.15107/rcub_rimsi_1764 .