Gao, Zixiang

Link to this page

Authority KeyName Variants
bd6aa857-7ca4-466f-b4c2-314f26c52837
  • Gao, Zixiang (4)
Projects

Author's Bibliography

Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice

Jiang, Yishun; Gao, Zixiang; Zhang, Xinyuan; Nikolic, Miroslav; Liang, Yongchao

(Taylor & Francis, 2022)

TY  - JOUR
AU  - Jiang, Yishun
AU  - Gao, Zixiang
AU  - Zhang, Xinyuan
AU  - Nikolic, Miroslav
AU  - Liang, Yongchao
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1788
AB  - Salicylic acid (SA) is a phenolic phytohormone that plays a vital role in plant development and mediates plant responses to plenty of adversity including arsenic (As) stress. The effects of exogenous addition of SA on As tolerance and As accumulation were assessed in two cultivars of rice (Oryza sativa L.) Nipponbare and Zhongzao 39, hydroponically grown with Kimura B nutrient solution under arsenite [As (III)] and dimethylarsonic acid (DMA) exposure. In the second ex-periment, the influence of soaking seed with SA on As uptake and As damages was investigated in rice (cv. Nipponbare) exposed to As (III) and DMA. The results showed that exogenous addition of SA sig- nificantly decreased the concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in both As (III)- and DMA-stressed rice, indicating that SA alleviates As-induced oxidative damages in rice. SA increased the activity of antioxidant enzymes and, moreover, increased the relative amount of glutathione (GSH) and ascorbate (ASA) by accelerating the GSH- ASA circle system. Exogenous addition of SA significantly decreased the As concentration in both roots and shoots of rice under As(III) stress by influ- encing the expression of genes encoding As transporters, viz. OsLsi1, OsLsi2. The addition of SA significantly decreased the As content in shoots under DMA stress, which may be related to the expression of OsPTR7 involved in shoot xylem unloading. This finding may foster a novel perspec- tive for reducing As accumulation in rice grains.
PB  - Taylor & Francis
T2  - Journal of Plant Nutrition
T1  - Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice
EP  - 16
SP  - 1
DO  - 10.1080/01904167.2022.2160752
ER  - 
@article{
author = "Jiang, Yishun and Gao, Zixiang and Zhang, Xinyuan and Nikolic, Miroslav and Liang, Yongchao",
year = "2022",
abstract = "Salicylic acid (SA) is a phenolic phytohormone that plays a vital role in plant development and mediates plant responses to plenty of adversity including arsenic (As) stress. The effects of exogenous addition of SA on As tolerance and As accumulation were assessed in two cultivars of rice (Oryza sativa L.) Nipponbare and Zhongzao 39, hydroponically grown with Kimura B nutrient solution under arsenite [As (III)] and dimethylarsonic acid (DMA) exposure. In the second ex-periment, the influence of soaking seed with SA on As uptake and As damages was investigated in rice (cv. Nipponbare) exposed to As (III) and DMA. The results showed that exogenous addition of SA sig- nificantly decreased the concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in both As (III)- and DMA-stressed rice, indicating that SA alleviates As-induced oxidative damages in rice. SA increased the activity of antioxidant enzymes and, moreover, increased the relative amount of glutathione (GSH) and ascorbate (ASA) by accelerating the GSH- ASA circle system. Exogenous addition of SA significantly decreased the As concentration in both roots and shoots of rice under As(III) stress by influ- encing the expression of genes encoding As transporters, viz. OsLsi1, OsLsi2. The addition of SA significantly decreased the As content in shoots under DMA stress, which may be related to the expression of OsPTR7 involved in shoot xylem unloading. This finding may foster a novel perspec- tive for reducing As accumulation in rice grains.",
publisher = "Taylor & Francis",
journal = "Journal of Plant Nutrition",
title = "Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice",
pages = "16-1",
doi = "10.1080/01904167.2022.2160752"
}
Jiang, Y., Gao, Z., Zhang, X., Nikolic, M.,& Liang, Y.. (2022). Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice. in Journal of Plant Nutrition
Taylor & Francis., 1-16.
https://doi.org/10.1080/01904167.2022.2160752
Jiang Y, Gao Z, Zhang X, Nikolic M, Liang Y. Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice. in Journal of Plant Nutrition. 2022;:1-16.
doi:10.1080/01904167.2022.2160752 .
Jiang, Yishun, Gao, Zixiang, Zhang, Xinyuan, Nikolic, Miroslav, Liang, Yongchao, "Effects of exogenous salicylic acid on alleviation of arsenic-induced oxidative damages in rice" in Journal of Plant Nutrition (2022):1-16,
https://doi.org/10.1080/01904167.2022.2160752 . .
1

Silicon fertilization influences microbial assemblages in rice roots and decreases arsenic concentration in grain: A five-season in-situ remediation field study

Gao, Zixiang; Jiang, Yishun; Yin, Chang; Zheng, Wanning; Nikolić, Nina; Nikolic, Miroslav; Liang, Yongchao

(Elsevier, Amsterdam, 2022)

TY  - JOUR
AU  - Gao, Zixiang
AU  - Jiang, Yishun
AU  - Yin, Chang
AU  - Zheng, Wanning
AU  - Nikolić, Nina
AU  - Nikolic, Miroslav
AU  - Liang, Yongchao
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1538
AB  - Microbial mechanism of in-situ remediation of arsenic (As) in As-contaminated paddy fields by silicon (Si) fertilization has been rarely reported, especially under continuous rice cultivation and Si applications. In this study, two Si fertilizers were applied for three phases in five consecutive rice seasons to investigate the longlasting impacts on in-situ remediation of As, and the underpinning microbial mechanism of root-associated compartments (bulk soil, rhizosphere and endosphere) was explored using the last double-cropping rice. Repeated application of Si fertilizers as base manure had a long-lasting effect on reducing As concentrations in rice grains. Application of Si fertilizer at an adequate amount resulted in an extended in-situ remediation effect from endosphere to rhizosphere. The microbial diversity and richness in rhizosphere soil and endosphere were significantly impacted by Si fertilization, the effects depending on application doses and prolonged seasons. Si fertilization can immobilize As in the root or rhizosphere, and Fe concentrations and the As-and Fe-transforming microorganisms (i.e. Geobacteraceae) are the determinants of As uptake in rice. We recommend more extensive supplementation of Si fertilizer at a higher rate to decrease grain As concentration for in-situ remediation. This study sheds light on the microbial-mediated mechanism underlying Si fertilization effect on decreased As uptake in paddy fields.
PB  - Elsevier, Amsterdam
T2  - Journal of Hazardous Materials
T1  - Silicon fertilization influences microbial assemblages in rice roots and decreases arsenic concentration in grain: A five-season in-situ remediation field study
VL  - 423
DO  - 10.1016/j.jhazmat.2021.127180
ER  - 
@article{
author = "Gao, Zixiang and Jiang, Yishun and Yin, Chang and Zheng, Wanning and Nikolić, Nina and Nikolic, Miroslav and Liang, Yongchao",
year = "2022",
abstract = "Microbial mechanism of in-situ remediation of arsenic (As) in As-contaminated paddy fields by silicon (Si) fertilization has been rarely reported, especially under continuous rice cultivation and Si applications. In this study, two Si fertilizers were applied for three phases in five consecutive rice seasons to investigate the longlasting impacts on in-situ remediation of As, and the underpinning microbial mechanism of root-associated compartments (bulk soil, rhizosphere and endosphere) was explored using the last double-cropping rice. Repeated application of Si fertilizers as base manure had a long-lasting effect on reducing As concentrations in rice grains. Application of Si fertilizer at an adequate amount resulted in an extended in-situ remediation effect from endosphere to rhizosphere. The microbial diversity and richness in rhizosphere soil and endosphere were significantly impacted by Si fertilization, the effects depending on application doses and prolonged seasons. Si fertilization can immobilize As in the root or rhizosphere, and Fe concentrations and the As-and Fe-transforming microorganisms (i.e. Geobacteraceae) are the determinants of As uptake in rice. We recommend more extensive supplementation of Si fertilizer at a higher rate to decrease grain As concentration for in-situ remediation. This study sheds light on the microbial-mediated mechanism underlying Si fertilization effect on decreased As uptake in paddy fields.",
publisher = "Elsevier, Amsterdam",
journal = "Journal of Hazardous Materials",
title = "Silicon fertilization influences microbial assemblages in rice roots and decreases arsenic concentration in grain: A five-season in-situ remediation field study",
volume = "423",
doi = "10.1016/j.jhazmat.2021.127180"
}
Gao, Z., Jiang, Y., Yin, C., Zheng, W., Nikolić, N., Nikolic, M.,& Liang, Y.. (2022). Silicon fertilization influences microbial assemblages in rice roots and decreases arsenic concentration in grain: A five-season in-situ remediation field study. in Journal of Hazardous Materials
Elsevier, Amsterdam., 423.
https://doi.org/10.1016/j.jhazmat.2021.127180
Gao Z, Jiang Y, Yin C, Zheng W, Nikolić N, Nikolic M, Liang Y. Silicon fertilization influences microbial assemblages in rice roots and decreases arsenic concentration in grain: A five-season in-situ remediation field study. in Journal of Hazardous Materials. 2022;423.
doi:10.1016/j.jhazmat.2021.127180 .
Gao, Zixiang, Jiang, Yishun, Yin, Chang, Zheng, Wanning, Nikolić, Nina, Nikolic, Miroslav, Liang, Yongchao, "Silicon fertilization influences microbial assemblages in rice roots and decreases arsenic concentration in grain: A five-season in-situ remediation field study" in Journal of Hazardous Materials, 423 (2022),
https://doi.org/10.1016/j.jhazmat.2021.127180 . .
11
11

Silicon Reduces Aluminum-Induced Suberization by Inhibiting the Uptake and Transport of Aluminum in Rice Roots and Consequently Promotes Root Growth

Xiao, Zhuoxi; Ye, Mujun; Gao, Zixiang; Jiang, Yishun; Zhang, Xinyuan; Nikolić, Nina; Liang, Yongchao

(Oxford Univ Press, Oxford, 2022)

TY  - JOUR
AU  - Xiao, Zhuoxi
AU  - Ye, Mujun
AU  - Gao, Zixiang
AU  - Jiang, Yishun
AU  - Zhang, Xinyuan
AU  - Nikolić, Nina
AU  - Liang, Yongchao
PY  - 2022
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1527
AB  - Silicon (Si) can alleviate aluminum (Al) toxicity in rice (Oryza sativa L.), but the mechanisms underlying this beneficial effect have not been elucidated, especially under long-term Al stress. Here, the effects of Al and Si on the suberization and development of rice roots were investigated. The results show that, as the Al exposure time increased, the roots accumulated more Al, and Al enhanced the deposition of suberin in roots, both of which ultimately inhibited root growth and nutrient absorption. However, Si restricted the apoplastic and symplastic pathways of Al in roots by inhibiting the uptake and transport of Al, thereby reducing the accumulation of Al in roots. Meanwhile, the Si-induced drop in Al concentration reduced the suberization of roots caused by Al through down-regulating the expression of genes related to suberin synthesis and then promoted the development of roots (such as longer and more adventitious roots and lateral roots). Moreover, Si also increased nutrient uptake by Al-stressed roots and thence promoted the growth of rice. Overall, these results indicate that Si reduced Al-induced suberization of roots by inhibiting the uptake and transport of Al in roots, thereby amending root growth and ultimately alleviating Al stress in rice. Our study further clarified the toxicity mechanism of Al in rice and the role of Si in reducing Al content and restoring root development under Al stress.
PB  - Oxford Univ Press, Oxford
T2  - Plant and Cell Physiology
T1  - Silicon Reduces Aluminum-Induced Suberization by Inhibiting the Uptake and Transport of Aluminum in Rice Roots and Consequently Promotes Root Growth
EP  - 352
IS  - 3
SP  - 340
VL  - 63
DO  - 10.1093/pcp/pcac001
ER  - 
@article{
author = "Xiao, Zhuoxi and Ye, Mujun and Gao, Zixiang and Jiang, Yishun and Zhang, Xinyuan and Nikolić, Nina and Liang, Yongchao",
year = "2022",
abstract = "Silicon (Si) can alleviate aluminum (Al) toxicity in rice (Oryza sativa L.), but the mechanisms underlying this beneficial effect have not been elucidated, especially under long-term Al stress. Here, the effects of Al and Si on the suberization and development of rice roots were investigated. The results show that, as the Al exposure time increased, the roots accumulated more Al, and Al enhanced the deposition of suberin in roots, both of which ultimately inhibited root growth and nutrient absorption. However, Si restricted the apoplastic and symplastic pathways of Al in roots by inhibiting the uptake and transport of Al, thereby reducing the accumulation of Al in roots. Meanwhile, the Si-induced drop in Al concentration reduced the suberization of roots caused by Al through down-regulating the expression of genes related to suberin synthesis and then promoted the development of roots (such as longer and more adventitious roots and lateral roots). Moreover, Si also increased nutrient uptake by Al-stressed roots and thence promoted the growth of rice. Overall, these results indicate that Si reduced Al-induced suberization of roots by inhibiting the uptake and transport of Al in roots, thereby amending root growth and ultimately alleviating Al stress in rice. Our study further clarified the toxicity mechanism of Al in rice and the role of Si in reducing Al content and restoring root development under Al stress.",
publisher = "Oxford Univ Press, Oxford",
journal = "Plant and Cell Physiology",
title = "Silicon Reduces Aluminum-Induced Suberization by Inhibiting the Uptake and Transport of Aluminum in Rice Roots and Consequently Promotes Root Growth",
pages = "352-340",
number = "3",
volume = "63",
doi = "10.1093/pcp/pcac001"
}
Xiao, Z., Ye, M., Gao, Z., Jiang, Y., Zhang, X., Nikolić, N.,& Liang, Y.. (2022). Silicon Reduces Aluminum-Induced Suberization by Inhibiting the Uptake and Transport of Aluminum in Rice Roots and Consequently Promotes Root Growth. in Plant and Cell Physiology
Oxford Univ Press, Oxford., 63(3), 340-352.
https://doi.org/10.1093/pcp/pcac001
Xiao Z, Ye M, Gao Z, Jiang Y, Zhang X, Nikolić N, Liang Y. Silicon Reduces Aluminum-Induced Suberization by Inhibiting the Uptake and Transport of Aluminum in Rice Roots and Consequently Promotes Root Growth. in Plant and Cell Physiology. 2022;63(3):340-352.
doi:10.1093/pcp/pcac001 .
Xiao, Zhuoxi, Ye, Mujun, Gao, Zixiang, Jiang, Yishun, Zhang, Xinyuan, Nikolić, Nina, Liang, Yongchao, "Silicon Reduces Aluminum-Induced Suberization by Inhibiting the Uptake and Transport of Aluminum in Rice Roots and Consequently Promotes Root Growth" in Plant and Cell Physiology, 63, no. 3 (2022):340-352,
https://doi.org/10.1093/pcp/pcac001 . .
3
11
11

Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems

Tan, Li; Fan, Xiaoping; Yan, Guochao; Peng, Miao; Zhang, Nan; Ye, Mujun; Gao, Zixiang; Song, Alin; Nikolic, Miroslav; Liang, Yongchao

(Elsevier, Amsterdam, 2021)

TY  - JOUR
AU  - Tan, Li
AU  - Fan, Xiaoping
AU  - Yan, Guochao
AU  - Peng, Miao
AU  - Zhang, Nan
AU  - Ye, Mujun
AU  - Gao, Zixiang
AU  - Song, Alin
AU  - Nikolic, Miroslav
AU  - Liang, Yongchao
PY  - 2021
UR  - http://rimsi.imsi.bg.ac.rs/handle/123456789/1440
AB  - Phytolith-occluded carbon (PhytOC) is resistant to decomposition and, if crop residue biomass is incorporated into soil, has a significant potential for long-term soil carbon sequestration. However, the magnitude and spatial distribution of rice straw PhytOC sequestration remain unclear. Here, we used 279 samplings from nine provinces across China to establish the relationship between soil nutrients availability and rice straw phytoliths concentra-tion, thereby predicting annual PhytOC sequestration of Chinese rice systems. The results suggest that rice straw phytoliths sequester about 0.26 Tg CO2 per yr (8.7 kg CO2 ha(-1) yr(-1)) in China. Great variability of PhytOC exists across the region depending on rice variety. If rice varieties that occluded little PhytOC were replaced by ones with the highest PhytOC concentration, the sequestration rate might be increased to 0.83 Tg CO2 yr(-1) (27.7 kg CO2 ha(-1) yr(-1)). The distribution pattern shows that 51% of rice straw PhytOC sequestration can be attributed to the Middle-Lower Yangtze Plain due to its vast rice production. PhytOC sequestration is a crucial mechanism of global biogeochemical carbon sink, and practices such as appropriate fertilization application and selection of rice varieties with higher PhytOC concentration may alleviate climate warming.
PB  - Elsevier, Amsterdam
T2  - Science of the Total Environment
T1  - Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems
VL  - 774
DO  - 10.1016/j.scitotenv.2021.145696
ER  - 
@article{
author = "Tan, Li and Fan, Xiaoping and Yan, Guochao and Peng, Miao and Zhang, Nan and Ye, Mujun and Gao, Zixiang and Song, Alin and Nikolic, Miroslav and Liang, Yongchao",
year = "2021",
abstract = "Phytolith-occluded carbon (PhytOC) is resistant to decomposition and, if crop residue biomass is incorporated into soil, has a significant potential for long-term soil carbon sequestration. However, the magnitude and spatial distribution of rice straw PhytOC sequestration remain unclear. Here, we used 279 samplings from nine provinces across China to establish the relationship between soil nutrients availability and rice straw phytoliths concentra-tion, thereby predicting annual PhytOC sequestration of Chinese rice systems. The results suggest that rice straw phytoliths sequester about 0.26 Tg CO2 per yr (8.7 kg CO2 ha(-1) yr(-1)) in China. Great variability of PhytOC exists across the region depending on rice variety. If rice varieties that occluded little PhytOC were replaced by ones with the highest PhytOC concentration, the sequestration rate might be increased to 0.83 Tg CO2 yr(-1) (27.7 kg CO2 ha(-1) yr(-1)). The distribution pattern shows that 51% of rice straw PhytOC sequestration can be attributed to the Middle-Lower Yangtze Plain due to its vast rice production. PhytOC sequestration is a crucial mechanism of global biogeochemical carbon sink, and practices such as appropriate fertilization application and selection of rice varieties with higher PhytOC concentration may alleviate climate warming.",
publisher = "Elsevier, Amsterdam",
journal = "Science of the Total Environment",
title = "Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems",
volume = "774",
doi = "10.1016/j.scitotenv.2021.145696"
}
Tan, L., Fan, X., Yan, G., Peng, M., Zhang, N., Ye, M., Gao, Z., Song, A., Nikolic, M.,& Liang, Y.. (2021). Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems. in Science of the Total Environment
Elsevier, Amsterdam., 774.
https://doi.org/10.1016/j.scitotenv.2021.145696
Tan L, Fan X, Yan G, Peng M, Zhang N, Ye M, Gao Z, Song A, Nikolic M, Liang Y. Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems. in Science of the Total Environment. 2021;774.
doi:10.1016/j.scitotenv.2021.145696 .
Tan, Li, Fan, Xiaoping, Yan, Guochao, Peng, Miao, Zhang, Nan, Ye, Mujun, Gao, Zixiang, Song, Alin, Nikolic, Miroslav, Liang, Yongchao, "Sequestration potential of phytolith occluded carbon in China's paddy rice (Oryza sativa L.) systems" in Science of the Total Environment, 774 (2021),
https://doi.org/10.1016/j.scitotenv.2021.145696 . .
18
18